首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
《Toxicology in vitro》2010,24(6):1803-1809
The local lymph node assay (LLNA) has been developed to assess skin sensitization, and based on the EC3 value, it can also be used to evaluate allergen potency. Therefore, in the development of in vitro alternatives to the LLNA assay, one should not only consider the hazard identification but also the possibility to classify allergens relatively to their potency.We have recently described a selective release of interleukin-8 (IL-8) by chemical allergens in THP-1 cell line, and identified the activation of p38 mitogen-activated protein kinase (p38 MAPK) as a common pathway. Therefore, the purpose of this study was to expand the number of chemicals tested and to investigate whether IL-8 production and p38 MAPK activation can be used to classify allergens according to their potency.THP-1 cells were exposed to the contact allergens (p-benzoquinone, 2-aminophenol, isoeugenol, diethyl maleate, citral and imidazolidinyl urea), selected according to their potency in the LLNA, and to lactic acid and propylene glycol as non-sensitizers. p38 MAPK activation was evaluated 5–15 min after treatment by FACS analysis, while IL-8 release was assed by ELISA following 24 h of incubation. p38 MAPK was activated by all contact allergens, including the pro-apten isoeugenol, whereas IL-8 release was significantly increased after stimulation with all allergens tested, except for isoeugenol. The failure of isoeugenol may be due to decrease in the stability of IL-8 mRNA. Irritants exposure, as expected, failed to induce both p38 MAPK activation and IL-8 release.A significant correlation between IL-8 release and the LLNA EC3 was found (Pearson correlation r = 0.743, p = 0.0036, n = 12). On the contrary, the activation of p38 MAPK showed no significant correlation between LLNA data and vigor of p38 MAPK activation.Overall, data presented confirm our previous observations and reveal IL-8 as potential tool not only to identify sensitizers, with the exception of pro-haptens, but also to classify them according to their potency, while p38 MAPK activation allows the identification of all sensitizers, including pro-haptens, but was not useful for potency classification.  相似文献   

3.
Recently, it has been reported that reactive oxygen species (ROS) produced by contact allergens can affect dendritic cell migration and contact hypersensitivity. The aim of the present study was to develop a new in vitro assay that could predict the skin sensitizing potential of chemicals by measuring ROS production in THP-1 (human monocytic leukemia cell line) cells. THP-1 cells were pre-loaded with a ROS sensitive fluorescent dye, 5-(and 6-)-chloromethyl-2′, 7′-dichlorodihydrofluorescein diacetate, acetyl ester (CM–H2DCFDA), for 15 min, then incubated with test chemicals for 30 min. The fluorescence intensity was measured by flow cytometry. For the skin sensitizers, 25 out of 30 induced over a 2-fold ROS production at more than 90% of cell viability. In contrast, increases were only seen in 4 out of 20 non-sensitizers. The overall accuracy for the local lymph node assay (LLNA) was 82% for 50 chemicals tested. A correlation was found between the estimated concentration showing 2-fold ROS production in the ROS assay and the EC3 values (estimated concentration required to induce positive response) of the LLNA. These results indicated that the THP-1 cell-based ROS assay was a rapid and highly sensitive detection system able to predict skin sensitizing potentials and potency of chemicals.  相似文献   

4.
Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA.  相似文献   

5.
《Toxicology in vitro》2014,28(4):626-639
The sensitizing potential of chemicals is usually identified and characterized using in vivo methods such as the murine local lymph node assay (LLNA). Due to regulatory constraints and ethical concerns, alternatives to animal testing are needed to predict skin sensitization potential of chemicals. For this purpose, combined evaluation using multiple in vitro and in silico parameters that reflect different aspects of the sensitization process seems promising.We previously reported that LLNA thresholds could be well predicted by using an artificial neural network (ANN) model, designated iSENS ver.1 (integrating in vitro sensitization tests version 1), to analyze data obtained from two in vitro tests: the human Cell Line Activation Test (h-CLAT) and the SH test. Here, we present a more advanced ANN model, iSENS ver.2, which additionally utilizes the results of antioxidant response element (ARE) assay and the octanol–water partition coefficient (Log P, reflecting lipid solubility and skin absorption). We found a good correlation between predicted LLNA thresholds calculated by iSENS ver.2 and reported values. The predictive performance of iSENS ver.2 was superior to that of iSENS ver.1. We conclude that ANN analysis of data from multiple in vitro assays is a useful approach for risk assessment of chemicals for skin sensitization.  相似文献   

