首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats trained to bar-press on a FI 15 sec schedule for water reinforcement were administered various doses of d-amphetamine (0.25–4.0 mg/kg) both before and 6–8 weeks after bilateral ablation of frontal cortex. Preoperatively, low doses (e.g. 0.25–0.5 mg/kg) of (d-amphetamine increased responding and high doses (e.g. 2.0–4.0 mg/kg) of d-amphetamine depressed responding. Postoperatively, frontal rats showed larger facilitatory effects in response to low doses of d-amphet-amine but lesser depressant effects in response to high doses of d-amphetamine; the whole dose-response curve was generally shifted higher by the frontal lesions. These results indicate that frontal lesions differentially influence mechanisms mediating two different actions of d-amphetamine.This research was supported by NIMH grant MH21156 and NIMH Research Scientist Development Award (Type 2) DA70082 to S. D. Glick.  相似文献   

2.
Treatment of rats with d-amphetamine (5 mg/kg) once daily for 25 days did not change locomotor responses, on day 7 of withdrawal, to dopamine (DA) or d-amphetamine into the nucleus accumbens. Nor was there a change in 3H-spiperone binding of caudate nucleus membranes. There was no effect of treatment on the locomotor response of rats to 1.0, 1.5 or 2.0 mg/kg d-amphetamine IP. However, d-amphetamine-treated rats were significantly less sensitive to 0.5 mg d-amphetamine. Although 1, 2 or 3 mg/kg apomorphine produced the same degree of stereotypy in both treatment groups, there was a significant difference in the response of the two groups to 0.5 mg apomorphine, d-amphetamine-treated animals being less sensitive than vehicle-treated animals. No change was found in brain DA levels with or without synthesis inhibition. The present data do not support the hypothesis that chronic treatment of rats with d-amphetamine can produce supersensitive post-synaptic DA receptors.  相似文献   

3.
Evidence suggests that stimulants such asd-amphetamine and cocaine act presynaptically by increasing the amount of dopamine (DA) available to stimulate postsynaptic DA receptors. Since two subpopulations of DA receptors (D1 and D2) exist, we investigated the role of both of these receptor subtypes in mediating the internal state produced by these stimulants. Two groups of rats (N=8/group) were trained to discriminate intraperitoneal (IP) injections of eitherd-amphetamine (1 mg/kg) or cocaine (10 mg/kg) from saline in a two-lever, water-reinforced, drug discrimination task. After stable performance was established (i.e., more than 85% correct under each training condition), substitution and combination tests were conducted with selective D1 and D2 agonists and antagonists. The D2 agonist quinpirole (0.0313–0.125 mg/kg) mimicked both stimulant cues while the D1 agoinst SKF 38393 (5–20 mg/kg) substituted partially for cocaine but notd-amphetamine. Combination tests with DA antagonists indicated that both the D1 antagonist SCH 23390 (0.0063–0.25 mg/kg) and the D2 antagonist haloperidol (0.125–0.5 mg/kg) attenuated the effects of both stimulants; in addition, the substitution of cocaine (20 mg/kg) ford-amphetamine was blocked by both DA antagonists. The ability of both D1 and D2 antagonists to attenuate the stimulus effects ofd-amphetamine and cocaine raises the possibility that a synergistic (enabling) interaction between D1 and D2 receptors may modulate stimulant cues.  相似文献   

