首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Use of the HepG2 cell line to assess hepatotoxicity induced by bioactivable compounds is hampered by their low cytochrome P450 expression. To overcome this limitation, we have used adenoviral transfection to develop upgraded HepG2 cells (ADV-HepG2) expressing the major P450 enzymes involved in drug metabolism (CYP1A2, CYP2D6, CYP2C9, CYP2C19, and CYP3A4) at levels comparable to those of human hepatocytes. The potential utility of this new cell model for the in vitro screening of bioactivable drugs was assessed using a high-content screening assay that we recently developed to simultaneously measure multiple parameters indicative of cell injury. To this end, ADV-HepG2 and HepG2 cells, cultured in 96-well plates, were exposed for 24 h to a wide range of concentrations of 12 bioactivable and 3 non-bioactivable compounds. The cell viability and parameters associated with nuclear morphology, mitochondrial function, intracellular calcium concentration, and oxidative stress indicative of prelethal cytotoxicity and representative of different mechanisms of toxicity were evaluated. Bioactivable compounds showed lower IC50 values in ADV-HepG2 cells than in HepG2 cells. Moreover, significant differences in the other parameters analyzed were observed between both cell models, while similar effects were observed for non-bioactivable compounds (negative controls). The changes in cell parameters detected in our assay for a given compound are in good agreement with the previously reported toxicity mechanism. Overall, our results indicate that this assay may be a suitable new in vitro approach for early screening of compounds to identify bioactivable hepatotoxins and the mechanism(s) involved in their toxicity.  相似文献   

2.
Introduction: Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions.

Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an ‘artificial hepatocyte’. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities.

Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.  相似文献   


3.
Many adverse drug reactions leading to hepatotoxicity are caused by the cytochrome P450-dependent activation of non-toxic drugs or chemicals into reactive metabolites. To this end, adenoviruses were used as a tool to efficiently deliver specific CYP genes into cultured cells (i.e., human hepatoma cell line HepG2). Recombinant-defective adenoviral vectors encoding for genes CYP3A4 (Adv-CYP3A4), CYP2E1 (Adv-CYP2E1), CYP2A6 (Adv-CYP2A6) and CYP1A2 (Adv-CYP1A2) were used to confer specific CYP drug metabolic capabilities to HepG2 cells. Upgraded cells transiently expressed single specific cytochrome P450 enzymatic activities in terms of the number of the infecting virus particles used in their transduction. HepG2 cells transduced with adenoviruses and wild HepG2 cells cultured in 96 well-plates were incubated in the presence of model compounds, some of which can be metabolized to reactive metabolites. After compound exposure, cell viability was assessed by the commonly used MTT assay. The results confirm that the cell-based assay is a valuable tool in toxicology assessments and high-throughput screenings to detect cytotoxicity mediated by cytochrome P450 biotransformation in preclinical drug development. The assay also has a potential applicability in other industrial sectors such as the chemical industry.  相似文献   

4.
Drug-induced hepatotoxicity is often caused by cytochrome P450 (CYP)-dependent metabolism of drugs into reactive metabolites. Assessment of hepatotoxicity induced by bioactive compounds is hampered by low CYP expression within in vitro cell lines. To overcome this limitation, piggyBac transposition and monoclonal expansion were used to generate a HepG2 cell line with stable and homogenously high expression of CYP3A4, a prominent CYP isoform. Our studies demonstrate the generated line's constant CYP3A4 expression and activity for over 40 cell passages; to date, it has been in subculture for more than a year without addition of Puromycin. This cell line was utilized to evaluate cytotoxicity of two bioactive (troglitazone and acetaminophen) and two non-bioactive (citrate and galactosamine) compounds by MTT assay. Cell viability significantly decreased upon treatment with bioactive drugs. Moreover, cell lines used in the present study were more sensitive to toxic effects of troglitazone than previously reported. Therefore, this HepG2 cell-based assay system may provide a suitable hepatic model for predicting CYP3A4-mediated hepatotoxicity during preclinical drug development.  相似文献   

