首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Human pathology》1997,28(8):887-892
Distinction of inclusion body myositis (IBM) from other forms of inflammatory myopathy is significant from prognostic and therapeutic standpoints. This study retrospectively examines ubiquitin expression by paraffin immunohistochemistry in muscle biopsy material from 30 patients with IBM. Patients included 19 men and 11 women (ages 29 to 80 years; mean, 64 years). All biopsies were characterized by endomysial chronic inflammation, muscle fiber degeneration and regeneration, rimmed vacuoles, and angular atrophic esterase-positive muscle fibers. Ragged red fibers were identified in biopsies of five patients and a partial cytochrome C-oxidase deficiency by enzyme histochemistry in biopsies of 10 patients. Evidence of intranuclear or cytoplasmic tubulofilamentous structures confirming a diagnosis of IBM was observed in all 30 cases. Paracrystalline mitochondrial inclusions were noted in five patients. Discrete myocyte intranuclear ubiquitin-positive inclusions were noted in 14 patients (47%). Discrete intracytoplasmic ubiquitin-positive inclusions were noted in 24 (80%) patients. Positive staining of rimmed vacuoles by ubiquitin was observed in 25 (83%) patients. Diffuse staining of scattered muscle fibers was observed in 21 (70%) patients. In a control group including patients with polymyositis (n = 3), dermatomyositis (n = 3), necrotizing vasculitis (n = 1), and granulomatous myositis (n = 1), discrete intranuclear or cytoplasmic ubiquitin-positive inclusions were not observed. Rimmed vacuoles were not seen either by light microscopy or ubiquitin immunostaining in any of the eight cases. Occasional myofibers from all eight cases showed diffuse, positive muscle fiber staining. Although not present in all cases, evidence of ubiquitinpositive myocytic intranuclear or cytoplasmic inclusions or positive-staining rimmed vacuoles in the setting of an inflammatory myopathy may be suggestive of a diagnosis of inclusion body myositis. Use of ubiquitin immunohistochemistry may be useful in cases in which frozen tissue or tissue processed for electron microscopy is not available, and IBM is suspected. Light or electron microscopic evidence of mitochondrial abnormalities were noted in a significant subset of patients (13 of 30; 43%) of patients with IBM.  相似文献   

2.
Proteins in the endoplasmic reticulum (ER) require an efficient system of molecular chaperones whose role is to assure their proper folding and to prevent accumulation of unfolded proteins. The response of cells to accumulation of unfolded proteins in the ER is termed "unfolded protein response" (UPR). UPR is a functional mechanism by which cells attempt to protect themselves against ER stress, resulting from the accumulation of the unfolded/misfolded proteins. Because intracellular inclusions, containing either amyloid-beta (Abeta) or phosphorylated tau, are the characteristic feature of sporadic inclusion body myositis (s-IBM) muscle biopsies, we studied expression and immunolocalization of five ER chaperones, calnexin, calreticulin, GRP94, BiP/GRP78, and ERp72, in s-IBM and control muscle biopsies. Physical interaction of the ER chaperones with amyloid-beta precursor protein (AbetaPP) was studied by a combined immunoprecipitation/immunoblotting technique in s-IBM and control muscle biopsies, and in AbetaPP-overexpressing cultured human muscle fibers. In all s-IBM muscle biopsies, all five of the ER chaperones were immunodetected in the form of inclusions that co-localized with amyloid-beta. By immunoblotting, expression of ER chaperones was greatly increased as compared to the controls. By immunoprecipitation/immunoblotting experiments, ER chaperones co-immunoprecipitated with AbetaPP. Our studies provide evidence of the UPR in s-IBM muscle and demonstrate for the first time that the ER chaperones calnexin, calreticulin, GRP94, BiP/GRP78, and ERp72 physically associate with AbetaPP in s-IBM muscle, suggesting their playing a role in AbetaPP folding and processing.  相似文献   