6.
Recent changes in regulatory restrictions and social views against animal testing have accelerated development of reliable alternative tests for predicting skin sensitizing potential and potency of many chemicals. Lately, a test battery integrated with different in vitro tests has been suggested as a better approach than just one in vitro test for replacing animal tests. In this study, we created a dataset of 101 test chemicals with LLNA, human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA) and in silico prediction system. The results of these tests were converted into scores of 0–2 and the sum of individual scores provided the accuracy of 85% and 71% for the potential and potency prediction, compared with LLNA. Likewise, the straightforward tiered system of h-CLAT and DPRA provided the accuracy of 86% and 73%. Additionally, the tiered system showed a higher sensitivity (96%) compared with h-CLAT alone, indicating that sensitizers would be detected with higher reliability in the tiered system. Our data not only demonstrates that h-CLAT can be part of a test battery with other methods but also supports the practical utility of a tiered system when h-CLAT and DPRA are the first screening methods for skin sensitization.  相似文献   

7.
《Toxicology in vitro》2010,24(6):1810-1820
Regulatory policies in Europe prohibited the testing of cosmetic ingredients in animals for a number of toxicological endpoints. Currently no validated non-animal test methods exist for skin sensitization. Evaluation of changes in cell surface marker expression in dendritic cell (DC)-surrogate cell lines represents one non-animal approach. The human Cell Line Activation Test (h-CLAT) examines the level of CD86 and CD54 expression on the surface of THP-1 cells, a human monocytic leukemia cell line, following 24 h of chemical exposure. To examine protocol transferability, between-lab reproducibility, and predictive capacity, the h-CLAT has been evaluated by five independent laboratories in several ring trials (RTs) coordinated by the European Cosmetics Association (COLIPA). The results of the first and second RTs demonstrated that the protocol was transferable and basically had good between-lab reproducibility and predictivity, but there were some false negative data. To improve performance, protocol and prediction model were modified. Using the modified prediction model in the first and second RT, accuracy was improved. However, about 15% of the outcomes were not correctly identified, which exposes some of the limitations of the assay. For the chemicals evaluated, the limitation may due to chemical being a weak allergen or having low solubility (ex. α-hexylcinnamaldehyde). The third RT evaluated the modified prediction model and satisfactory results were obtained. From the RT data, the feasibility of utilizing cell lines as surrogate DC in development of in vitro skin sensitization methods shows promise. The data also support initiating formal pre-validation of the h-CLAT in order to fully understand the capabilities and limitations of the assay.  相似文献   

8.
In this paper, we propose a quantitative risk assessment methodology for skin sensitization aiming at the derivation of 'safe' exposure levels for sensitizing chemicals, used e.g., as ingredients in consumer products. Given the limited number of sensitizers tested in human sensitization tests, such as the human repeat-insult patch test (HRIPT) or the human maximization test (HMT), we used EC3 values from the local lymph node assay (LLNA) in mice because they provide the best quantitative measure of the skin sensitizing potency of a chemical. A comparison of LLNA EC3 values with HRIPT and HMT LOEL, and NOEL values was carried out and revealed that the EC3, expressed as area dose, can be used as a surrogate value for the human NOEL in risk assessment. The uncertainty/extrapolation factor approach was used to derive (a) an 'acceptable non-sensitizing area dose' (ANSAD) to protect non-allergic individuals against skin sensitization and (b) an 'acceptable non-eliciting area dose' (ANEAD) to protect allergic individuals against elicitation of allergic contact dermatitis. For ANSAD derivation, interspecies, intraspecies and time extrapolation factors are applied to the LLNA EC3. For ANEAD derivation, additional application of a variable sensitization-elicitation extrapolation factor is proposed. Values for extrapolation factors are derived and discussed, the proposed methodology is applied to the sensitizers methylchloroisothiazolinone/methylisothiazolinone, cinnamic aldehyde and nickel and results are compared to published risk assessments.  相似文献   

9.
The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA.  相似文献   

10.
Recent changes in regulatory requirements and social views on animal testing have accelerated the development of reliable alternative tests for predicting skin sensitizing potential of chemicals. In this study, we aimed to develop a new in vitro skin sensitization assay using reconstructed human epidermis, RhE model, which is expected to have broader applicability domain rather than existing in vitro assays. Microarray analysis revealed that the expression of five genes (ATF3, DNAJB4, GCLM, HSPA6 and HSPH1) related to cellular stress response were significantly up-regulated in RhE model after 6 h treatment with representative skin sensitizers, 1-fluoro-2,4-dinitrobenzene and oxazolone, but not a non-sensitizer, benzalkonium chloride. The predictive performance of five genes was examined with eight skin sensitizers (e.g., cinnamic aldehyde), four non-sensitizers (e.g., sodium lauryl sulfate) and four pre-/pro-haptens (e.g., p-phenylenediamine, isoeugenol). When the positive criteria were set to obtain the highest accuracy with the animal testing (LLNA), ATF3, DNAJB4 and GCLM exhibited a high predictive accuracy (100%, 93.8% and 87.5%, respectively). All tested pre-/pro-haptens were correctly predicted by both ATF3 and DNAJB4. These results suggested that the RhE-based assay, termed epidermal sensitization assay (EpiSensA), could be an useful skin sensitization assay with a broad applicability domain including pre-/pro-haptens.  相似文献   