5.
Amiodarone is a class III antiarrhythmic drug with potentially life-threatening hepatotoxicity. Recent in vitro investigations suggested that the mono-N-desethyl (MDEA) and di-N-desethyl (DDEA) metabolites may cause amiodarone's hepatotoxicity. Since cytochrome P450 (CYP) 3A4 is responsible for amiodarone N-deethylation, CYP3A4 induction may represent a risk factor. Our aim was therefore to investigate the role of CYP3A4 in amiodarone-associated hepatotoxicity. First, we showed that 50 μM amiodarone is more toxic to primary human hepatocytes after CYP induction with rifampicin. Second, we overexpressed human CYP3A4 in HepG2 cells (HepG2 cells/CYP3A4) for studying the interaction between CYP3A4 and amiodarone in more detail. We also used HepG2 wild type cells (HepG2 cells/wt) co-incubated with human CYP3A4 supersomes for amiodarone activation (HepG2 cells/CYP3A4 supersomes). Amiodarone (10–50 μM) was cytotoxic for HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes, but not for HepG2 cells/wt or less toxic for HepG2 cells/wt incubated with control supersomes without CYP3A4. Co-incubation with ketoconazole, attenuated cytotoxicity of amiodarone incubated with HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes. MDEA and DDEA were formed only in incubations containing HepG2 cells/CYP3A4 or HepG2 cells/CYP3A4 supersomes but not by HepG2 cells/wt or HepG2 cells/wt with control supersomes. Metabolized amiodarone triggered the production of reactive oxygen species, induced mitochondrial damage and cytochrome c release, and promoted apoptosis/necrosis in HepG2 cells/CYP3A4, but not HepG2 cells/wt. This study supports the hypothesis that a high CYP3A4 activity is a risk factor for amiodarone's hepatotoxicity. Since CYP3A4 inducers are used frequently and amiodarone-associated hepatotoxicity can be fatal, our observations may be clinically relevant.  相似文献   

6.
Tuberculosis (TB) is highly endemic in India. The first-line anti-TB therapy (ATT) involving isoniazid (INH), rifampicin and pyrazinamide causes hepatotoxicity in approximately 11.5% of Indian patients. Studies have shown that ATT-induced hepatotoxicity is primarily due to oxidative stress caused by the drugs and metabolites. Herbal drugs with antioxidative properties have been tested in animal studies and clinical trials for the management of hepatotoxicity. The objective of this study was to investigate the role of curcumin (CUR), silymarin (SILY) and N-acetylcysteine (N-ACET) on hepatotoxicity by ATT drugs using an in vitro model of human hepatocellular carcinoma cell line (HepG2). HepG2 cells were treated with ATT drugs alone or along with CUR, SILY or N-ACET for a 48-h duration. The cells were monitored for viability, morphology, respiring mitochondria and cell cycle. Our results suggest that the presence of hepatoprotective drugs during treatment of HepG2 cells with ATT drugs lowers the hepatotoxic effect of the latter. This is observed in terms of (a) increased cell viability, (b) healthy-looking cell morphology as revealed by phase contrast microscopy, (c) active respiring cells as observed with confocal microscopy upon staining with a mitochondrial membrane-specific dye, MitoTracker(?) Red, and reduction in the sub-G(1) peak in cell cycle analysis by flow cytometry. Our results suggest that these hepatoprotective drugs need to be further explored as potential adjuvant therapy along with ATT drugs.  相似文献   