3.
Sporadic inclusion body myositis (S-IBM) is a progressive, acquired myopathic process of unknown etiology. No known, successful or proven treatment exists. Quantitative EMG studies including concentric needle motor unit action potentials, interference pattern, macro-EMG and fiber density have allowed different measures to be made of the motor unit. These different measures allow inferences to be made in how the muscle fibers are distributed within both the normal and diseased motor unit. The present study is an effort to use multiple quantitative EMG measurements from the biceps brachii on a serial basis in order to study chronic changes in the motor unit with disease progression. Twenty-eight studies from 9 patients over a four-year period are shown. We conclude that while the concentric needle electrode is most helpful for diagnosing abnormality, the less selective macro-EMG and surface electrodes are better suited to monitor disease progression, especially in very weak muscles. These observations have practical applications for monitoring disease progression, or conversely, response to treatment.  相似文献   

4.
Inclusion body myositis (IBM) is a sporadic progressive myopathy, which is morphologically characterized by inflammatory cell infiltrates and rimmed vacuoles in muscle fibers. Mitochondrial changes are regularly present with ragged-red fibers showing deficiency of cytochrome c oxidase. In these muscle fiber segments, there is accumulation of mitochondria with mitochondrial DNA (mtDNA) deletions. There are different deletions in different muscle fibers. In this study, we have sequenced for the first time the multiple mtDNA deletions in muscle from four patients with IBM. The deletion breakpoints were sequenced from cloned polymerase chain reaction (PCR)-amplified mtDNA fragments. The sequencing was performed directly from the bacterial colonies used for cloning. Of 122 analyzed clones, 33 different deletions were identified. The majority of these have not previously been described. There was a marked predominance of deletion breakpoints in certain regions of mtDNA. These predominant breakpoint regions are similar to those described in other conditions with multiple deletions, such as autosomal dominant progressive external ophthalmoplegia (adPEO) and normal aging, but different from those described in diseases due to single deletions such as Kearns-Sayre syndrome and sporadic PEO. These findings indicate that common factors are involved in the development of multiple mtDNA deletions in IBM, adPEO, and aging. Hum Mutat 10:381–386, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Cardiac troponin T (cTnT) is considered as a specific marker for acute myocardial infarction. Here, we present a case with elevated cTnT, determined by a third-generation assay, without signs of a myocardial lesion. Routine investigation of a 66-year-old female patient with indolent B-cell lymphoma revealed increased serum levels of creatine kinase (CK), MB fraction of CK (CK-MB), and cTnT, although she did not complain of cardiac symptoms. Electrocardiographic monitoring, echocardiography, magnetic resonance computed angiography, and percutaneous coronary angiography excluded myocardial damage. However, the close follow-up showed a steady increase of CK-MB and cTnT levels and gradual development of weakness in both thighs. A biopsy of the right quadriceps muscle led to the diagnosis of inclusion body myositis. In contrast to cTnT, cardiac troponin I could not be detected retrospectively in any of her serum samples. These results demonstrate for the first time that cTnT is elevated in patients with inclusion body myositis.  相似文献   

6.
《Autoimmunity reviews》2014,13(4-5):363-366
Sporadic inclusion body myositis (sIBM) is the most common acquired muscle disease in elderly individuals, particularly men. Its prevalence varies among ethnic groups but is estimated at 35 per one million people over 50. Genetic as well as environmental factors and autoimmune processes might both have a role in its pathogenesis. Unlike other inflammatory myopathies, sIBM causes very slowly progressive muscular weakness and atrophy, having a distinctive pattern of muscle involvement and different forms of clinical presentation. In some cases a primary autoimmune disease coexists. Diagnosis is suspected on clinical grounds and is established by typical muscle pathology. As a rule sIBM is refractory to conventional forms of immunotherapy.  相似文献   

7.
In muscle biopsies from patients with inclusion body myositis (IBM), multiple sites were found in many muscle fibers that bound single-stranded but not double-stranded DNA without sequence specificity, as exemplified by several different cDNA probes. This activity was attributable to a protein, because it was abolished by proteases but not by RNAse. Most of the sites of binding were myonuclei, whereas some were rimmed vacuoles, which probably result from nuclear breakdown. No comparable binding was seen in 27 control biopsies. A number of human and viral single-stranded DNA binding proteins exist but our data does not identify the protein responsible for DNA binding in IBM. Our findings reinforce the supposition that nuclear damage plays a basic role in the pathogenesis of IBM.  相似文献   

