首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we have tested the effect of different polyamine inhibitors of the spermidine metabolizing enzymes deoxyhypusine synthase and homospermidine synthase in different chloroquine resistant Plasmodium falciparum strains, in the mosquito Anopheles stephensi (Diptera: Culicidae) and in a Trypanosoma evansi clone I from strain STIB 806 K China. Recent experiments have shown that agmatine is a growth inhibitor of the malaria parasite P. falciparum (Kaiser et al. 2001) in vitro. A comparison of agmatine efficacy with the new antimalarials artemisinin, triclosan and conventional chloroquine showed similar or even better results on the basis of growth inhibition and the reduction of developmental forms. However, no effect of triclosan or agmatine was observed at the ribonucleic acid level. In a second set of experiments, we tested the effect of 1,7-diaminoheptane and agmatine on oocyst formation in A. stephensi after infection with Plasmodium yoelii. Agmatine had an antisporozoite effect since 1,000 M led to a 59.5% inhibition of oocysts. A much weaker inhibitor of oocyst formation was 1,7-diaminoheptane. The most effective in in vitro inhibition of T. evansi was dicyclohexylamine, an inhibitor of spermidine biosynthesis with an IC50 value of 47.44 M and the deoxyhypusine inhibitor 1,7-diaminoheptane with an IC50 value of 47.80 M. However, both drugs were ineffective in in vivo experiments in a Trypanosoma mouse model. Two different spermidine analogues, 1,8-diaminooctane and 1,3-diaminopropane with IC50 values of 171 M and 181.37 M, respectively, were moderate inhibitors in vitro and ineffective in vivo.  相似文献   

2.
Characterization of spermidine synthase from Trypanosoma brucei brucei   总被引:1,自引:0,他引:1  
Spermidine synthase from Trypanosoma brucei brucei was characterized and found to be similar to spermidine synthase from other sources. The Km for putrescine was found to be 0.2 mM and the Km for decarboxylated S-adenosylmethionine 0.1 microM. The approximate molecular weight of the enzyme was 74 000 as determined by a combination of molecular sieve chromatography and sucrose density gradient centrifugation. Spermidine synthase activity was markedly inhibited in vitro by dicyclohexylamine (50% inhibition at 3 microM) and cyclohexylamine (50% inhibition at 15 microM); both being competitive inhibitors with respect to putrescine. S-Adenosyl-1,8-diamino-3-thiooctane, a nucleoside bisubstrate analog, was also a potent inhibitor of enzyme activity (50% inhibition at 25 microM). Administration of dicyclohexylamine to mice with trypanosomiasis resulted in no increase in survival time probably due to the lack of effect on trypanosome spermidine concentrations. Other possible inhibitors remain to be tested in vivo.  相似文献   

3.
4.
Vangueria infausta burch subsp. infausta (Rubiaceae) produces fruits eaten by humans and animals. The leaf, fruit, stem bark and root bark are used as a remedy for many ailments and the roots are used to treat malaria. In this study, concentrations of fractions of the V. infausta root bark extract that produce 50% inhibition (IC50) are determined using the ability of the extract to inhibit the uptake of [G3H]-hypoxanthine by P. falciparum cultured in vitro. The root bark extract showed antimalarial activity against Plasmodium berghei in mice. It gave a parasite suppression of 73.5% in early infection and a repository effect of 88.7%. One fraction obtained from a chloroform extract gave an IC50 value of 3.8 +/- 1.5 microg/mL and 4.5 +/- 2.3 microg/mL against D6 and W2 strains of P. falciparum, respectively, and another from the butanol extract gave an IC50 value of 3.9 +/- 0.3 microg/mL against the D6 strain. Chloroquine had an IC50 value of 0.016 microg/mL and 0.029 microg/mL against D6 and W2 strains, respectively. The plant showed the presence of flavonoids, coumarins, tannins, terpenoids, anthraquinones and saponins.  相似文献   