7.
Context and objective: Clopidogrel (CLP) is a prodrug which is widely used as a platelet aggregation inhibitor. Hepatotoxicity is rare but a potentially serious adverse reaction that is associated with CLP. Thiophene in CLP (the thienopyridine derivative) is a group that is easily oxidated by cytochrome P450 enzymes (CYP450s) to generate reactive metabolites (RMs), it may be implicated in the mechanism of CLP-induced hepatotoxicity. CYP2C19 and CYP2B6 are important CYP450s involved in the metabolism and activation of CLP, and the aim of this study is to investigate whether the metabolites of CYP2C19 and CYP2B6 are associated with the CLP-induced liver injury. Method: Primary rat hepatocytes are applied to evaluate the hepatotoxicity of CLP. Glutathione-depleted mouse model is used to evaluate whether this toxicity of CLP is metabolized by CYP450s. We also used HepG2 cells co-incubated with recombinant CYP2B6 and CYP2C19 enzymes to further assess whether the metabolites of CYP2C19 and CYP2B6 are associated with the CLP-induced hepatocellular toxicity. Result: CLP in high dose (100?μM and 300?μM) showed cytotoxicity in primary rat hepatocytes assay. Administration of CLP with l-buthionine-S, R-sulfoxinine (BSO) for seven days enhanced the liver injury of CLP. The level of ALT, AST and TBIL in plasma increased significantly, and the histopathological results showed the obvious liver injury; Pretreatment of 1-aminobenzotriazole, a nonspecific inhibitor of CYP450s, suppressed CLP-induced hepatotoxicity; CLP showed a dose-dependent toxicity in HepG2/CYP2C19 enzyme and HepG2/CYP2B6 enzyme models. Conclusion: High activities of CYP2C19 and CYP2B6 are the risk factors for hepatocellular toxicity of CLP.  相似文献   

8.
Acetaminophen hepatotoxicity is mediated by an initial metabolic activation and covalent binding of drug metabolites to liver proteins. Acetaminophen metabolites have been shown to affect rat liver microsomal Ca2+ stores, but the mechanism is not well understood. The aim of the current work was to find out if the metabolism of acetaminophen by CYP2E1 affects ryanodine-sensitive Ca2+ stores in the endoplasmic reticulum of transduced HepG2 cells. Five millimoles acetaminophen decreased proliferation of CYP2E1-overexpressing HepG2 cells, increased cytosolic Ca2+ levels and produced significant cytotoxicity, while only little, mostly anti-proliferative effects were found in HepG2 cells lacking CYP2E1. CYP2E1 inhibitor-4-methylpyrazole decreased drug cytotoxicity in transduced cells and normalized elevated Ca2+ levels. Acetaminophen cytotoxicity was significantly higher in CYP2E1 expressing cells with depleted glutathione. In the cells engineered to overexpress CYP2E1, an increased [3H]ryanodine affinity (by 45%) and increased ligand maximal binding to ryanodine receptors (by 64%) was observed, most probably due to increased association rate of [3H]ryanodine. Ca2+ loading was decreased by about 53% in microsomal fractions isolated from transduced cells treated with acetaminophen and by 92% in glutathione depleted transfected cells treated with the drug. Ca2+/Mg2+-ATPase activity was unchanged in all microsomal fractions. Such effects were not observed in cells lacking CYP2E1. Our results confirm significant role of CYP2E1 in metabolic activation of acetaminophen and indicate that ryanodine receptors located in the liver endoplasmic reticulum are sensitive targets for acetaminophen metabolites.  相似文献   

9.
The expression, inducibility, and activities of several cytochrome P450 (CYP) enzymes were investigated in a human tongue carcinoma cell model, CAL 27, and compared with the human liver model HepG2 cells. The modulation effects of green tea on various CYP isoforms in both cell lines were also examined. RT-PCR analysis of CAL 27 cells demonstrated constitutive expression of mRNA for CYPs 1A1, 1A2, 2C, 2E1, 2D6, and 4F3. The results were negative for CYP2A6, 2B6/7, 3A3/4, and 3A7. Both cell lines displayed identical expression and induction profiles for all of the isoforms examined in this study except 3A7 and 2B6/7, which were produced constitutively in HepG2 but not Cal-27 cells. CYP1A1 and 1A2 were both induced by treatment with beta-napthoflavone as indicated by RT-PCR and Western blotting, while CYP2C mRNA was upregulated by all-trans retinoic acid and farnesol. RT-PCR and Western blot analysis showed that the expressions of CYP1A1 and 1A2 were induced by green tea extract (GTE), which also caused an increase in mRNA for CYP2E1, CYP2D6, and CYP2C isoforms. The four tea catechins, EGC, EC, EGCG and ECG, applied to either HepG2 or Cal-27 cells at the concentration found in GTE failed to induce CYP1A1 or CYP1A2, as determined by RT-PCR. Of the isoforms that were apparently induced by GTE, only 7-ethoxycoumarin deethylase (ECOD) activity could be detected in CAL 27 or HepG2 cells. Interestingly, mRNA and protein for CYP1A1 and CYP1A2 were detected in both cell lines, and although protein and mRNA levels of CYP1A1 and CYP1A2 were increased by GTE, the observed ECOD activity in both cell lines was decreased.  相似文献   