11.
Ionic liquids (ILs) are synthetic solvents used as replacements for volatile organic solvents. Human exposure occurs through dermal or oral routes. In rodents, several ILs were reported to induce dermal toxicity, irritation, and sensitization. Due to the potential for occupational exposure, and industrial use as nonvolatile solvents, 1-ethyl-3-methylimidazolium chloride (EMIM, 6.25% to 50% v/v), 1-butyl-3-methylimidazolium chloride (BMIM, 3.12% to 12.5% v/v), 1-butyl-1-methylpyrrolidinium chloride (BMPY, 0.825% to 6.25% v/v), and N-butylpyridinium chloride (NBuPY, 0.825% to 12.5% v/v) were nominated to the National Toxicology Program and evaluated for skin sensitization. The test compound was applied to the ears of female BALB/c mice daily for 3 days in a primary irritancy (IRR)/local lymph node assay (LLNA). Sensitization was assessed in vitro in the direct peptide reactivity assay (DPRA), KeratinoSens™ assay, and human cell line activation test (h-CLAT). In the LLNA, the butylated ILs, BMIM, and BMPY were more potent than NBuPY (butylated) or EMIM (ethylated), which was neither an irritant nor a sensitizer. NBuPY induced skin irritation in vivo at ≥3.12% (p ≤ 0.01), and sensitization in vitro in the KeratinoSens™ assay and h-CLAT, but was negative for sensitization in vivo and in the DPRA. Although SI3 was not achieved, dermal treatment with 12.5% BMIM or 6.25% BMPY increased (p ≤ 0.01) lymph node cell proliferation in the LLNA. In vitro, BMIM was positive for sensitization in the h-CLAT, and BMPY was positive in the h-CLAT and KeratinoSens™ assay; both were negative in the DPRA. Integrated data analyses, weighted toward in vivo data, suggested that BMIM and BMPY may induce weak to mild sensitization.  相似文献   

12.
Skin sensitization is one of the key safety endpoints for chemicals applied directly to the skin. Several integrated testing strategies (ITS) using multiple non-animal test methods have been developed to accurately evaluate the sensitizing potential of chemicals, but there is no regulatory-accepted ITS to classify a chemical as a non-sensitizer. In this study, the predictive performance of a binary test battery with KeratinoSens™ and h-CLAT compared to the local lymph node assay (LLNA) and human data was examined using comprehensive dataset of 203 chemicals. When two negative results indicate a non-sensitizer, the binary test battery provided sensitivity of 93.4% or 94.4% compared with the LLNA or human data. Taking into account the predictive limitations (i.e. high log Kow, pre-/pro-haptens and acyl transfer agents (or amine-reactive)), the binary test battery had extremely high sensitivity comparable to that of the 3 out of 3 ITS where three negative results of the DPRA, KeratinoSens™ and h-CLAT indicate a non-sensitizer. Therefore, the data from KeratinoSens™ or h-CLAT may provide partly redundant information on the molecular initiating event derived from DPRA. Taken together, the binary test battery of KeratinoSens™ and h-CLAT could be used as part of a bottom-up approach for skin sensitization hazard prediction.  相似文献   

13.
Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the “EC3” value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).  相似文献   

14.
15.
Because of regulatory constraints and ethical considerations, research on alternatives to animal testing to predict the skin sensitization potential of novel chemicals has become a high priority. Ideally, these alternatives should not only predict the hazard of novel chemicals but also rate the potency of skin sensitizers. Currently, no alternative method gives reliable potency estimations for a wide range of chemicals in differing structural classes. Performing potency estimations within specific structural classes has thus been proposed. Detailed structure-activity studies for the in vivo sensitization capacity of a series of analogues of phenyl glycidyl ether (PGE) were recently published. These studies are part of an investigation regarding the allergenic activity of epoxy-resin monomers. Here we report data on the same chemicals in the KeratinoSens in vitro assay, which is based on a stable transgenic keratinocyte cell line with a luciferase gene under the control of an antioxidant response element. A strong correlation between the EC3 values in the local lymph node assay (LLNA) and both the luciferase-inducing concentrations and the cytotoxicity in the cell-based assay was established for six analogues of PGE. This correlation allowed the potency in the LLNA of two novel structurally closely related derivatives to be predicted by read-across with errors of 1.4- and 2.6-fold. However, the LLNA EC3 values of two structurally different bifunctional monomers were overpredicted on the basis of this data set, indicating that accurate potency estimation by read-across based on in vitro data might be restricted to a relatively narrow applicability domain.  相似文献   