5.
R Balint  S S Cohen 《Virology》1985,144(1):181-193
Turnip yellow mosaic virus contains large amounts of nonexchangeable spermidine and induces an accumulation of spermidine in infected Chinese cabbage. By 7 days after inoculation, a majority of protoplasts isolated from newly emerging leaves stain with fluorescent antibody to the virus. These protoplasts contain 1-2 X 10(6) virions per cell and continue to produce virus in culture for at least 48 hr. [14C]Spermidine (10 microM) was taken up by these cells in amounts comparable to the original endogenous pool within 24 hr. However, after an initial rise, the spermidine content of the cell returned to its original level, implying considerable regulation of the endogenous pool(s). Putrescine and spermine were major products of the metabolism of exogenous spermidine. Radioactivity from exogenous [14C]spermidine was also readily incorporated into the ribonucleoprotein component(s) of the virus, where it appeared as both spermidine and spermine. The specific radioactivities of the viral polyamines were approximately twice those of spermidine and spermine extracted from the whole cell. Radioactivity from [2-14C]methionine was readily incorporated into the protein, spermidine, and spermine of the virus. Again, the specific activities of these amines were substantially higher in the virus than in the whole cell. Thus, newly formed virus contained predominantly newly synthesized spermidine and spermine. However, inhibition of spermidine synthesis by dicyclohexylamine led to incorporation of preexisting spermidine and increased amounts of spermine into newly formed virus.  相似文献   

6.
The antileishmanial and antimalarial activity of methoxy-substituted chalcones (1,3-diphenyl-2-propen-1-ones) is well established. The few analogs prepared to date where the 3-phenyl group is replaced by either a pyridine or naphthalene suggest these modifications are potency enhancing. To explore this hypothesis, sixteen 3-naphthalenyl-1-phenyl-2-prop-1-enones and ten 1-phenyl-3-pyridinyl-2-prop-1-enones were synthesized and their in vitro efficacies against Leishmania donovani and Plasmodium falciparum determined. One inhibitor with submicromolar efficacy against L. donovani was identified (IC50 = 0.95 microM), along with three other potent compounds (IC50 < 5 microM), all of which were 3-pyridin-2-yl derivatives. No inhibitors with submicromolar efficacy against P. falciparum were identified, though several potent compounds were found (IC50 < 5 microM). The cytotoxicity of the five most active L. donovani inhibitors was assessed. At best the IC50 against a primary kidney cell line was around two-fold higher than against L. donovani. Being more active than pentamidine, the 1-phenyl-3-pyridin-2-yl-2-propen-1-ones have potential for further development against leishmaniasis; however it will be essential in such a program to address not only efficacy but also their potential for toxicity.  相似文献   

7.
This study assessed the antimalarial activity of dipyridamole, a well-known vasodilator and inhibitor of platelet aggregation. Dipyridamole was effective against all of the erythrocytic stages such as rings, trophozoites and schizonts, and induced ultrastructural changes during the transition from trophozoite to schizont in vitro. Merozoites were also inhibited from invading dipyridamole-treated erythrocytes. It seems that dipyridamole binds to the erythrocyte membrane blocking the receptors for the merozoite. The 50% inhibitory concentration (IC(50)) of dipyridamole against Plasmodium falciparum infection was 30 nM. The IC(50) of chloroquine decreased from 97.0 nM to 13.7 nM when combined with dipyridamole (0.1 nM). Therefore, we suggest that dipyridamole has antiplasmodial activity due to its ability to arrest parasite development and by inhibiting merozoite invasion of the erythrocytes. Chloroquine activity against P. falciparum is also enhanced by the addition of dipyridamole. Treatment with a combination of chloroquine and dipyridamole may lead to a more effective treatment for chloroquine-resistant strains of P. falciparum.  相似文献   

8.
Dihydrofolate reductase (EC 1.5.1.3, tetrahydrofolate dehydrogenase), the target enzyme for the chemotherapeutic attack by pyrimethamine, has been studied in drug-sensitive and resistant strains of Plasmodium falciparum. No evidence was found for overproduction of this enzyme in drug-resistant strains. Results presented here indicate that pyrimethamine resistance of P. falciparum depends on a modified dihydrofolate reductase, which shows less affinity for pyrimethamine and dihydrofolate. The inhibition constants for pyrimethamine increased from 0.19 nM for the drug-sensitive strain FCH-5 to 4.1 and 21.6 nM for the drug-resistant strains FVOR and K 1, respectively. In addition, the Km-values for dihydrofolate increased from 2.5 microM to 21 and 28 microM, respectively. The type of inhibition by pyrimethamine changed from competitive with respect to dihydrofolate in drug-sensitive strain to non-competitive in drug-resistant strains of P. falciparum.  相似文献   

9.
The intraerythrocytic malaria parasite depends on the surrounding medium for a supply of phospholipid precursors. Efficient inhibition (IC50 7-90 microM) of Plasmodium falciparum growth in vitro was achieved using modified fatty acids. The fatty acid analogues most effective in suppressing P. falciparum growth in culture were also the most active inhibitors of acyl-CoA synthetase from the monkey parasite P. knowlesi.  相似文献   