10.
Sodium salicylate and acetylsalicylic acid are drugs used as anti-inflammatory agents. Salicylate prevents nuclear factor-kappa B activation and can cause apoptosis. However, salicylate, a substrate of CYP2E1, is also an antioxidant and can scavenge reactive oxygen species. Experiments were carried out to evaluate whether salicylate can modulate CYP2E1-dependent toxicity. Addition of a polyunsaturated fatty acid such as arachidonic acid (AA) to HepG2 cells resulted in loss of cell viability, especially in cells expressing CYP2E1 (E47 cells). Toxicity was enhanced by the addition of 1 to 10 mM salicylate to the E47 cells but not to control HepG2 cells or HepG2 cells expressing CYP3A4. Salicylate alone was not toxic, and the enhanced toxicity by AA in the presence of salicylate was prevented by diallyl sulfide, a CYP2E1 inhibitor, and by the antioxidant (+/-)6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid. Salicylate potentiated AA-induced lipid peroxidation in the E47 cells, a reaction blocked by diallyl sulfide. CYP2E1 levels were elevated by salicylate at concentrations (<5 mM), which did not increase CYP2E1 mRNA levels. This increase was associated with a decrease of CYP2E1 turnover by salicylate in the presence of cycloheximide. Salicylate also potentiated AA toxicity in hepatocytes isolated from pyrazole treated rats with high levels of CYP2E1 and from saline controls. In view of the potential role of CYP2E1 in contributing to alcohol-induced oxidative stress and liver injury, the potentiation of CYP2E1-dependent toxicity and the elevation of CYP2E1 levels by salicylate may be of clinical significance and merit caution in the use of salicylate and salicylate precursors such as acetylsalicylic acid with certain other drugs.  相似文献   

11.
The bioactivation of pro-toxicants is the biological process through which some chemicals are metabolized into reactive metabolites. Therefore, in vitro toxicological evaluation should ideally be conducted in cell systems retaining adequate metabolic competency and relevant to the route of exposure. The respiratory tract is the primary route of exposure to inhaled pro-toxicants and lung-derived BEAS-2B cell line has been considered as a potentially suitable model for in vitro toxicology testing. However, its metabolic activity has not been characterized.We performed a gene expression analysis for 41 metabolism-related genes and compared the profile with liver- and lung-derived cell lines (HepaRG, HepG2 and A549). To confirm that mRNA expression was associated with the corresponding enzyme activity, we used a series of metabolic substrates of CYPs (CYP1A1/1B1, CYP1A2, CYP2A6/2A13 and CYP2E1) known to bioactivate inhaled pro-toxicants. CYP activities were compared between BEAS-2B, HepaRG, HepG2, and A549 cells and published literature on primary bronchial epithelium cells (HBEC).We found that in contrast to HBEC, BEAS-2B and A549 have limited CYP activity which was in agreement with their CYP gene expression profile. Control cell lines such as HepG2 and HepaRG were metabolically active for the tested CYPs. We recommend that similar strategies can be used to select suitable cell systems in the context of pro-toxicant assessment.  相似文献   

