首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coats plus (CP) can be caused by mutations in the CTC1 component of CST, which promotes polymerase α (polα)/primase-dependent fill-in throughout the genome and at telomeres. The cellular pathology relating to CP has not been established. We identified a homozygous POT1 S322L substitution (POT1CP) in two siblings with CP. POT1CP induced a proliferative arrest that could be bypassed by telomerase. POT1CP was expressed at normal levels, bound TPP1 and telomeres, and blocked ATR signaling. POT1CP was defective in regulating telomerase, leading to telomere elongation rather than the telomere shortening observed in other telomeropathies. POT1CP was also defective in the maintenance of the telomeric C strand, causing extended 3′ overhangs and stochastic telomere truncations that could be healed by telomerase. Consistent with shortening of the telomeric C strand, metaphase chromosomes showed loss of telomeres synthesized by leading strand DNA synthesis. We propose that CP is caused by a defect in POT1/CST-dependent telomere fill-in. We further propose that deficiency in the fill-in step generates truncated telomeres that halt proliferation in cells lacking telomerase, whereas, in tissues expressing telomerase (e.g., bone marrow), the truncations are healed. The proposed etiology can explain why CP presents with features distinct from those associated with telomerase defects (e.g., dyskeratosis congenita).  相似文献   

2.
Mouse telomerase and the DNA polymerase alpha-primase complex elongate the leading and lagging strands of telomeres, respectively. To elucidate the molecular mechanism of lagging strand synthesis, we investigated the interaction between DNA polymerase alpha and two paralogs of the mouse POT1 telomere-binding protein (POT1a and POT1b). Yeast two-hybrid analysis and a glutathione S-transferase pull-down assay indicated that the C-terminal region of POT1a/b binds to the intrinsically disordered N-terminal region of p180, the catalytic subunit of mouse DNA polymerase alpha. Subcellular distribution analyses showed that although POT1a, POT1b, and TPP1 were localized to the cytoplasm, POT1a-TPP1 and POT1b-TPP1 coexpressed with TIN2 localized to the nucleus in a TIN2 dose-dependent manner. Coimmunoprecipitation and cell cycle synchronization experiments indicated that POT1b-TPP1-TIN2 was more strongly associated with p180 than POT1a-TPP1-TIN2, and this complex accumulated during the S phase. Fluorescence in situ hybridization and proximity ligation assays showed that POT1a and POT1b interacted with p180 and TIN2 on telomeric chromatin. Based on the present study and a previous study, we propose a model in which POT1a/b-TPP1-TIN2 translocates into the nucleus in a TIN2 dose-dependent manner to target the telomere, where POT1a/b interacts with DNA polymerase alpha for recruitment at the telomere for lagging strand synthesis.  相似文献   

3.
Mutations in CTC1 lead to the telomere syndromes Coats Plus and dyskeratosis congenita (DC), but the molecular mechanisms involved remain unknown. CTC1 forms with STN1 and TEN1 a trimeric complex termed CST, which binds ssDNA, promotes telomere DNA synthesis, and inhibits telomerase-mediated telomere elongation. Here we identify CTC1 disease mutations that disrupt CST complex formation, the physical interaction with DNA polymerase α-primase (polα-primase), telomeric ssDNA binding in vitro, accumulation in the nucleus, and/or telomere association in vivo. While having diverse molecular defects, CTC1 mutations commonly lead to the accumulation of internal single-stranded gaps of telomeric DNA, suggesting telomere DNA replication defects as a primary cause of the disease. Strikingly, mutations in CTC1 may also unleash telomerase repression and telomere length control. Hence, the telomere defect initiated by CTC1 mutations is distinct from the telomerase insufficiencies seen in classical forms of telomere syndromes, which cause short telomeres due to reduced maintenance of distal telomeric ends by telomerase. Our analysis provides molecular evidence that CST collaborates with DNA polα-primase to promote faithful telomere DNA replication.  相似文献   

4.
Shelterin component TPP1 plays critical roles in chromosome end protection and telomere length regulation. Specifically, TPP1 contains an OB‐fold domain that provides an interface to recruit telomerase. However, it remains largely unknown how telomerase recruitment is regulated by cell cycle regulators. We show that TPP1 interacts with the cell cycle regulator kinase NEK6 in human cells. We found that NEK6‐mediated phosphorylation of TPP1 Ser255 in G2/M phase regulates the association between telomerase activity and TPP1. Furthermore, we found evidence that POT1 negatively regulates TPP1 phosphorylation because the level of Ser255 phosphorylation was elevated when telomeres were elongated by a POT1 mutant lacking its OB‐fold domains. Ser255 is located in the intervening region between the telomerase‐recruiting OB‐fold and the POT1 recruitment domains. Ser255 and the surrounding amino acids are conserved among vertebrates. These observations suggest that a region adjacent to the OB‐fold domain of TPP1 is involved in telomere length regulation via telomerase recruitment.  相似文献   