10.
11.
Sequencing data obtained from the Plasmodium, Anopheles gambiae and human genome projects provide a new basis for drug and vaccine development. One of the most characteristic features in the process of drug development against parasitic protozoa is target identification in a biological pathway. The next step must be a structure-based rational drug design if the target is not only present in the parasite. In mouse models of malaria, such drugs should be tested for efficacy of the new therapies. Here, we present data that pinpoint the existence of two enzymes of the polyamine pathway involved in spermidine metabolism in P. falciparum, i.e. deoxyhypusine synthase (DHS; EC 1.1.1.249) and homospermidine synthase (HSS; EC 2.5.1.45). Recent data obtained from the malaria genome databases showed that at least a putative gene encoding DHS is present in the parasite. Sequencing data from the P. falciparum genome project prove that the eukaryotic initiation factor eIF5A (the substrate for DHS) exists in P. falciparum. Here, we present the amino acid sequence of eIF5A from P. vivax, which causes tertiary malaria. EIF5A from P. vivax shows 82% nucleic acid and 97% amino acid identity to its homologue from P. falciparum. GC/MS data and inhibitor studies with agmatine prove that the triamine homospermidine occurs in the parasite. These data suggest a separate locus encoding HSS in P. falciparum. The hss gene recruits from the dhs gene in eukaryotes. Here, we present genomic DNA fragments obtained by amplification with primers of a conserved region (amino acid positions 550–1,043) between the putative P. falciparum DHS gene (dhs) and the HSS gene (hss) from the plant Senecio vulgaris (Asteraceae). The amplification product from different P. falciparum strains reveals differences in sequence identity, compared with the putative dhs gene from P. falciparum strain 3D7. Expression of the full-length clone and determination of HSS-specific activity will finally prove whether a separate region encoding HSS exists.  相似文献   

12.
The infection of human erythrocytes by two strains of the human malarial parasite, Plasmodium falciparum (FCQ-27 or the multi-drug-resistant strain K-1), markedly changed the transport characteristics of the nucleosides, adenosine and tubercidin, compared to uninfected erythrocytes. A component of the transport of these nucleosides was insensitive to the classical mammalian nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR). In vitro studies with tubercidin demonstrated ID50 values of 0.43 and 0.51 microM for FCQ-27 and K-1, respectively. In addition, the nucleoside transport inhibitors NBMPR, nitrobenzylthioguanosine (NBTGR), dilazep and dipyridamole also independently exhibited antimalarial activity in vitro. The combination of tubercidin and NBMPR or NBTGR in vitro demonstrated synergistic activity, whilst tubercidin together with dilazep or dipyridamole showed subadditive activity. Analysis by HPLC indicated that NBMPR could permeate the infected cell membrane and provided evidence for the catabolism of NBMPR in vitro, with subsequent alteration of the purine pool in the infected erythrocyte. These observations further indicated the possibility of the utilization of cytotoxic nucleosides against P. falciparum infection in conjunction with a nucleoside transport inhibitor to protect the host tissue.  相似文献   

13.
OBJECTIVE: This study describes the in vitro action of the hydroalcoholic extract and the 1,7-dihydroxy-2,3-dimethoxy xanthone isolated from P. cyparissias on agonist and ovalbumin induced contractions in trachea, from normal and actively sensitised guinea pigs. RESULTS: The hydroalcoholic extract of P. cyparissias (0.125 to 1 mg/ml), incubated with the guinea-pig trachea for 20 min, had no effect on the resting tone of the preparations, but caused a concentration-dependent, reversible and non competitive inhibition of contractions induced by acetylcholine, histamine, compound 48/80, bradykinin, substance P, prostaglandin E2 and the stable analogue of thromboxane A2 mimetic U 46619. The calculated mean IC50 values for the hydroalcoholic extract were: 0.37, 0.51, 0.06, 0.32, 0.48, 0.3 and 0.17 mg/ml, respectively. Also, the extract of P. cyparissias (0.125 to 0.5 mg/ml) antagonised, in a graded manner (IC50 of 0.46 mg/ml) ovalbumin-induced contractions in guinea-pig trachea obtained from animals which had been actively sensitised to this antigen. Pre-incubation of the preparations with the purifed xanthone isolated from P. cyparssias (2.5 to 80 microg/ml; 10.0 to 310.0 microM) caused significant and concentration-dependent, reversible and noncompetitive inhibition of the contractile responses elicited by acetylcholine, histamine, bradykinin, substance P, U 46619 and prostaglandin E2. The calculated mean IC50 values for these effects were: 132.0, 73.0, 9.2, 32.0, 110.6 and 66.0 microM, respectively. At very high concentrations (I55.0-620.0 microM) the xanthone also antagonised contraction induced by KCl in guinea-pig trachea (IC50 of 190.0 microM). CONCLUSIONS: Taken together these and our previous in vivo results are consistent with the view that the active principles present in P. cyparissias, including the 1,7-dihydroxy-2,3-dimethoxy xanthone, antagonise, in a non competitive but, reversible manner the contractions induced by chemical inflammatory mediators in the guinea pig trachea in vitro. Thus, these results might explain at least in part, the medicinal use of this plant in the management of inflammation, asthma and allergy.  相似文献   