12.
Nevirapine is an antiretroviral drug that is used for treatment as well as for the prevention of mother-to-child transmission of the human immunodeficiency virus (HIV). Unfortunately, its adverse effects, mainly hypersensitivity skin reactions and hepatotoxicity, have hampered the use of nevirapine. Since nevirapine-induced hepatotoxicity commonly occurs between 2-12 weeks of treatment, and nevirapine is a known inducer of human CYP3A and CYP2B6 isozymes, it was envisaged that the hepatotoxicity was due to activation of nevirapine to toxic metabolites by the induced enzymes. Therefore, the aim of this study was to use a rat model and determine the role of the rat analogues, rat CYP3A and CYP2B1/2, in nevirapine-induced hepatotoxicity. This was tested by the extent at which hepatotoxicity could be prevented when ketoconazole or thiotepa, known inhibitors of CYP3A and CYP2B1/2, respectively, were given one hour prior to administration of a hepatotoxic dose of nevirapine. It was shown here that nevirapine-induced hepatotoxicity only occurred in animals that were pretreated with an enzyme inducer (dexamethasone or nevirapine); that ketoconazole and thiotepa did not prevent the occurrence of nevirapine-induced hepatotoxicity; and that histopathologic examinations were more accurate than the use of liver enzymes in detecting the liver damage. This suggested that nevirapine-induced hepatotoxicity is closely associated with enzyme induction, and that liver function tests alone might not be good markers for determining nevirapine-induced hepatotoxicity. In conclusion, rat CYP3A and CYP2B1/2 may not be involved in the pathogenesis of nevirapine-induced hepatotoxicity, suggesting that a different enzyme inducible by nevirapine or dexamethasone may be responsible. However, this is yet to be proven in humans.  相似文献   

13.
14.
15.
16.
ET-743 is a marine anti-cancer drug and is currently in phase I trials in which the effect of combination therapies will be investigated. Its dose-limiting toxicity in patients is hepatotoxicity. In-vitro studies have shown that ET-743 is mainly metabolized by cytochrome P450 (CYP) 3A4, but also by 2C9, 2C19, 2D6 and 2E1, and the phase II enzymes uridine diphosphoglucuronosyl transferase and glutathione-S-transferase. Based on this metabolic profile, there is a risk of drug-drug interactions possibly influencing the hepatotoxicity of ET-743. Therefore, the effect of CYP and phase II activity on the cytotoxicity of ET-743 was investigated in vitro in a human cell line model system. The effect of different CYP and phase II inhibitors and CYP inducers on ET-743 cytotoxicity was studied after 48 and 120 h of treatment in Hep G2 cells using different assays. Furthermore, the toxicity of ET-743 metabolites was investigated. Potent cytotoxic activity of ET-743 after 120 h treatment was observed, which could be increased in combination with the CYP inhibitors metyrapone (3A4), phenanthrene (substrate for 2E1, 3A4), piperonyl butoxide (3A), proadifen (2C9, 2E1, 3A4), ritonavir (3A4), and warfarin (2C9, 2C19). No effect on the cytotoxicity of ET-743 was observed in combination with phase II enzyme inhibition and CYP induction. CYP metabolites of ET-743 were less toxic compared with ET-743. These findings indicate that combination therapy of ET-743 with CYP inhibitors, e.g. other anti-cancer drugs, could lead to changes in the hepatotoxicity of ET-743 and are therefore of clinical importance.  相似文献   

17.
Troglitazone, an oral antidiabetic drug, was reported to cause adverse hepatic effects in certain individuals, leading to its withdrawal from the market. After incubation of troglitazone (100 microM) with the human hepatoma cell line, HepG2 cells, and human primary hepatocytes for 48 to 72 h, an unknown peak was detected in the cell culture. The formation of this peak from troglitazone (100 microM) was also catalyzed by expressed CYP3A4, and further HPLC analysis revealed that there were three metabolites (metabolite A, B, and C) in the peak. The major metabolite, metabolite C (M-C) was identified as an epoxide of a quinone metabolite of troglitazone by comparison with a synthetic authentic standard using tandem mass spectrometry, (1)H NMR, and (13)C NMR analyses. The other two metabolites (M-A and M-B) were stereoisomers with the same molecular weight as M-C, probably produced from M-C by intramolecular rearrangement at the epoxide moiety. M-C showed a weak cytotoxicity in HepG2 cells at low concentrations, as assessed by the crystal violet-staining assay. Since epoxides are generally regarded as the chemically reactive species, M-C may play a role in idiosyncrasy of troglitazone hepatotoxicity via individual differences either in the formation or degradation of this metabolite.  相似文献   