4.
We studied the aggressive behaviour induced by repeated treatment with apomorphine, a dopamine agonist (0.5 mg/kg s.c. twice daily, 10 days), in rats. The first signs of defensive aggressiveness appeared on the third day of apomorphine treatment and were generally seen on the 7th day. Aggressiveness induced by a challenge dose of apomorphine (0.5 mg/kg s.c.) on the 11th day was antagonized by haloperidol (0.05 and 0.1 mg/kg i.p.) and clozapine (10 mg/kg i.p.). An antagonist of N-methyl-D-aspartate (NMDA)-gated channels, dizocilpine (MK-801), also blocked the aggressive behaviour at 0.25 and 0.5 mg/kg i.p. but caused ataxia. When dizocilpine (0.25 mg/kg i.p.) and apomorphine were coadministered for 10 days, aggressive behaviour did not develop. At 0.025 mg/kg i.p., dizocilpine even accelerated the appearance of apomorphine-induced aggressive behaviour, which manifested on the 3rd day in all rats. In a separate study, a 7-day treatment with dizocilpine (0.25–1 mg/kg i.p.) of rats, sensitized by a prior 10-day apomorphine treatment, did not reverse the established aggressive behaviour. The coadministration of apomorphine and cholecystokinin (CCK)-A or -B antagonists, devazepide or L-365,260 (0.01–2.5 mg/kg i.p.) respectively, neither affected development of apomorphine-induced aggressive behaviour nor intensity of aggressiveness in the sensitized rats.In binding studies neither density nor affinity of striatal dopamine D2 receptors was changed by acute or chronic apomorphine treatment. The number of [3H]pCCK-8 binding sites in the frontal cortex increased already after a single injection of apomorphine. After 10-day administration of apomorphine, a significant upregulation of [3H]pCCK-8 binding sites occurred in the frontal cortex and striatum, but a downregulation was observed in the hippocampus. A challenge dose of apomorphine (0.5 mg/kg s.c.) on the 11th day of experiment, normalized the upregulated CCK receptors in the frontal cortex and striatum. Acute apomorphine did not change [3H]-MK-801 binding in the rat brain. However, in rats treated for 10 days with apomorphine, the number of NMDA-gated channels in open state was increased in the frontal cortex and hippocampus. In these rats, a challenge dose of apomorphine (0.5 mg/kg s.c.) normalized also the in reased number of [3H]-MK-801 binding sites in the frontal cortex.In conclusion, repeated treatment with apomorphine seems to modify the function of dopamine D2 receptors without affecting their number or affinity. The increased number of NMDA-gated channels in open state appears to be related to this alteration of dopamine D2 receptors. The increased density of [3H]pCCK-8 binding sites in the frontal cortex may reflect anxiety and fear due to chronic exposure of rats to apomorphine.  相似文献   

5.
Ascorbic acid (50–200 mg/kg IP) activated gross behaviour and EEG of rats. The behavioural excitation induced by d-amphetamine (2.5 mg/kg SC) was significantly potentiated by ascorbic acid (100–200 mg/kg IP). Catalepsy induced by haloperidol (0.25 mg/kg IP) was attenuated by ascorbic acid (50–200 mg/kg IP) while pentobarbitone (20 mg/kg IP)-induced sleep in rats was dose-dependently antagonised by ascorbic acid (50–400 mg/kg IP). Ascorbic acid (50–400 mg/kg IP) desynchronized the EEG of the frontal cortex and optic cortex while the EMG activity was slightly enhanced in the rat. Ascorbic acid (100 mg/kg IP) potentiated d-amphetamine (2.5 mg/kg SC)-induced EEG desynchronization and EMG activation in the rat. These results indicate that ascorbic acid exerts stimulatory effects in rats. The results also suggest that dopaminergic mechanism may contribute indirectly or directly to the observed behavioural and EEG effects of ascorbic acid.  相似文献   

6.
The effects of partial D2 dopamine (DA) receptor agonists on the behavioural activation produced by 1.5 and 8.0 mg/kgd-amphetamine were compared with the changes produced by the classical DA antagonist haloperidol. Alterations in behaviour were assessed in standard activity monitoring cages by direct observation of the rats using a rapid time sampling procedure. Haloperidol blockedd-amphetamine (1.5 mg/kg)-induced increases in photocell counts, ambulation, rearing and sniffing up, and after the highest dose of the DA antagonist the animals were mainly inactive. The partial D2 DA agonist SDZ 208–911 was equipotent to haloperidol in blocking the increase in photocell counts and rearing produced byd-amphetamine. However, even high doses of the drug did not reduce the incidence of sniffing or induce inactivity, but qualitative changes in the form of sniffing did occur. Although considerably less potent, preclamol exerted similar effects to SDZ 208–911. The profiles of SDZ 208–912 and terguride were intermediary to those of SDZ 208–911 and haloperidol. All compounds blocked the repetitive sniffing down produced by 8.0 mg/kgd-amphetamine. After a low dose of haloperidol, these stereotyped behaviours were replaced by a behavioural syndrome similar to that observed with low dosed-amphetamine, but inactivity was observed following a further small increase in antagonist dose. The blockade of stereotypy by SDZ 208–911, preclamol and terguride was accompanied only by the low dosed-amphetamine behavioural syndrome; no inhibition of sniffing or induction of inactivity occurred. SDZ 208–912 exhibited a profile with features very similar to that noted with haloperidol. These findings suggest that partial D2 agonists exert similar, but not identical, behavioural effects to classical DA antagonists when dopaminergic function in increased byd-amphetamine. The differences in behavioural profile are discussed in relation to variations in the intrinsic efficacy of the dopaminergic compounds and to differences in the response capability of D2 receptor populations underlying the different behaviours produced byd-amphetamine.  相似文献   