5.
6.
7.
Template boundary definition in Tetrahymena telomerase   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

8.
de Lange T 《Genes & development》2005,19(18):2100-2110
Added by telomerase, arrays of TTAGGG repeats specify the ends of human chromosomes. A complex formed by six telomere-specific proteins associates with this sequence and protects chromosome ends. By analogy to other chromosomal protein complexes such as condensin and cohesin, I will refer to this complex as shelterin. Three shelterin subunits, TRF1, TRF2, and POT1 directly recognize TTAGGG repeats. They are interconnected by three additional shelterin proteins, TIN2, TPP1, and Rap1, forming a complex that allows cells to distinguish telomeres from sites of DNA damage. Without the protective activity of shelterin, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. How does shelterin avert these events? The current data argue that shelterin is not a static structural component of the telomere. Instead, shelterin is emerging as a protein complex with DNA remodeling activity that acts together with several associated DNA repair factors to change the structure of the telomeric DNA, thereby protecting chromosome ends. Six shelterin subunits: TRF1, TRF2, TIN2, Rap1, TPP1, and POT1.  相似文献   

9.
Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. DC is a clinically heterogeneous disorder diagnosed by the triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia; Hoyeraal-Hreidarsson syndrome (HH), a clinically severe variant of DC, also includes cerebellar hypoplasia, immunodeficiency, and intrauterine growth retardation. Approximately 70% of DC cases are associated with a germline mutation in one of nine genes, the products of which are all involved in telomere biology. Using exome sequencing, we identified mutations in Adrenocortical Dysplasia Homolog (ACD) (encoding TPP1), a component of the telomeric shelterin complex, in one family affected by HH. The proband inherited a deletion from his father and a missense mutation from his mother, resulting in extremely short telomeres and a severe clinical phenotype. Characterization of the mutations revealed that the single-amino-acid deletion affecting the TEL patch surface of the TPP1 protein significantly compromises both telomerase recruitment and processivity, while the missense mutation in the TIN2-binding region of TPP1 is not as clearly deleterious to TPP1 function. Our results emphasize the critical roles of the TEL patch in proper stem cell function and demonstrate that TPP1 is the second shelterin component (in addition to TIN2) to be implicated in DC.  相似文献   

10.
Telomerase is the ribonucleoprotein enzyme that catalyzes the extension of telomeric DNA in eukaryotes. Recent work has begun to reveal key aspects of the assembly of the human telomerase complex, its intracellular trafficking involving Cajal bodies, and its recruitment to telomeres. Once telomerase has been recruited to the telomere, it appears to undergo a separate activation step, which may include an increase in its repeat addition processivity. This review covers human telomerase biogenesis, trafficking, and activation, comparing key aspects with the analogous events in other species.  相似文献   

11.
In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of Rpa2, a subunit of the eukaryotic ssDNA-binding protein complex replication protein A (RPA). Here we present functional and structural analyses of Stn1 and Ten1 from multiple budding and fission yeast. The crystal structure of the Candida tropicalis Stn1N complexed with Ten1 demonstrates an Rpa2N–Rpa3-like complex. In both structures, the OB folds of the two components pack against each other through interactions between two C-terminal helices. The structure of the C-terminal domain of Saccharomyces cerevisiae Stn1 (Stn1C) was found to comprise two related winged helix–turn–helix (WH) motifs, one of which is most similar to the WH motif at the C terminus of Rpa2, again supporting the notion that Stn1 resembles Rpa2. The crystal structure of the fission yeast Schizosaccharomyces pombe Stn1N–Ten1 complex exhibits a virtually identical architecture as the C. tropicalis Stn1N–Ten1. Functional analyses of the Candida albicans Stn1 and Ten1 proteins revealed critical roles for these proteins in suppressing aberrant telomerase and recombination activities at telomeres. Mutations that disrupt the Stn1–Ten1 interaction induce telomere uncapping and abolish the telomere localization of Ten1. Collectively, our structural and functional studies illustrate that, instead of being confined to budding yeast telomeres, the CST complex may represent an evolutionarily conserved RPA-like telomeric complex at the 3′ overhangs that works in parallel with or instead of the well-characterized POT1–TPP1/TEBPα–β complex.  相似文献   