16.
Myasthenia gravis (MG) is an autoimmune neuromuscular disorder with a chronic clinical course that requires long-term glucocorticoid (GC) therapy. A drug efflux pump, P-glycoprotein (P-gp), actively transports GC out of target cells, thereby reducing its efficacy. We evaluated the P-gp function of peripheral-blood mononuclear cells in 59 MG patients. P-gp function was estimated from a decrease in fluorescent P-gp substrate Rhodamine 123 and its inhibition by the conformation-sensitive UIC2 monoclonal antibody. P-gp function on CD8+ T cells in 21 MG patients having experienced GC therapy was higher than that in 19 MG patients having no history of GC therapy (p = 0.026). There was a significant correlation between P-gp function in CD3+ (r = 0.55, p = 0.014) or CD4+ (r = 0.48, p = 0.034) T cells and the total dose of prednisolone for treatment. P-gp function on CD4+ T cells in MG patients who showed low responses to prednisolone therapy (n = 8) was higher than that in patients who showed relatively high responses to prednisolone therapy (n = 10) (p = 0.045). These results suggest that higher P-glycoprotein activity on CD3+ or CD4+ cells necessitated treatment with higher steroid doses in order to achieve a clinical response. The measurement of P-gp function on CD4+ T cells is useful in the assessment of clinical response to GC therapy.  相似文献   

17.
《Toxicology in vitro》2010,24(1):240-244
Primary rat hepatocytes were used to test acute toxicities of 16 neutral aliphatic alcohols, ketones and esters. Their effects on cell viability and metabolic function (ureogenesis, i.e. biotransformation of ornithine to urea) were measured and expressed as EC50 values. Log EC50 values from both tests correlated with the log partition coefficients for the chemicals between n-octanol and water and log Pow-based QSAR models were derived. Log EC50 (viability) tightly correlates with log EC50 (ureogenesis): log EC50 (viability) = 0.91 log EC50 (ureogenesis) + 0.06. Each of these toxic indices can be substituted by the other one. The toxic indices for both cell viability and metabolic disorder can be estimated using log EC50 for movement inhibition in the oligochaete Tubifex tubifex and the respective QSAR equation. It eliminates a usage of rats. Their correlations were proved and justified.  相似文献   

18.
Recent findings have linked the GABRA2 gene with antisocial personality disorder and alcohol dependence (AD) in adults and conduct disorder (CD), but not AD symptoms, in children and adolescents. We sought to replicate previous findings and test for an association between a single nucleotide polymorphism (SNP) in the GABRA2 gene (rs279871) and CD among adolescents.MethodsAdolescent patients (n = 371), 13–18 years old, were recruited from a university substance abuse treatment program. Patient siblings (n = 245), parents of patients (n = 355), adolescent controls (n = 185), siblings of controls (n = 163) and parents of controls (n = 263) were included in these analyses (total sample n = 1582). Case-control (using only Caucasian and Hispanic probands) and family-based association tests were completed to test for association between rs279871 and several a priori CD and AD phenotypes.ResultsFor case-control association tests, rs279871 was significantly associated with CD (p = 0.02) but not AD phenotypes; the result did not survive strict correction for multiple testing. All family-based association tests were non-significant (CD p = 0.48; CD symptom count age corrected within sex p = 0.91; AD p = 0.84; alcohol use disorder p = 0.52).ConclusionsConsistent with previous findings, the results do not support the association between GABRA2 SNP rs279871 and AD in adolescents. Our results also do not support an association between rs279871 and CD; the study limitations are reviewed.  相似文献   

19.
20.
The Local Lymph Node Assay (LLNA) is the most common in vivo regulatory toxicology test for skin sensitisation, quantifying potency as the EC3, the concentration of chemical giving a threefold increase in thymidine uptake in the local lymph node. Existing LLNA data can, along with clinical data, provide useful comparator information on the potency of sensitisers. Understanding of the biological variability of data from LLNA studies is important for those developing non-animal based risk assessment approaches for skin allergy. Here an existing set of 94 EC3 values for 12 chemicals, all tested at least three times in the same vehicle have been analysed by calculating standard deviations (SD) for logEC3 values. The SDs range from 0.08 to 0.22. The overall SD for the 94 logEC3 values is 0.147. Thus the 95% confidence limits (2xSD) for LLNA EC3 values are within a factor of 2, comparable to those for physico-chemical measurements such as partition coefficients and solubility. The residual SDs of Quantitative Mechanistic Models (QMMs) based on physical organic chemistry parameters are similar to the overall SD of the LLNA, indicating that QMMs of this type are unlikely to be bettered for predictive accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号