7.
Administration of haloperidol (1.4–1.6 mg/kg/day) for up to 12 months or sulpiride (102–109 mg/kg/day) for between 6 and 12 months increased the frequency of purposeless chewing jaw movements in rats. N,n-propylnorapomorphine (NPA) (0.25–2.0 mg/kg SC) did not induce hypoactivity in haloperidol-treated rats at any time; sulpiride treatment for 9 and 12 months caused a reduction in the ability of NPA to induce hypoactivity. Haloperidol, but not sulpiride, treatment enduringly inhibited low dose apomorphine effects (0.125 mg/kg SC). After 12 months, sterotypy induced by high doses of apomorphine (0.5–1.0 mg/kg) was exaggerated in haloperidol-, but not sulpiride-treated rats.Bmax for specific striatal 3H-spiperone binding was increased by haloperidol, but not sulpiride, treatment throughout the study. Bmax for 3H-NPA binding was elevated only after 12 months of both haloperidol and sulpiride treatment. Bmax for 3H-piflutixol binding was not alfered by chronic haloperidol or sulpiride treatment. Striatal dopamine-stimulated adenylate cyclase activity was inhibited for the 1st month of haloperidol treatment, thereafter returning to control levels; dopamine stimulation was increased after 12 months of sulpiride treatment. Striatal acetylcholine content was increased after 3 and 12 months of treatment with haloperidol, but was not affected by sulpiride.Chronic administration of sulpiride does not induce identical changes in striatal dopamine function to those caused by haloperidol.  相似文献   

8.
Rats received therapeutically equivalent doses of either haloperidol (1.7–1.9 mg/kg/day), sulpiride (112–116 mg/kg/day) or clozapine (30–35 mg/kg/day) continuously for 4 weeks. Treatment with haloperidol, but not sulpiride or clozapine, caused inhibition of stereotyped behaviour induced by apomorphine (0.125–0.25 mg/kg SC). Following drug withdrawal for up to 7 days, haloperidol and sulpiride, but not clozapine treatment caused an exaggeration of stereotyped behaviour induced by apomorphine.Bmax values for striatal 3H-spiperione binding were erevated in animals treated for 2 and 4 weeks with haloperidol, but not with sulpiride or clozapine. Following drug withdrawal, haloperidol, but not sulpiride or clozapine, treatment caused an increase in Bmax for striatal 3H-piperone binding.Bmax values for striatal 3H-NPA binding revealed no change during haloperidol or clozapine treatment. Sulpiride treatment for 1 week caused an increase in Bmax for 3H-NPA binding, which returned to control levels at 2 and 4 weeks. Following drug withdrawal, there was an increase in Bmax for 3H-NPA binding in rats treated with haloperidol and sulpiride, but not clozapine.On continuous treatment and following withdrawal from haloperidol, sulpiride, or clozapine the ability of dopamine to stimulate striatal adenylate cyclase activity did not differ from that in control animals.Repeated administration of sulpiride or clozapine may not induce striatal dopamine receptor supersensitivity when given in clinically relevant doses, although haloperidol does.  相似文献   

9.
Chronic treatment of rats with the antipsychotic drug molindone (2.5 mg/kg) did not elicit behavioral supersensitivity to apomorphine (AP) (0.25 mg/kg) or increased striatal 3H-spiroperidol binding, whereas treatment with haloperidol (0.5–1.0 mg/kg) produced manifestations of dopaminergic supersensitivity in both paradigms. Chronic treatment with a high dose of molindone (20 mg/kg) elicited a small, but significant increase in behavioral sensitivity to AP (57%) which was, however, significantly less than that produced by 1 mg/kg haloperidol (126%, P<0.01). Apparent tolerance to elevation of striatal and frontal cortical 3,4-dihydroxyphenylacetic acid (DOPAC) levels was obtained with chronic molindone treatment (5 or 20 mg/kg). None of the molindone doses used (2.5–50 mg/kg) increased striatal dopamine receptor binding. Scatchard analyses revealed no change in either maximal binding capacity (B max) or dissociation constant (K D). A significant (P<0.001) correlation of receptor binding acitivty and stereotypy score was obtained for haloperidol-, but not molindone-treated rats. These results with molindone in an animal model of tardive dyskinesia suggest that this drug may have a lower potential for eliciting this disorder in humans.  相似文献   

