首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt formation to improve drug solubility   总被引:6,自引:0,他引:6  
Salt formation is the most common and effective method of increasing solubility and dissolution rates of acidic and basic drugs. In this article, physicochemical principles of salt solubility are presented, with special reference to the influence of pH-solubility profiles of acidic and basic drugs on salt formation and dissolution. Non-ideality of salt solubility due to self-association in solution is also discussed. Whether certain acidic or basic drugs would form salts and, if salts are formed, how easily they would dissociate back into their free acid or base forms depend on interrelationships of several factors, such as S0 (intrinsic solubility), pH, pKa, Ksp (solubility product) and pHmax (pH of maximum solubility). The interrelationships of these factors are elaborated and their influence on salt screening and the selection of optimal salt forms for development are discussed. Factors influencing salt dissolution under various pH conditions, and especially in reactive media and in presence of excess common ions, are discussed, with practical reference to the development of solid dosage forms.  相似文献   

2.
替硝唑固体分散体的制备及其体外释放特性研究   总被引:1,自引:0,他引:1  
目的:利用固体分散技术制备替硝唑固体分散体,增加替硝唑溶解度和溶出速度。方法:以聚乙二醇(PEG)为载体材料,采用溶剂-熔融法制成固体分散体,测定表观溶解度,进行体外溶出试验,并采用差示扫描量热(DSC)法鉴别药物在固体分散体中的存在状态。结果:替硝唑的溶出度和表观溶解度随PEG的比例不同而不同,且溶出度随载体用量增加而增加。固体分散体的DSC曲线中替硝唑药物的特征熔融峰消失。结论:所制得的固体分散体能明显提高替硝唑的溶出度和表观溶解度。  相似文献   

3.
The effect of dry mixing on the apparent solubility of two hydrophobic sparingly soluble drugs was studied. The materials were mixed with NaCl or glass beads in a Turbula mixer and the changes in solubility were monitored. It was shown that dry mixing caused an increase in the apparent solubility of test materials. It is suggested that the surfaces of the particles become activated and disordered during the dry mixing process. This peripheral surface disorder appears to be responsible for the increase in solubility. It was also shown that apparent solubility of the drugs after dry mixing was strongly dependent on the amount of drug added to the solvent, increasing with increasing concentrations. A plateau was established gradually at higher proportions of drug to solvent. Finally the applicability of the solubility model described by Mosharraf et al. (1999) [Mosharraf, M., Sebhatu, T., Nystr?m, C., 1999. The effects of disordered structure on solubility and dissolution rates of hydrophilic, sparingly soluble drugs. Int. J. Pharm. 177, 29-51] to the solubility behaviour of the hydrophobic sparingly soluble drugs tested in this study was confirmed. The results suggested that the equilibrium solubility plateau levels of a disordered material are determined by the degree and the location of disorder on the individual particles.  相似文献   

4.
No HeadingPurpose. To evaluate the effect of pH on solubility and dissolution rates of a model weak base, haloperidol, and two different salt forms, hydrochloride and mesylate.Methods. pH-solubility profiles were determined by using haloperidol base, haloperidol hydrochloride, and haloperidol mesylate as starting materials; concentrated or diluted HCl or NaOH solutions were added to aqueous suspensions of solids to adjust pH to desired values. Intrinsic dissolution rates were determined using intrinsic dissolution apparatus under various pH-stat conditions. Further, approximation of diffusion layer pH was estimated from that of 10% w/w slurries of drug substances in dissolution media, which were used to correlate with intrinsic dissolution rates of haloperidol and its salt forms under different pHs.Results. pH-solubility profiles of haloperidol base and its HCl salt were similar, while when the mesylate salt was used as starting material, it exhibited a higher solubility between pH 2 and 5. The higher solubility of the mesylate salt at pH 2–5 is attributed to its higher solubility product (Ksp) than that of the hydrochloride salt. The pH-solubility profiles indicated a pHmax (pH of maximum solubility) of 5, indicating that the free base would exist as the solid phase above this pH and a salt would be formed below this pH. Below pH 1.5, all solubilities were comparable due to a conversion of haloperidol base or the mesylate salt to the HCl salt form when HCl was used as the acidifying agent. These were confirmed by monitoring the solid phase by differential scanning calorimeter. When their dissolution rates are tested, dissolution rates of the mesylate salt were much higher than those of the free base or the HCl salt, except at very low pH (<2). Dissolution rates of free base and HCl salt also differed from each other, where that of HCl salt exhibits higher dissolution rates at higher pHs. A direct correlation of dissolution rate with solubility at diffusion layer pH at the surface of dissolving solid was established for haloperidol, its hydrochloride, and mesylate salts.Conclusions. Using pH-solubility and pH-dissolution rate interrelationships, it has been established that diffusion layer pH could be used to explain the observed rank order in dissolution rates for different salt forms. A non-hydrochloride salt, such as a mesylate salt, may provide advantages over a hydrochloride salt due to its high solubility and lack of common ion effect unless at very low pH.  相似文献   