8.
Muscle pathology in inclusion body myositis (IBM) typically includes inflammatory cell infiltration, muscle fibers with rimmed vacuoles and cytochrome c oxidase (COX)‐deficient fibers. Previous studies have revealed clonal expansion of large mitochondrial DNA (mtDNA) deletions in the COX‐deficient muscle fibers. Technical limitations have prevented complete investigations of the mtDNA deletions and other mtDNA variants. Detailed characterization by deep sequencing of mtDNA in muscle samples from 21 IBM patients and 10 age‐matched controls was performed after whole genome sequencing with a mean depth of mtDNA coverage of 46,000x. Multiple large mtDNA deletions and duplications were identified in all IBM and control muscle samples. In general, the IBM muscles demonstrated a larger number of deletions and duplications with a mean heteroplasmy level of 10% (range 1%‐35%) compared to controls (1%, range 0.2%‐3%). There was also a small increase in the number of somatic single nucleotide variants in IBM muscle. More than 200 rearrangements were recurrent in at least two or more IBM muscles while 26 were found in both IBM and control muscles. The deletions and duplications, with a high recurrence rate, were mainly observed in three mtDNA regions, m.534‐4429, m.6330‐13993, and m.8636‐16072, where some were flanked by repetitive sequences. The mtDNA copy number in IBM muscle was reduced to 42% of controls. Immunohistochemical and western blot analyses of IBM muscle revealed combined complex I and complex IV deficiency affecting the COX‐deficient fibers. In conclusion, deep sequencing and quantitation of mtDNA variants revealed that IBM muscles had markedly increased levels of large deletions and duplications, and there were also indications of increased somatic single nucleotide variants and reduced mtDNA copy numbers compared to age‐matched controls. The distribution and type of variants were similar in IBM muscle and controls indicating an accelerated aging process in IBM muscle, possibly associated with chronic inflammation.  相似文献   

9.
10.
11.
Inclusion body myositis and Alzheimer's disease are age-related disorders characterized in part by the appearance of intracellular lesions composed of filamentous aggregates of the microtubule-associated protein tau. Abnormal tau phosphorylation accompanies tau aggregation and may be an upstream pathological event in both diseases. Enzymes implicated in tau hyperphosphorylation in Alzheimer's disease include members of the casein kinase 1 family of phosphotransferases, a group of structurally related protein kinases that frequently function in tandem with the ubiquitin modification system. To determine whether casein kinase 1 isoforms associate with degenerating muscle fibers of inclusion body myositis, muscle biopsy sections isolated from sporadic disease cases were subjected to double-label fluorescence immunohistochemistry using selective anti-casein kinase 1 and anti-phospho-tau antibodies. Results showed that the alpha isoform of casein kinase 1, but not the delta or epsilon isoforms, stained degenerating muscle fibers in all eight inclusion body myositis cases examined. Staining was almost exclusively localized to phospho-tau-bearing inclusions. These findings, which extend the molecular similarities between inclusion body myositis muscle and Alzheimer's disease brain, implicate casein kinase 1 alpha as one of the phosphotransferases potentially involved in tau hyperphosphorylation.  相似文献   

12.
Sporadic inclusion body myositis (sIBM) contains non-necrotic myofibers that are surrounded and/or invaded by inflammatory cells. In this study we aimed to identify selective molecules that are present at this site. Myofibers of four biopsies of sIBM that were surrounded and/or invaded by inflammatory cells were microdissected, pooled and profiled by proteomic studies using mass spectrometry. Normal skeletal muscle tissue served as control. Based on the table of proteins that were detected in sIBM only, we selected nine extracellular matrix molecules and validated the results performing immunofluorescence. Seven out of nine proteins that were detected in sIBM by mass spectrometry showed different immunohistochemical results in myositis and normal controls. Of these, the small leucine-rich repeat proteins proline arginine-rich end leucine-rich repeat protein (PRELP) and biglycan were deposited precisely at myofibers surrounded and/or invaded by inflammatory cells both in sIBM and polymyositis. The basement membrane (BM) molecules merosin, perlecan, nidogen-2 and collagen IV were variably destroyed or increased at these sites. P component, which ensheathed all myofibers in normal controls, was absent from invaded myofibers. Similar to BM remodeling, the specific deposition of PRELP and biglycan may represent a mechanism to defend against immune attack. Loss of P component may affect the anchorage of the myofiber in the endomysium.  相似文献   