10.
Modulation of MK-801 response by dopaminergic agents in mice   总被引:1,自引:0,他引:1  
Various doses of the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists, MK-801 (0.1–0.5 mg/kg) and ketamine (2.5–10 mg/kg), produced a dose-dependent increase in stereotypic behaviour in naive mice. MK-801 (0.1 mg/kg) and ketamine (2.5 mg/kg) potentiated the stereotypic response of apomorphine (0.1–0.5 mg/kg) in mice pretreated with reserpine (5 mg/kg, 24 h prior) and alpha-methyl-p-tyrosine (150 mg/kg, 1 h prior) but not in naive mice. SKF 38393, a D1 dopamine agonist, enhanced whereas B-HT 920, a D2 dopamine agonist, reduced the stereotypic response of MK-801 in naive mice. The response of MK-801 was blocked by pretreatment with haloperidol (0.5 mg/kg), molindone (2.5 mg/kg), clozapine (7.5 mg/kg) and SCH 23390 (0.1 mg/kg). The present data suggest involvement of endogenous DA transmission in the stimulant action of non-competitive NMDA antagonists in mice. Dopamine D1 and D2 receptor stimulation, respectively, exert opposing effects on the behavioural expression of MK-801 in mice.  相似文献   

11.
A series of three experiments investigated the individual roles of neurons containing dopamine (DA) and norepinephrine (NE) in modulating the amplitude of the acoustic startle response (ASR) in rats. Experiment I investigated the effects of 0.1, 0.5, and 2.5 mg/kg pimozide or 5, 10, and 20 mg/kg phenoxybenzamine alone on startle amplitude. Experiments II–III investigated the effects of pretreatment with either 2.5 mg/kg pimozide or 10 mg/kg phenoxybenzamine on the potentiation of startleamplitude by either d-amphetamine (8 mg/kg), l-amphetamine (32 mg/kg), or apomorphine (3 mg/kg). Treatment with pimozide (2.5 mg/kg given 85 min before testing) and phenoxybenzamine (10 mg/kg, given 25 min before testing) resulted in a significant reduction in startle amplitude, supporting the conclusion that neurons containing NE and DA both tonically facilitate the ASR. The startlepotentiating effect of d- and l-amphetamine and apomorphine were totally blocked by pretreatment with pimozide (2.5 mg/kg, injected 2 h before these drugs), which supports the hypothesis that these agents potentiate startle at least in part by acting through dopaminergic neural systems. Phenoxybenzamine pretreatment (10 mg/kg, given 0.5 h before) also blocked the startle-potentiating effects of l-amphetamine and apomorphine, which suggests that noradrenergic neural systems are also involved in the potentiation of ASR by these agents, possibly through the interaction of dopaminergic and noradrenergic neural systems. The potentiating effect of d-amphetamine on ASR magnitude was not attenuated by phenoxybenzamine.  相似文献   