5.
The effects of experimental design on the apparent solubility of two sparingly soluble hydrophilic compounds (barium sulphate and calcium carbonate) were studied in this paper. The apparent solubility appeared to be primarily dependent on the amount of solute added to the solvent in each experiment, increasing with increased amounts. This effect seems to be due to the existence of a peripheral disordered layer. However physico-chemical methods used in the present study were not able to unambiguously verify the existence of any disorder in the solid state structure of the drugs. At higher proportions of solute to solvent, the solubility reached a plateau corresponding to the solubility of the disordered or amorphous molecular form of the material. Milling the powders caused the plateau to be reached at lower proportions of solute to solvent, since this further disordered the surface of the drug particles. It was also found that the apparent solubility of the drugs tested decreased after storage at high relative humidities. A model for describing the effects of a disordered surface layer of varying thickness and continuity on the solubility of a substance is presented. This model may be used as a method for detection of minute amount of disorder, where no other technique is capable of detecting the disordered structure. It is suggested that recrystallisation of the material occurs via slow solid-state transition at the surface of the drug particle; this would slowly reduce the apparent solubility of the substance at the plateau level to the thermodynamically stable value. A biphasic dissolution rate profile was obtained. The solubility of the disordered surface of the particles appeared to be the rate-determining factor during the initial dissolution phase, while the solubility of the crystalline core was the rate-determining factor during the final slower phase.  相似文献   

6.
The influence of pH on the dissolution rates and solubilities of sulphamethoxazole and trimethoprim have been examined. Sulphamethoxazole was evaluated in buffers of ionic strength 0.5 mol dm-3 over the pH range 0.45-7.8 and at 25, 32 and 37 degrees C. The minimum solubility of sulphamethoxazole was 28.1 mg/100 mL at pH 3.22 and 25 degrees C. Solubilities increased significantly with both increased and decreased pH. Intrinsic dissolution rates demonstrated a linear relationship with the solubility data. Trimethoprim solubility was both buffer- and pH-dependent. In both water and hydrochloric acid solution at 32 degrees C the solubility of trimethoprim increased from 50 mg/100 mL in water at pH 8.54 to a maximum of 1550 mg/100 mL at pH 5.5. This maximum solubility was in excess of that predicted theoretically and may be due to supersaturation. Below pH 2 the solubility of protonated trimethoprim diminished from 1125 mg/100 mL with decreasing pH. This was due to the common ion effect. Intrinsic dissolution rates increased as pH was decreased with hydrochloric acid from 6.00 to 1.78, but decreased at pH 1.48 due to the common ion effect. Dissolution profiles of trimethoprim showed complex patterns dependent upon pH. The profile was zero-order at pH 6.00 and became distinctly stepwise at pH 5.5, this effect becoming less pronounced at lower pH values. This was reconciled in terms of the rate of formation of trimethoprim hydrochloride on the surface of the disc and the differing dissolution rates of this species and trimethoprim. A simple relationship between solubility and dissolution rate was not observed.  相似文献   