12.
The semiconservative replication of telomeres is facilitated by the shelterin component TRF1. Without TRF1, replication forks stall in the telomeric repeats, leading to ATR kinase signaling upon S-phase progression, fragile metaphase telomeres that resemble the common fragile sites (CFSs), and the association of sister telomeres. In contrast, TRF1 does not contribute significantly to the end protection functions of shelterin. We addressed the mechanism of TRF1 action using mouse conditional knockouts of BLM, TRF1, TPP1, and Rap1 in combination with expression of TRF1 and TIN2 mutants. The data establish that TRF1 binds BLM to facilitate lagging but not leading strand telomeric DNA synthesis. As the template for lagging strand telomeric DNA synthesis is the TTAGGG repeat strand, TRF1-bound BLM is likely required to remove secondary structures formed by these sequences. In addition, the data establish that TRF1 deploys TIN2 and the TPP1/POT1 heterodimers in shelterin to prevent ATR during telomere replication and repress the accompanying sister telomere associations. Thus, TRF1 uses two distinct mechanisms to promote replication of telomeric DNA and circumvent the consequences of replication stress. These data are relevant to the expression of CFSs and provide insights into TIN2, which is compromised in dyskeratosis congenita (DC) and related disorders.  相似文献   

13.
Human telomere length is controlled by a negative feedback loop based on the binding of TRF1 to double-stranded telomeric DNA. The TRF1 complex recruits POT1, a single-stranded telomeric DNA-binding protein necessary for cis-inhibition of telomerase. By mass spectrometry, we have identified a new telomeric protein, which we have named POT1-interacting protein 1 (PIP1). PIP1 bound both POT1 and the TRF1-interacting factor TIN2 and could tether POT1 to the TRF1 complex. Reduction of PIP1 or POT1 levels with shRNAs led to telomere elongation, indicating that PIP1 contributes to telomere length control through recruitment of POT1.  相似文献   

14.
15.
16.
17.
Telomere proteins protect the chromosomal terminus from nucleolytic degradation and end-to-end fusion, and they may contribute to telomere length control and the regulation of telomerase. The current studies investigate the effect of Oxytricha single-stranded telomere DNA-binding protein subunits α and β on telomerase elongation of telomeric DNA. A native agarose gel system was used to evaluate telomere DNA-binding protein complex composition, and the ability of telomerase to use these complexes as substrates was characterized. Efficient elongation occurred in the presence of the α subunit. Moreover, the α–DNA cross-linked complex was a substrate for telomerase. At higher α concentrations, two α subunits bound to the 16-nucleotide single-stranded DNA substrate and rendered it inaccessible to telomerase. The formation of this α·DNA·α complex may contribute to regulation of telomere length. The α·β·DNA ternary complex was not a substrate for telomerase. Even when telomerase was prebound to telomeric DNA, the addition of α and β inhibited elongation, suggesting that these telomere protein subunits have a greater affinity for the DNA and are able to displace telomerase. In addition, the ternary complex was not a substrate for terminal deoxynucleotidyltransferase. We conclude that the telomere protein inhibits telomerase by rendering the telomeric DNA inaccessible, thereby helping to maintain telomere length.  相似文献   

18.
19.
20.
Telomerase replenishes telomere tracts by reiteratively copying its RNA template, TER. Unlike other model organisms, Arabidopsis thaliana harbors two divergent TER genes. However, only TER1 is required for telomere maintenance. Here we examine the function of TER2. We show that TER2 is spliced and its 3′ end is truncated in vivo to generate a third TER isoform, TER2S. TERT preferentially associates with TER2 > TER1 > TER2S. Moreover, TER2 and TER2S assemble with Ku and POT1b (protection of telomeres), forming RNP (ribonucleoprotein) complexes distinct from TER1 RNP. Plants null for TER2 display increased telomerase enzyme activity, while TER2 overexpression inhibits telomere synthesis from TER1 and leads to telomere shortening. These findings argue that TER2 negatively regulates telomerase by sequestering TERT in a nonproductive RNP complex. Introduction of DNA double-strand breaks by zeocin leads to an immediate and specific spike in TER2 and a concomitant decrease in telomerase enzyme activity. This response is not triggered by replication stress or telomere dysfunction and is abrogated in ter2 mutants. We conclude that Arabidopsis telomerase is modulated by TER2, a novel DNA damage-induced noncoding RNA that works in concert with the canonical TER to promote genome integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号