12.
Rationale 5-Hydroxytryptamine, via stimulation of 5-HT2C receptors, exerts a tonic inhibitory influence on dopaminergic neurotransmission, whereas activation of 5-HT2A receptors enhances stimulated DAergic neurotransmission. The antidepressant trazodone is a 5-HT2A/2C receptor antagonist.Objectives To evaluate the effect of trazodone treatment on behaviors dependent on the functional status of the nigrostriatal DAergic system.Methods The effect of pretreatment with trazodone on dexamphetamine- and apomorphine-induced oral stereotypies, on catalepsy induced by haloperidol and apomorphine (0.05 mg/kg, i.p.), on ergometrine-induced wet dog shake (WDS) behavior and fluoxetine-induced penile erections was studied in rats. We also investigated whether trazodone induces catalepsy in rats.Results Trazodone at 2.5–20 mg/kg i.p. did not induce catalepsy, and did not antagonize apomorphine (1.5 and 3 mg/kg) stereotypy and apomorphine (0.05 mg/kg)-induced catalepsy. However, pretreatment with 5, 10 and 20 mg/kg i.p. trazodone enhanced dexamphetamine stereotypy, and antagonized haloperidol catalepsy, ergometrine-induced WDS behavior and fluoxetine-induced penile erections. Trazodone at 30, 40 and 50 mg/kg i.p. induced catalepsy and antagonized apomorphine and dexamphetamine stereotypies.Conclusions Our results indicate that trazodone at 2.5–20 mg/kg does not block pre- and postsynaptic striatal D2 DA receptors, while at 30, 40 and 50 mg/kg it blocks postsynaptic striatal D2 DA receptors. Furthermore, at 5, 10 and 20 mg/kg, trazodone blocks 5-HT2A and 5-HT2C receptors. We suggest that trazodone (5, 10 and 20 mg/kg), by blocking the 5-HT2C receptors, releases the nigrostriatal DAergic neurons from tonic inhibition caused by 5-HT, and thereby potentiates dexamphetamine stereotypy and antagonizes haloperidol catalepsy.  相似文献   

13.
Prepulse inhibition (PPI) of an acoustic startle response is impaired in schizophrenics. PPI can also be studied in the rat, and is impaired by dopamine (DA) D2/3 receptor agonists such as apomorphine. This disruption is reversed by DA antagonists, leading to proposals that this approach may be a useful means to identify novel antipsychotics. There is also evidence to suggest a role of serotonergic (5-HT) and glutamatergic systems in schizophrenia, and accordingly PPI can be disrupted by the 5-HT2 agonist DOI, and the non-competitive NMDA antagonist, dizocilpine. In the present study we have examined the effect of four antipsychotic drugs, haloperidol (0.1–0.3 mg/kg), raclopride (0.03–0.3 mg/kg), risperidone (0.3–3 mg/kg) and clozapine (0.0001–10 mg/kg), against the PPI disruptions induced by apomorphine (0.5 mg/kg), DOI (3 mg/kg) and dizocilpine (0.15 mg/kg). Furthermore, these drugs have been examined for their ability to restore a PPI deficit produced by housing rats under conditions of social isolation. All drugs except clozapine reversed an apomorphine-induced disruption. However, clozapine and risperidone, but not raclopride and haloperidol, reversed a DOI-induced disruption. Only risperidone was effective in restoring a PPI deficit produced by dizocilpine. In contrast to the drug-induced disruptions which were differentially sensitive to the various neuroleptics, isolation-induced disruptions were restored by each drug. These results support the idea that non-drug induced disruptions of PPI, such as social isolation, may be a more viable approach to identify novel antipsychotics.  相似文献   

14.
The effects of the dopamine (DA) receptor agonists apomorphine, bromocriptine and pergolide were compared with those produced by a DA receptor antagonist, haloperidol, in rats implanted with electrodes for chronic sleep recordings. Apomorphine (0.025–2.0 mg/kg) and bromocriptine (0.25–6.0 mg/kg) induced biphasic effects such that low doses decreased wakefulness (W) and increased slow wave sleep (SWS) and REM sleep (REMS), while large doses induced opposite effects. The effects of pergolide (0.05–0.5 mg/kg) on W and SWS were also biphasic, while REMS was suppressed over the range of dosages given. At 0.040 mg/kg, haloperidol increased W, while at 0.160 mg/kg it produced the opposite effect. Pretreatment with haloperidol (0.020 mg/kg) in a dose which preferentially acts at presynaptic sites reversed the effects of low doses of apomorphine, bromocriptine or pergolide on sleep and W. However, the compound differed substantially in its ability to block agonist effects.The increase in sleep after low doses of apomorphine, bromocriptine or pergolide could be related to activation of presynaptic D-2 receptors located on DA axons of mesolimbic and mesocortical systems. In addition, inhibition of norepinephrine and acetylcholine neurons having inhabitory D-2 receptors could contribute to the increase of sleep after small doses of the DA agonists.  相似文献   