14.
In the course of the search for new antimalarial compounds, a study of plants traditionally used against malaria in Burkina Faso was made. An ethnobotanical study permitted the identification of plants currently used by the traditional healers and herbalists. Two plants among them were selected for further study: Pavetta crassipes (K. Schum) and Acanthospermum hispidum (DC). Alkaloid extracts of these plants were tested in vitro against two reference clones of Plasmodium falciparum: the W2 chloroquine-resistant and the D6 chloroquine-sensitive strains. Significant inhibitory activity was observed with Pavetta crassipes (IC(50)=1.23 microg/ml) and A. hispidum (IC(50)=5.02 microg/ml). Antiplasmodial activity was also evaluated against six Plasmodium falciparum isolates from children between 4 and 10 years old. The IC(50) values for the alkaloid extracts were in the range 25-670 ng/ml. These results indicated that P. falciparum wild strains were more sensitive to the alkaloid extracts than strains maintained in continuous culture. Moreover, the alkaloid extracts exhibit good in vitro antimalarial activity and weak cytotoxicity against three human cell lines (THP1, normal melanocytes, HTB-66). Isolation and structural determination are now necessary in order to precisely determine the active compounds.  相似文献   

15.
With one exception (Gligorijevic et al., Mol Biochem Parasitol 2008;159:7-23.) all previous quantification of chloroquine (CQ) potency vs. P. falciparum has been by growth inhibition assays, meaning potency is defined as cytostatic potential and quantified by IC(50) values. In this study we investigate the cytocidal potency of CQ and other common quinoline antimalarial drugs (quantified as LD(50)). Similar to results from assays for cytostatic potency, we are able to readily distinguish drug resistant from drug sensitive P. falciparum parasites as well as different degrees of resistance. However, we find that fold-resistance to CQ and other quinoline drugs quantified via LD(50) ratios differs quite dramatically from fold resistance calculated via IC(50) ratios. Also, importantly, we find that verapamil chemoreversal of CQ resistance differs when quantified via cytocidal vs. cytostatic assays, as do patterns of "multidrug" resistance in well-known laboratory strains of P. falciparum. The results have important implications for development of new antimalarial drugs and for fully defining the genetic loci that confer clinically relevant antimalarial drug resistance phenomena.  相似文献   

16.
The butanol-soluble fraction of the dried root of Angelica gigas exhibited significant protection against chloroquine-sensitive strains of Plasmodium falciparum using the parasite lactate dehydrogenase assay method. Using antiplasmodial activity-guided fractionation, five coumarins, marmesinin (1), nodakenin (2), skimmin (3), apiosylskimmin (4), and magnolioside (5), were isolated and evaluated for in vitro antiplasmodial activity, as well as for their cytotoxic potential on SK-OV-3 cancer cell lines. Compounds 1 and 5 showed notable growth inhibitory activity against chloroquine-sensitive strains of P. falciparum with IC(50) values of 5.3 and 8.2 μM. The compounds showed no significant cytotoxicity (IC(50) > 100 μM) toward the SK-OV-3 cancer cell line. This is the first report on the antiplasmodial activity of these coumarin derivatives from the dried root of A. gigas.  相似文献   