13.
A case of a 38-year old man with a common variable immunodeficiency syndrome (CVID) is demonstrated who suffered at the same time from a histologically proven inclusion body myositis (IBM). The myositis did not resolve after institution of regular intravenous IgG infusions. This case demonstrates a very long lasting benign course of IBM. The occurrence with CVID may be a clinical hint for a viral pathogenesis of IBM. So far only two similar cases are reported in the literature.  相似文献   

14.
The cellular isoform of the prion protein (PrPc) is a glycosylphosphatidylinositol-anchored glycoprotein, normally expressed in neural and non-neural tissues, including skeletal muscle. In transmissible spongiform encephalopathies, or prion diseases, PrPc, which is soluble in nondenaturing detergent and sensitive to proteinase K (PK)-treatment, represents the molecular substrate for the production of a detergent-insoluble and PK-resistant isoform, termed PrP(Sc). In human prion diseases, PrP(Sc) accumulation occurs only in brain tissues, with the exception of new variant Creutzfeldt-Jakob disease, where PrP(Sc) is also detected in lymphoid tissues. Increased amounts of prion protein expression and deposition have been described in pathological muscle fibers of two human muscle disorders, called sporadic inclusion-body myositis (s-IBM) and hereditary inclusion-body myopathy, but it is unknown whether accumulated prion protein reflects normal PrPc or PrP(Sc). We investigated the biochemical characteristics of prion protein in normal human muscle, s-IBM, other inflammatory myopathies and denervation atrophy. We report that 1) both the glycoform profile and size of the normal muscle PrPc are different from those of human brain PrPc; 2) in addition to s-IBM, increased PrPc expression is seen in polymyositis, dermatomyositis and neurogenic muscle atrophy, but PrPc glycoforms are unchanged; 3) only the normal PrPc isoform, and not PrP(Sc), is detected in s-IBM. The present results exclude that s-IBM is a prion disease.  相似文献   

15.
16.
In 10/10 inclusion body myositis (IBM) patients and 2/2 oculopharyngeal muscular dystrophy (OPMD) patients, vacuolated muscle fibers contained darkly stained ubiquitin (Ub)-immunoreactive cytoplasmic inclusions. By electronmicroscopy, Ub-immunoreactive material was strictly localized to the 15-21 nm pathologic cytoplasmic tubulofilaments (CTFs). None of 18 control muscle biopsies contained the Ub-immunoreactive inclusions that are typical for IBM and OPMD. Thus, (a) finding that CTFs are ubiquitinated places their protein in the Ub-mediated turnover pathway and provides their first molecular marker; (b) easy accessibility, as compared to the central nervous system, of muscle tissue containing ubiquitinated inclusions should be advantageous for biochemical and molecular studies and may provide information important to both systems.  相似文献   

17.
18.
Abnormal protein aggregates are commonly observed in affected neurons in many neurodegenerative disorders. We have reported that valosin-containing protein (VCP) co-localizes with protein aggregates in patients' neurons and in cultured cells expressing diseased proteins. However, the significance of such co-localization remains elucidated. Here we report the involvement of VCP in the re-solubilization process of abnormal protein aggregates. VCP recognized and accumulated onto pre-formed protein aggregates created by proteasome inhibition. VCP knockdown or the expression of dominant-negative VCP both significantly delayed the elimination of ubiquitin-positive aggregates. VCP was involved in the clearance of pre-formed polyglutamine aggregates as well. Paradoxically, VCP knockdown also diminished polyglutamine aggregate formation. Furthermore, its ATPase activity was required for the re-solubilization and re-activation of heat-denatured proteins, such as luciferase, from insoluble aggregates. We thus propose that VCP functions as a mediator for both aggregate formation and clearance depending upon the concentration of soluble aggregate-prone proteins, indicating dual VCP functions as an aggregate formase and an unfoldase.  相似文献   