15.
Biochemical, electrophysiological, and behavioral experiments suggest that the dopamine D-1 and D-2 receptor subtypes functionally interact. In rats trained to discriminate 1.0 mg/kg d-amphetamine, substitution with the D-2 agonist quinpirole (0.1–2.0 mg/kg) produces amphetaminelever responding, whereas the D-1 agonist SKF 38393 (0.3–10.0 mg/kg) elicits only saline-appropriate responding. Combining either quinpirole (0.05–0.5 mg/kg) or SKF 38393 (0.5–10.0 mg/kg) with 0.3 mg/kg d-amphetamine results in dose-dependent increases in amphetamine-lever responding. Conversely, the D-1 antagonist SCH 23390 (0.02–0.1 mg/kg) antagonizes the discrimination produced by 0.7 mg/kg d-amphetamine. Additional combination studies examined the effect of DA receptor drugs on discrimination when quinpirole is substituted in d-amphetamine trained rats. SKF 38393 (0.5–7.0 mg/kg) fails to increase the amphetamine-appropriate lever response produced by either 0.05 or 0.2 mg/kg quinpirole. Similarly, SCH 23390 (0.01–0.1 mg/kg) fails to antagonize the amphetamine-lever responding produced by either 0.2 or 0.5 mg/kg quinpirole. Haloperidol (0.02–0.2 mg/kg) does antagonize the amphetamine-appropriate response produced by quinpirole substitution. The d-amphetamine discrimination studies indicate that stimulating D-2 receptors alone or D-1 receptors in the presence of d-amphetamine yields d-amphetamine-lever responding, and suggests that D-1/D-2 receptors can functionally interact to alter discrimination behavior. Quinpirole substitution, on the other hand, shows an insensitivity to D-1 receptor manipulations.  相似文献   

16.
Three recently arrived drug naive Cebus apella monkeys with spontaneous stereotyped oral movements were treated with apomorphine and haloperidol using a wide dose range. Low doses of apomorphine (0.05–0.1 mg/kg) suppressed the oral stereotypies without affecting normal behaviour such as grooming and scratching. Higher doses of apomorphine (0.25–1.0 mg/kg) and haloperidol (0.01–0.1 mg/kg) also decreased or abolished the oral stereotypies, but induced generalized stereotypies (apomorphine) or dystonia/parkinsonism (haloperidol), suppressing normal behaviour. The findings indicate that dopamine is involved in these presumably stress-induced (not drug-induced) stereotypies.  相似文献   

17.
Summary Turning behavior was recorded after injection of the GABA agonist muscimol into the caudal part of rat substantia nigra, pars compacta (SNC) or pars reticulata (SNR). Unilateral injection of muscimol (10–25 ng) into SNC induced ipsilateral body posture. Additional treatment with apomorphine (0.5 mg/kg, s.c.) produced intense ipsilateral turning. This effect was abolished in rats depleted of catecholamines by the combined treatment with reserpine plus -methyltyrosine. The ipsilateral turning was probably not mediated via inhibition of dopaminergic (DA) activity since unilateral SNC injections of the DA agonist apomorphine (2.5–10 g) in contrast produced contralateral turning upon systemic apomorphine administration.Unilateral injection of muscimol into SNR induced strong contralateral turning, resistant to DA receptor blockade. In contrast, the contralateral turning was dose dependently antagonized by apomorphine (0.1–5 mg/kg, s.c.). Locally applied apomorphine (2.5–20 g) into SNR, striatum or nucleus accumbens also antagonized intranigral muscimol, corpus striatum being the most sensitive area. Bilateral intrastriatal apomorphine was most effective, followed by unilateral injection into the ipsilateral striatum. The apomorphine antagonism was attenuated by additional haloperidol treatment, possibly indicating DA-specificity. Systemic amphetamine (2 mg/kg, i.p.) or local injection of the DA agonist ADTN (10–20 g) into SNR, striatum or nucleus accumbens was without inhibitory effect on intranigral muscimol. These results suggest that the interaction between DA and nigral GABA is extremely complex: 1. Differential functional effects of a GABA agonist are found within SNC and SNR; 2. The turning behavior induced by muscimol injected into SNR is antagonized by stimulation of apomorphine sensitive DA receptors but not by those activated by amphetamine or ADTN, and 3. The inhibitory effect of apomorphine is observed following injection into several DA containing structures.  相似文献   