17.
R Balint  S S Cohen 《Virology》1985,144(1):194-203
We have reported (R. Balint and S. S. Cohen, 1985, Virology 144, 181-193) that protoplasts from plants infected with turnip yellow mosaic virus (TYMV) continue to produce virus in culture and that newly formed virus particles contained predominantly newly synthesized spermidine and spermine. Inhibition of spermidine synthesis by dicyclohexylamine (DCHA), however, led to incorporation of preexisting spermidine and increased amounts of spermine into newly formed virions. We now report similar results with healthy protoplasts infected in vitro, in which essentially all of the virus is newly formed. Again, newly synthesized spermidine and spermine were preferentially incorporated into virus. DCHA inhibited spermidine synthesis by 85%, leading in 20 hr to a 60% depletion of the cellular spermidine and a 30% reduction in the amount of spermidine per virion. Spermine synthesis increased, however, producing a 40% increase in cellular spermine and 50-100% increase in the amount of spermine per virion. Thus, in spite of spermidine depletion, the total positive charge contributed by polyamines to the virus was essentially conserved.  相似文献   

18.
The cell fusion protein, the product of the UL53 gene, is responsible for intracerebral (IC) pathogenicity of HSV-1. Recombinant HSV-1 R15 is apathogenic to mice by the IC route of inoculation, while intratypic recombinants, in which the UL53 gene in R15 was replaced by an analogous sequence from the pathogenic strain R19, regained IC pathogenicity. The nucleotide sequence of the UL53 gene of HSV-1 strains R15 (apathogenic) and R19 (pathogenic) was determined and compared to that of other pathogenic strains. Four mutations were found which are thought to be responsible for the apathogenic phenotype of HSV-1 strain R15. Northern blot hybridization of RNA extracted from BSC-1 cells infected with several HSV-1 strains indicated that all of the virus strains tested expressed equal amounts of UL53 mRNA in infected cell cultures. Demonstration of the expression of UL53 mRNA in brains of mice infected with HSV-1 strains was made possible by the combined use of a rapid method for mRNA extraction (Oligo dT-linked magnetic beads) and a highly sensitive technique for detection of the existence of the UL53-specific mRNA (cDNA synthesis followed by PCR). It was shown that both pathogenic (KOS and P42) and apathogenic (R15) HSV-1 strains expressed the UL53 gene in brains of IC infected mice.  相似文献   

19.
Leishmaniasis affects millions of people worldwide every year. Lack of effective vaccination, co-infection with other dreaded diseases like AIDS and generation of drug resistant strains demand immediate attention into this neglected area of research. The sodium m-arsenite (NaAsO2) resistant Leishmania donovani used in this study is resistant to 20 microM NaAsO2, which shows a 13-fold increase in resistance compared with wild type. Here we report that the arsenite resistant strain of L. donovani promastigotes shows cross-resistance to novobiocin, a catalytic inhibitor of topoisomerase II, with IC50 value of 320 microg ml-1 as compared with 242 microg ml-1 for wild type L. donovani. Leishmanicidal action of novobiocin induces dose- and time-dependent increase in cell death. Treatment with IC50 of novobiocin caused morphological and biochemical changes which lead to induction of cell death exhibiting characteristic features of metazoan apoptosis. Phosphatidylserine externalization, cytochrome C release to cytoplasm, activation of caspases, oligonucleosomal DNA fragmentation and in situ labelling of condensed and fragmented nuclei in both wild type and arsenite resistant L. donovani promastigotes strongly suggest the apoptosis-like mode of cell death. Cross-resistance to novobiocin in arsenite resistant strain has been correlated to over-expression of topoisomerase II and substantiated by differential inhibition of enzyme activity in wild type and arsenite resistant L. donovani.  相似文献   

20.
Mitochondrial protein synthesis in Plasmodium falciparum   总被引:1,自引:0,他引:1  
Protein synthesis in intact Plasmodium falciparum was 333 times more sensitive to cycloheximide than to chloramphenicol. The 50% inhibitory concentration (IC50) of cycloheximide in a 27-h assay in vitro was 6 X 10(-7) M but no constant cycloheximide-insensitive fraction of total protein synthesis was observed at concentrations of this inhibitor between 10(-7) and 10(-2) M. 0.24% of total protein synthesis occurred in the presence of 10(-3) M cycloheximide but the chloramphenicol sensitivity of this fraction was similar to that of overall protein synthesis (IC50 2 X 10(-4) M). The major fraction of protein synthesis by P. falciparum, therefore, is assumed to be cytoplasmic and to occur on 80S ribosomes. Cycloheximide-insensitive, chloramphenicol-sensitive (70S ribosomal) protein synthesis being undetectable by the methods employed, mitochondrial protein synthesis in P. falciparum is presumed to constitute a considerably smaller fraction of the total protein synthetic capacity than observed in other lower eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号