7.
The aim of the present study was two-fold: (1) to investigate the effect of pH and presence of surfactant sodium lauryl sulphate (SLS) on the solubility and dissolution rate of two solid-state forms of piroxicam (PRX), anhydrate (PRXAH) and monohydrate (PRXMH), and (2) to quantitatively assess the solid-phase transformation of PRXAH to PRXMH in slurry with a special interest to the impact on the solubility and dissolution behavior of the drug. X-ray powder diffractometry (XRPD), Raman spectroscopy and scanning electron microscopy (SEM) were used for characterization of the solid-state forms. Phase transformation was monitored in slurry by means of in-line Raman spectroscopy, and the partial least squares (PLS) regression model was used for predicting the amount of PRXMH. The results showed that the solubility and dissolution rate of PRXAH were higher compared to PRXMH at different pHs. The pH and presence of SLS together affected the solubility and dissolution rate of different PRX forms. The lowest solubility values and dissolution rates for PRX forms were observed in distilled water (pH 5.6) at 37 °C. The changes in the dissolution rate could be explained by the hydrate formation during solubility testing. The rate of hydrate formation was also dependent on the pH of the dissolution medium.  相似文献   

8.
To study the influence of temperature and pH on solubility and dissolution behavior of indomethacin solid dispersions were prepared using several classes of hydrophilic carriers. Investigations on dissolution of indomethacin in binary system are reported earlier. However the phase solubility and dissolution behavior at different pH and temperature left void. The present investigation includes: phase solubility study at various pH; preparation of solid dispersion by solvent evaporation, melting and kneading method; characterization of various blends by dissolution study, and solid state studies to ensure interaction of drug with carrier. The binding between drug and carriers (PVP K30, βCD and PEG) was explained by thermodynamic parameters as calculated from phase solubility study. Indomethacin in association with PVP K30 showed very high apparent binding constant (Ka) and Gibb’s free energy change (?G) in comparison to other blends. The ternary system (drug:βCD:PVP K30, 1:5:1) showed better dissolution of about 80.97 and 99 % at pH 7.2 after 5 and 30 min respectively. At higher proportion of carrier (1:9) in binary solid dispersion of drug and PVP K30, drug dissolution was 96.23 and 97.85 % after 5 and 30 min respectively. This raised solubility of indomethacin would be helpful in designing a dosage form.  相似文献   

9.
The pH-solubility profiles of 3 pharmaceutical hydrochloride salts were determined in sodium acetate-hydrochloric acid buffer. Unusual pH-solubility profiles containing maxima at pH 4–6 were observed for phenazopyridine hydrochloride, cyproheptadine hydrochloride and bromhexine hydrochloride. The decrease in solubility at lower pH values was attributed to the common ion effect of chloride on the solubility product equilibrium of the hydrochloride salts. The dissolution behavior of the free bases and that of the hydrochloride salts of these drugs were compared in dilute hydrochloric acid solution, in pH range from 1.0 to 3.0. The apparent dissolution rates and solubilities of these hydrochlorides were less than those of the respective free base forms in the pH range of the stomach (pH 1.0–2.0). These results substantiated further the contention that the salt formation does not always result in an enhancement of solubility characteristics.  相似文献   

10.
Amorphous formulations provide a solution to poor solubility and slow dissolution of many drugs, but fast surface crystallization can negate their advantages. As in the case of many amorphous drugs, loratadine (LTD) shows much faster crystal growth on the free surface than in the bulk, and its surface crystallization can be inhibited by a polymer nanocoating. LTD is a weak base with a pKa of 5.25. Dextran sulfate (DTS), a pharmaceutically acceptable polymer, is deposited on amorphous LTD from coating solution at pH 3.5 at which LTD is positively charged. Zeta potential measurements support the mechanism of nanocoating by electrostatic deposition. DTS nanocoating is as good as gold coating for inhibiting surface crystallization of amorphous LTD and significantly increases its rate of dissolution. The enhanced dissolution is likely a result of improved wetting of amorphous particles by an aqueous medium. These results indicate that fast surface crystallization of amorphous LTD is enabled by high mobility of surface molecules, and an ultrathin nanocoating can immobilize surface molecules and inhibit surface crystallization. This nanocoating technique can be used to stabilize amorphous drugs prone to surface crystallization and improve their dissolution, and DTS is an effective nanocoating material for basic drugs such as LTD.  相似文献   

