首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
S F Ng  D J Waxman 《Cancer research》1990,50(3):464-471
Oxidative metabolism of the polyfunctional alkylating agent N,N',N'-triethylenethiophosphoramide (thio-TEPA) was studied in isolated rat liver microsomes and purified, reconstituted cytochrome P-450 (P-450) enzyme systems in order to elucidate the pathways of drug oxidation and to identify the possible contributions of individual P-450 enzymes to the bioactivation of this chemotherapeutic agent. Rat liver microsomes were found to catalyze conversion of thio-TEPA to its oxo metabolite, N,N',N'-triethylenephosphoramide (TEPA), in a P-450-dependent reaction that was markedly stimulated by prior in vivo treatment with drug inducers of hepatic P-450 subfamily IIB (phenobarbital), but not by pretreatment with inducers of P-450 subfamilies IA (beta-naphthoflavone) or IIE (isoniazid). Thio-TEPA depletion and TEPA formation catalyzed by phenobarbital-induced liver microsomes were both inhibited by greater than 90% by antibodies selectively reactive with P-450 PB-4 (gene product IIB1), the major phenobarbital-inducible rat liver microsomal P-450 form, but not by antibodies inhibitory toward 7 other rat hepatic P-450s. Oxidation of thio-TEPA to TEPA was also catalyzed by purified P-450 PB-4 (Km (app) 19 microM; Vmax (app) = 11 mol thio-TEPA metabolized/min/mol P-450 PB-4) following reconstitution of the cytochrome with NADPH P-450 reductase in a lipid environment. Metabolism of thio-TEPA by P-450 PB-4 was associated with a suicide inactivation of the cytochrome characterized by kinactivation = 0.096 min-1, KI = 24 microM, and a partition ratio of 136 +/- 28 (SD) mol thio-TEPA metabolized/mol P-450 inactivated. The thio-TEPA metabolite TEPA, however, did not inactivate the cytochrome, nor was it subject to further detectable metabolism. In microsomal incubations, metabolism of thio-TEPA led to the inactivation of P-450 PB-4 (steroid 16 beta-hydroxylase) as well as P-450 IIIA-related enzymes (steroid 6 beta-hydroxylase) and the P-450-independent enzyme steroid 17 beta-hydroxysteroid:NADP+ 17-oxidoreductase, as demonstrated by use of the P-450 form-selective steroidal substrate androst-4-ene-3,17-dione. In contrast, little or no inactivation of microsomal P-450 IIA-related enzymes (steroid 7 alpha-hydroxylase) or microsomal NADPH P-450 reductase was observed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Rabbit antibodies raised against the major isozymes of cytochrome P-450 isolated from hepatic microsomes of beta-naphthoflavone- (BNF) and phenobarbital-treated rats (cytochrome P-450 BNF-B2 and cytochrome P-450 PB-B2, respectively) and against rat liver NADPH-cytochrome P-450 reductase were used to localize these enzymes immunohistochemically in the rat ventral prostate. Using the unlabeled antibody peroxidase-antiperoxidase technique, NADPH-cytochrome P-450 reductase was detected exclusively in the epithelial cells of the gland to the same magnitude in untreated, phenobarbital-, and BNF-treated rats. Cytochrome P-450 BNF-B2-like immunoreactivity was exclusively present in the glandular epithelium in BNF-treated rats, whereas staining could not be visualized in untreated or in phenobarbital-treated rats. The staining for NADPH-cytochrome P-450 reductase was more uniformly distributed within the epithelium than was the cytochrome P-450 BNF-B2-like immunoreactivity. Cytochrome P-450 PB-B2-like immunoreactivity was not found, regardless of animal pretreatment. These findings support our previous results (Haaparanta, T., Halpert, J., Glaumann, H., and Gustafsson, J-A., Cancer Res. 43: 5131-5137, 1983) demonstrating the presence of constitutive NADPH-cytochrome P-450 reductase in the prostate and that an isozyme of cytochrome P-450 is highly inducible by BNF in this gland. The significance of these findings are discussed in view of the essentially unknown etiology of human prostatic cancer.  相似文献   