18.
Dopamine (DA), injected unilaterally into rat forebrain after pretreatment with a monoamine oxidase inhibitor, equipotently induced locomotor arousal when placed in the nucleus accumbens septi (a limbic site) and contralateral deviation of the head when placed in the corpus striatum (an extrapyramidal target); testing was done with an ED50 dose of DA (16 µg). Systemic injections (IP) of the representative typical neuroleptic haloperidol showed high potency and minorstriatal selectivity against the behavioral effects of intracerebral DA [accumbens ID50=0.090, striatum=0.027 mg/kg (0.24 and 0.072 µmol/kg); ID50 ratio=3.3, favoring striatum]. The atypical antipsychotic agent clozapine was less potent against DA in both brain regions but, paradoxically, showed ever greater striatal selectivity [ID50=12 and 1.4 mg/kg (37 and 4.2 µmol/kg); ratio=8.8, favoring striatum], while its analog, the piperazinyl-dibenzothiazepine ICI-204,636 showed intermediate potency and the lowest striatal selectivity of these three neuroleptic agents [ID50=1.8 and 0.88 mg/kg (4.1 and 2.0 µmol/kg); ratio=2.1]. In striking contrast, the S(+) isomers of N-n-propylnorapomorphine, its orally active 10,11-methylenedioxy prodrug derivative, and its 11-monohydroxy analog all induced potent antagonism oflimbic DA but had little effect on extrapyramidal injections of DA except at high systemic doses [ID50, accumbens=0.18–0.52, striatal=10–15 mg/kg (0.50–1.6 and 29–42 µmol/kg); regional ID50 ratios=18–69, favoring accumbens]. The S(+)aporphines showed limbic potency similar to that of haloperidol and 25–73 times greater than that of clozapine. The S(+)11-OH-aporphine was 2.7–3.1 times more potent (on a molar dose basis) than the other aporphines against DA in accumbens, and 0.5, 8 and 73 times as potent as haloperidol, ICI-204,636 and clozapine. The significantly dissimilar slopes of dose-effect functions for the two groups of agents suggest that different actions may mediate the limbic effects of the aporphines and the neuroleptics tested. ICI-204-636 appears to be pharmacologically similar to clozapine, but 2.1 times more potents versus limbic-DA. The S(+)N-n-propylnoraporphines are potent and regionally highly selectivelimbic DA antagonists and S(+)-11-hydroxy-N-n-propylnoraporphine is orally active. These and other aporphine analogs are proposed for development as potential atypical antipsychotic agents with a low risk of extrapyramidal neurological side effects, and the present methods are proposed for predicting relative limbic versus extrapyramidal antidopaminergic activity.  相似文献   

19.
Pretreatment with the opiate antagonist naloxone, at 1.25–5 mg/kg, increased the intensity of methamphetamine stereotypy, had no effect (over a range of 0.3125–5 mg/kg) on apomorphine stereotypy, and antagonized haloperidol catalepsy in rats at 1.25–5 mg/kg. It is suggested that naloxone, by blocking the opiate receptors located on the nigro-striatal and mesolimbic dopamine (DA) nerve terminals, releases the DA systems from endogenous inhibition, presumably caused by endogenous opiate systems, and thereby potentiates methamphetamine stereotypy and antagonizes haloperidol catalepsy. However, the possibility that naloxone might have affected methamphetamine stereotypy and haloperidol catalepsy by modulating the activity of the central noradrenergic and GABAergic systems, which are reported to influence dopaminergically mediated behaviours, also needs to be considered.  相似文献   

20.
Summary Gamma-hydroxybutyric acid (GHBA) in doses that increased the striatal dopamine (DA) content of rat brain failed to increase the affinity of striatal tyrosine hydroxylase (TH) for its pterdine cofactor or to change the sensitivity of the enzyme to the inhibition by DA. Haloperidol (1 mg/kg) decreased the apparent K mof striatal TH for the pteridine cofactor. However, when GHBA was injected before haloperidol it prevented the decrease in the apparent K mof TH, in a dose related manner. In vitro GHBA (10–4 M) neither changed the stimulation of the striatal adenylyl cyclase by DA nor its inhibition by haloperidol.These results suggest that in striatal dopaminergic terminals the K mof TH for the pteridine cofactor is regulated by an molecular mechanism which requires that the impulse flow in the DA neurons is unimpaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号