11.
目的:为了提高难溶性药物阿瑞匹坦(Aprepitant,APR)的溶解度,解决其酸中溶出、碱中结晶沉淀的问题,选择不同功能的聚合物载体,采用热熔挤出技术制备三元固体分散体,并对其进行性能考察;方法:采用溶剂-熔融法制备二元固体分散体,以溶出度和溶出速度为指标,筛选具有增溶功能的载体材料。通过介质转移法考察各聚合物在不同浓度的药物溶液中的抑晶性能,筛选出最佳的沉淀抑制剂。确定药载比,将APR、溶出促进剂及沉淀抑制剂以不同比例混合,采用热熔挤出技术制备三元固体分散体,以溶出度和抑晶时间为指标,优选出三元固体分散体处方。经XRD确认药物在载体中的存在状态,考察该三元固体分散体在模拟肠液中的动态溶解度和加速条件下的物理稳定性。结果:亲水性聚合物PVP K30制备的二元固体分散体溶出速度快,增溶效果佳,肠溶性聚合物HPMCAS显示出优越的抑晶作用,延长了APR的过饱和点,质量比为1:1:3(APR:PVP K30:HPMCAS)的三元固体分散体在酸中迅速完全释放(120min溶出95%),相对于原料药显著提高了溶出度和溶出速率,当介质pH转为6.8后,三元固体分散体完全释放并在6h内维持溶液处于高过饱和的稳定状态,药物以无定形形式存在于载体基质中,同时能在加速条件下保持至少三个月的无定形状态。结论:基于不同聚合物的理化特性,本研究制备的三元固体分散体通过协调溶出速率和结晶抑制效果,不仅显著提高APR的溶解度,并能解决APR在胃中溶出、肠中沉淀析晶的问题,具有良好的溶出特性。  相似文献   

12.
微环境pH(pHM)调控技术是指利用pHM调节剂对药物粒子周围饱和溶液的pH进行调控的技术。该技术在固体分散体中有两方面的应用:一方面通过调节pHM提高弱酸或弱碱性药物溶解度;另一方面通过介导与药物分子间的相互作用促进药物形成无定形态,抑制药物重结晶,增加固体分散体稳定性。两种机制共同作用显著提高了难溶性药物的溶出与溶解。文中对pHM调控技术在固体分散体中的应用最新研究进展进行综述,以期为固体分散体研究起到一定的借鉴和指导作用。  相似文献   

13.
An emulsified solid dispersion of docetaxel was prepared and characterized in vitro. In contrast to conventional solid dispersions, emulsifying pharmaceutical excipients and hydroxypropyl methylcellulose (HPMC) as a supersaturation promoter were introduced into the PEG6000-based solid dispersion to further improve its solubilizing capability. The solubility, dissolution in vitro and stability of the prepared emulsified solid dispersions were studied taking into consideration of the effects of different emulsifying excipients, preparation methods and the media. Results of the emulsified solid dispersion of docetaxel showed that the solubility and dissolution at 2 h were 34.2- and 12.7-fold higher than the crude powder. The type of emulsifying excipient used had a significant influence on the dissolution of the emulsified solid dispersion. The dissolution of the emulsified solid dispersion prepared by the solvent-melting method or the solvent method was higher than the melting method. There were no apparent differences among the dissolution media utilized. The status of the drug in the emulsified solid dispersion was observed in an amorphous or a molecular dispersion state by differential thermal analysis and powder Xray diffraction. In conclusion, the incorporation of emulsifying pharmaceutical excipients and HPMC with polymers into a solid dispersion could be a new and useful tool to greatly increase the solubility and dissolution of poorly water-soluble drugs.  相似文献   

14.
Amorphous solid dispersions (ASDs) are widely utilized in the pharmaceutical industry for bioavailability enhancement of low solubility drugs. The important factors governing the dissolution behavior of these systems are still far from adequately understood. As a consequence, it is of interest to investigate the behavior of these systems during the dissolution process. The purpose of this research was twofold. First, the degree of supersaturation generated upon dissolution as a function of drug-polymer composition was investigated. Second, an investigation was conducted to correlate physical behavior upon dissolution with polymer loading. Felodipine and indomethacin were selected as model drugs and hydroxypropylmethylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were used to form the dispersions. Diffusion and nuclear magnetic resonance spectroscopy experiments revealed that the extent of bulk supersaturation generated on dissolution of the ASD did not depend on the drug-polymer ratio. Interestingly, the maximum supersaturation generated was similar to the predicted amorphous solubility advantage. However, dynamic light scattering measurements revealed that particles on the submicron scale were generated during dissolution of the solid dispersions containing 90% polymer, whereas solid dispersions at a 50% polymer loading did not yield these nanoparticles. The nanoparticles were found to result in anomalous concentration measurements when using in situ ultraviolet spectroscopy. The supersaturation generated upon dissolution of the solid dispersions was maintained for biologically relevant timeframes for the HPMC dispersions, whereas PVP appeared to be a less effective crystallization inhibitor.  相似文献   