19.
The 26S proteasome system is involved in eliminating various proteins, including ubiquitinated misfolded/unfolded proteins, and its inhibition results in cellular accumulation of protein aggregates. Intramuscle-fiber ubiquitinated multiprotein-aggregates are characteristic of sporadic inclusion-body myositis (s-IBM) muscle fibers. Two major types of aggregates exist, containing either amyloid-beta (Abeta) or phosphorylated tau (p-tau). We have now asked whether abnormalities of the 26S proteasome contribute to s-IBM pathogenesis and whether the multiprotein aggregates have features of aggresomes. Using cultured human muscle fibers we also studied the effect of amyloid-beta precursor protein (AbetaPP) overexpression on proteasome function and the influence of proteasome inhibition on aggresome formation. We report that in s-IBM muscle biopsies 26S proteasome subunits were immunodetected in the gamma-tubulin-associated aggresomes, which also contained Abeta, p-tau, ubiquitin, and HSP70. In addition, a) expression of proteasome subunits was greatly increased, b) the 20Salpha proteasome subunit co-immunoprecipitated with AbetaPP/Abeta, and c) the three major proteasomal proteolytic activities were reduced. In cultured muscle fibers, AbetaPP-overexpressing fibers displayed diminished proteasomal proteolytic activities, and addition of proteasome inhibitor strikingly increased aggresome formation. Accordingly, proteasome dysfunction in s-IBM muscle fibers may play a role in accumulation of misfolded, potentially cytotoxic proteins and may be induced by increased intracellular AbetaPP/Abeta.  相似文献   

20.
CONTEXT: Bcl-2, Bcl-x, and Bax are among the variety of proteins that have been described as being involved in the regulation of apoptotic cell death. Bcl-2 and Bcl-x(L) inhibit apoptosis, and Bax is proapoptotic. OBJECTIVE: To evaluate the expression of Bcl-2, Bcl-x, and Bax in inclusion body myositis (IBM).Design.-We examined muscle specimens from 27 patients (17 men, 10 women) with IBM to evaluate Bcl-2, Bcl-x, and Bax expression by immunohistochemistry. RESULTS: Patient ages ranged from 29 to 80 years (mean 62.2 years). All biopsies were marked by endomysial chronic inflammation, muscle fiber necrosis, and regeneration. Rimmed (autophagic) vacuoles were present in all cases. Ragged red fibers were noted in 4 biopsies (15%), and cytochrome oxidase-deficient fibers were found in 10 biopsies (37%). Ultrastructural evidence of intranuclear or cytoplasmic tubulofilamentous inclusions, confirming the diagnosis of IBM, were noted in all cases. Paracrystalline mitochondrial inclusions were seen in 5 biopsies (18.5%). Inflammatory cells stained positively with Bcl-2 in all biopsies, Bax in 26 biopsies (96%), and Bcl-x in 8 biopsies (30%). Degenerating muscle fibers were highlighted with Bax in 24 biopsies (89%), Bcl-2 in 2 biopsies (7%), and Bcl-x in 3 biopsies (11%). Regenerative muscle fibers were noted to stain with Bax in 24 muscles (89%), Bcl-2 in 21 muscles (78%), and Bcl-x in 4 muscles (15%). Rimmed vacuoles were highlighted by Bax in 24 biopsies (89%) and only rarely by Bcl-2 (n = 2, 7%) and Bcl-x (n = 3, 11%). A subsarcolemmal staining pattern was observed in 21 biopsies (78%) with Bax, 6 biopsies (22%) with Bcl-2, and only 1 biopsy (4%) with Bcl-x. CONCLUSIONS: (1) Bax (proapoptotic) immunostaining highlighted most autophagic vacuoles; (2) subsarcolemmal Bax and Bcl-2 immunoreactivity may be associated with mitochondrial defects that are commonly noted in IBM; (3) Bcl-2 and Bax immunoreactivity were not confined to degenerating muscle fibers and in fact appeared to be expressed more commonly in regenerating fibers, suggesting that their expression may be independent of apoptosis in the setting of IBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号