18.
A quantitative high-content screening (HCS) was suggested for the real-time monitoring of drug-induced mitochondrial dysfunction-mediated hepatotoxicity. This HCS is very advantageous in that it allows simultaneous observation of drug-induced activations of hepatotoxic pathways using hypermulticolor cellular imaging. The mitochondrial permeability transition (MPT), cytosolic calcium, and caspase-3 were selected as functional markers to verify drug-induced hepatotoxicity and were concurrently monitored in HepG2 cells in a real-time manner. Nefazodone, tolcapone, and troglitazone caused mitochondrial dysfunction and subsequent apoptotic HepG2 cell death in addition to marked cytosolic calcium increase. On the other hand, extrinsic pathway-mediated apoptotic cell death was monitored when HepG2 cells were treated with piroxicam. It was found that piroxicam-treated HepG2 cells showed apoptotic cell death without the MPT formation, while a cytosolic calcium increase was clearly observed. This finding was confirmed by the caspase-8 inhibition assay. These results demonstrated the unique potential of real-time hypermulticolor HCS to screen hepatotoxic drugs at the in vitro stage rather than the later in vivo stage based on an animal model and to ultimately reduce the probability of drug failure.  相似文献   

19.
目的探讨甘草甜素联合单磷酸阿糖腺苷对HepG2.2.15细胞株存活率及其HB-sAg表达的影响,评价甘草甜素(GL)与单磷酸阿糖腺苷(Ara-AMP)合用体外抗HBV效果。方法利用乙型肝炎病毒基因转染的人肝癌细胞系HepG2.2.15细胞检测细胞培养上清液中的乙肝病毒表面抗原(HBsAg),作为这两种药物联合在体外抗HBV效果的观察指标(以抑制率来表示)。用MTT法检测HepG2.2.15细胞的存活率。结果(1)各药对HepG2.2.15细胞分泌HBsAg的抑制率呈药物浓度和时间依赖性;联合组与两个单药组分别比较,抑制HBsAg差异有显著意义(P<0.05或P<0.01)。(2)随着浓度的增加,各药对细胞的存活率均显示抑制作用,尤其联合组高于其它两个单药组。结论GL联合Ara-AMP在体外HepG2.2.15细胞中具有协同抗HBV的作用。  相似文献   

20.
Overdoses of acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) cause severe liver injury, yet there is no common or high throughput in vitro human APAP model. This study examined the characteristics and usefulness of HepG2 cells grown in a nano culture plate (NCP) system, a three-dimensional culture method, as an in vitro human model for APAP-induced hepatotoxicity. The NCP-cultured HepG2 cells showed higher expression of mRNA and protein levels of cytochrome P450 2E1, which metabolizes APAP to a toxic metabolite, APAP-cysteine adduct formation, and higher sensitivity against APAP-induced cell injury compared with conventionally cultured cells. We demonstrated that treatment of APAP in NCP-cultured HepG2 cells shows key mechanistic features of APAP-induced hepatotoxicity, such as decreases in intracellular glutathione and mitochondrial membrane potential, activation of JNK, and cellular injury; and pharmacological agents, such as Cyclosporine A (a mitochondrial permeability transition inhibitor) and SP600125 (a JNK inhibitor), prevented cell injury induced by APAP exposure. In addition, the antidote of APAP-induced hepatotoxicity, N-acetylcysteine, could attenuate cellular injury induced by APAP in NCP-cultured HepG2 cells. We suggest that cellular injury induced by APAP treatment using an NCP-HepG2 system is a useful human model to study mechanisms and screen drug candidates of APAP-induced hepatotoxicity. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.13135FP]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号