15.
Ahmed Khames 《Drug delivery》2017,24(1):328-338
BCS class II drugs usually suffer inadequate bioavailability as dissolution step is the absorption rate limiting step. In this work, the effect of solubility increase at the main absorption site for these drugs was investigated using risperidone as a drug model. Liquisolid technique was applied to prepare risperidone per-oral tablets of high dissolution rate at intestinal pH (6.8) using versatile nonionic surfactants of high solubilizing ability [Transcutol HP, Labrasol and Labrasol/Labrafil (1:1) mixture] as liquid vehicles at different drug concentrations (10–30%) and fixed (R). The prepared liquisolid tablets were fully evaluated and the dissolution rate at pH 6.8 was investigated. The formulae that showed significantly different release rate were selected and subjected to mathematical modeling using DE25, MDT and similarity factor (f2). Depending on mathematical modeling results, formula of higher dissolution rate was subjected to solid state characterization using differential scanning calorimetric (DSC), infrared spectroscopy (IR) and X-ray diffraction (XRD). Finally, the drug bioavailability was studied in comparison to conventional tablets in rabbits. Results showed that liquisolid tablet prepared using Labrasol/Labrafil (1:1) mixture as liquid vehicle containing 10% risperidone is a compatible formula with law drug crystallinity and higher dissolution rate (100% in 25?min). The drug bioavailability was significantly increased in comparison to the conventional tablets (1441.711?μg h/mL and 137.518?μg/mL in comparison to 321.011?μg h/mL and 38.673?μg/mL for AUC and Cpmax, respectively). This led to the conclusion that liquisolid technique was efficiently improved drug solubility and solubility increase of BCS class II drugs at their main absorption site significantly increases their bioavailability.  相似文献   

16.
In a previous study, it was shown that the incorporation of poorly soluble drugs (BCS class II) in sugar glasses could largely increase the drug's dissolution rate [van Drooge, D.J., Hinrichs, W.L.J., Frijlink, H.W., 2004 b. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions. J. Control. Release 97, 441-452]. However, the application of this technology had little effect when high drug loads or fast dissolving sugars were applied due to uncontrolled crystallization of the drug in the near vicinity of the dissolving tablet. To solve this problem a surfactant, sodium lauryl sulphate (SLS), was incorporated in the sugar glass or physically mixed with it. Diazepam and fenofibrate were used as model drugs in this study. The dissolution behavior of tablets prepared from solid dispersions in which SLS was incorporated was strongly improved. Surprisingly, the dissolution rate of tablets prepared from physical mixtures of SLS and the solid dispersion was initially fast, but slowed down after about 10 min. The solid dispersions were characterized by DSC to explain this unexpected difference. These measurements revealed the existence of interaction of SLS with both the drug and the sugar in the solid dispersion when SLS was incorporated. It is hypothesized that due to this interaction, the dissolution of SLS was slowed down by which a high solubility of the drug in the near vicinity of the dissolving tablet is maintained during the whole dissolution process. Therefore, uncontrolled crystallization is effectively prevented.  相似文献   

17.
The effect of solubilization by complexation with povidone on the oral bioavailability of three anthelmintic benzimidazole carbamate drugs: mebendazole (MBZ), albendazole (ABZ) and ricobendazole (RBZ), was studied in mice. The following in vitro characteristics of the initial raw materials and the drug-povidone complexes were evaluated: melting point (MP); mean dissolution time (MDT); solubility constants (Cs) in n-octanol, acid (pH 1.2) and neutral (pH 7.4) aqueous media; apparent partition coefficients (P) and capacity factors (k'W) determined by HPLC. The following in vivo parameters were also evaluated: AUC(0-infinity), C(max), T(max) and MRT. The possible relationship between in vitro characteristics and in vivo parameters was explored and it was found that an increase in solubility, especially in acidic medium, leads to an increase in AUC and C(max) and a decrease in T(max). Therefore, dissolution seems to be the absorption limiting step for these drugs. For the in vivo parameters related to the amount of absorbed drug (AUC and C(max)), the best correlation was obtained with the in vitro characteristics related to solubility which are Cs, MP and MDT. On the other hand, there were good linear correlations between T(max) which is an in vivo parameter related to the rate of drug absorption, and the lipophilia/hydrophilia (logP and log k'W) relation-parameters.  相似文献   

18.
Solvent-mediated transformations of carbamazepine (CBZ) anhydrate form III were investigated in Simulated Intestinal Fluid, a simple USP buffer medium, and in FaSSIF, which contains sodium taurocholate (STC) and lecithin, important surfactants that solubilize lipophilic drugs and lipids in the gastrointestinal tract. Raman spectroscopy (in situ) was utilized to reveal the connection between the changes in solid phase composition and dissolution rate while simultaneously detecting the solid state and the dissolved amount of CBZ. Initial dissolution rate was clearly higher in FaSSIF, while the solid phase data revealed that the crystallization of CBZ dihydrate was inhibited in both the dissolution media, albeit by different mechanisms. In SIF this inhibition was related to extensive needle growth, which impeded medium contact with the solid surface by forming a sterical barrier leading to retarded crystallization rates. Morphological changes from the needle-like dihydrate crystals to plate-like counterparts in FaSSIF, combined with the information that the transformation process was leveled off, evidenced strong hydrogen bonding behavior between the CBZ and STC molecules. These results underline the importance of biologically representative dissolution media in linking the in vitro dissolution results of solids that are capable of hydrate formation to their in vivo dissolution behavior.  相似文献   

19.
The purpose of the study was to investigate the influence of physicochemical drug properties, drug loading, and composition of the release medium on the drug release from in situ gelling nasal inserts. Sponge-like nasal inserts of carrageenan and HPMC K15M with the model drugs oxymetazoline HCl, diprophyllin, and acetaminophen (APAP) were prepared by lyophilization. Drug release studies at different drug loadings were performed in various release media. Raman analysis, DSC, and SEM were conducted to analyze the physical state of the drugs in the inserts. All drugs were dissolved in the solid HPMC inserts and were released at similar rates at all investigated loadings except for the least soluble APAP. APAP concentrations in the hydrating HPMC K15M inserts in excess of its solubility limit resulted in reduced relative release rates at higher drug loadings. Drug-polymer interactions (formation of less soluble drug-polymer salts) resulted in a slower release of oxymetazoline HCl from carrageenan inserts than from HPMC K15M inserts. Changes in the composition of the release medium affected the water uptake of carrageenan but not of HPMC K15M inserts. Oxymetazoline release from carrageenan inserts increased with higher Na+-content of the medium because of ion exchange and at low (pH 2) as well as at high pH (pH 10). The osmolality of the release medium had no effect. The solubility of the drug, its physical state in the polymer matrix, and drug-polymer interactions governed the drug release from nasal inserts. The release from inserts prepared with oppositely charged polymers and drugs was influenced by electrostatic drug-polymer interactions and by the composition of the release medium.  相似文献   

20.
In this article, the theoretical foundation for salts is given with an emphasis on the amount of drug in solution. Consideration is given for the solubility of the non-ionized form, acid dissociation constant and solubility product, which are the limiting constraints. For dissolution of nonionized drugs, the surface pH differs from the bulk pH, giving rise to a lower than expected rate. For salts, theoretical considerations are relatively complex, and an experimental approach to estimating the surface pH is more likely to be of value in predicting the dissolution rate. General guidelines are described for screening, preparing and characterizing drugs as salts, which critically depend on the goal of the product development. Thereafter, our work involving the preparation of salts as a means to generate aerosols from a solution is provided. The solubility of six structurally related compounds was determined in four acids. Thereafter, the amount of the compound in solution was determined as a function of pH, using the acid that provided the highest solubility. Because the pH required to achieve the needed concentration for aerosol generation was low, ammonia vapor was introduced into the air stream to neutralize aerosol droplets. Solvent was then removed from the aerosol by a silica column. The resulting aerosol had a concentration of 96 µg/l and a mass median particle size of 1.8 µm. The reported pharmacokinetic study substantiated the feasibility of evaluating its safety and efficacy of inhalation administration in the rat model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号