3.
NADPH-fortified human liver microsomes were examined with regard to ability to detoxicate several chemicals that do not require enzymatic oxidation to elicit a genotoxic response in a Salmonella typhimurium TA1535/pSK1002 system where umu response is used as an indicator of DNA damage. Microsomes did not affect the response seen with daunomycin, mitomycin C, 2,4,7-trinitro-9-fluorene, 1-nitropyrene, doxorubicin, 1-methyl-3-nitro-1-nitrosoguanidine, 2-nitrofluorene, or 1-ethyl-3-nitro-1-nitrosoguanidine (cited in order of decreasing umu response per mol). Human and rat liver microsomes did inactivate 1,3-, 1,6-, and 1,8-dinitropyrene; with human liver microsomes the activity of 1,3-dinitropyrene was most strongly inhibited, while with rat liver microsomes the genotoxicities of all three dinitropyrenes were inhibited to a similar extent. NADPH-cytochrome P-450 reductase was demonstrated to inactivate 1,6- and 1,8-dinitropyrene but not 1,3-dinitropyrene. Both rat cytochrome P-450 beta NF-B (P-450 IA1) and P-450ISF-G (P-450 IA2) inactivated 1,3-dinitropyrene, with the former being more effective. Correlation studies done with liver microsomes prepared from variously treated rats and immunoinhibition studies suggest that cytochrome P-450 beta NF-B and P-450ISF-G are both involved in the detoxication of all three of the dinitropyrenes in rat liver microsomes. In a series of assays done with various human liver microsomal preparations, the inactivation of the three dinitropyrenes was not correlated to each other at all. Correlation analysis and inhibition studies with 7,8-benzoflavone and antibodies indicate that human cytochrome P-450 enzymes in the IA family are most effective in detoxicating this compound; the contribution of cytochrome P-450PA (P-450 IA2, the phenacetin O-deethylase) is deemed more important, but a role for the small amount of cytochrome P1-450 (P-450 IA1) in the liver cannot be ruled out. In contrast to the case of 1,3-dinitropyrene, the inactivation of 1,6-dinitropyrene is well correlated with levels of cytochrome P-450NF (P-450 IIIA4, nifedipine oxidase) and its catalytic activities. The inactivation of 1,8-dinitropyrene was not correlated with any of the above parameters and only correlated with the conversion of benzo(a)pyrene to its 3-hydroxy and 4,5-dihydrodiol products, for which the principal enzymes involved in human liver are unknown. Thus, distinct human cytochrome P-450 enzymes are involved in the detoxication of different dinitropyrene congeners, and the situation appears to contrast with that in rat liver.  相似文献   

4.
Metabolic activation may be a key step in determining the tissue specificity of carcinogenic nitrosamines. In previous work, we characterized P450IIE1 (an acetone/ethanol-inducible form of cytochrome P-450) as the major enzyme for the metabolic activation of N-nitrosodimethylamine. In this work, we investigated the metabolism of other N-nitrosodialkylamines in rat liver microsomes and in reconstituted monooxygenase systems containing purified cytochrome P-450 isozymes. The enzyme specificities in the metabolism of N-nitrosoethylmethylamine and N-nitrosodiethylamine were similar to those of N-nitrosodimethylamine; i.e., these substrates were more efficiently metabolized by acetone- or ethanol-induced microsomes than by other types of microsomes. However, substituting one methyl group with a benzyl or butyl group, as in N-nitrosobenzylmethylamine or N-nitrosobutylmethylamine (NBMA), substantially changed the enzyme specificity. P450IIE1 efficiently catalyzed the demethylation but not the debutylation of NBMA, whereas P450IIB1 (a phenobarbital-inducible form) efficiently catalyzed both the debutylation and demethylation reactions. In the demethylation of NBMA by P450IIE1, the addition of cytochrome b5 markedly increased the activity at low but not at high substrate concentrations, suggesting a decrease in Km value. This effect, however, was not observed in the debutylation of NBMA by P450IIE1 or P450IIB1, and in the demethylation of NBMA by P450IIB1. These studies demonstrate the substrate specificity and alkyl group selectivity in the metabolism of nitrosamines by cytochrome P-450 isozymes.  相似文献   

5.
D Roy  J G Liehr 《Cancer research》1988,48(20):5726-5729
In an attempt to characterize metabolism enzymes of the estrogen-induced kidney tumor in male Syrian hamsters, the activities of enzymes involved in drug and glutathione metabolism were determined in tumor tissue. Kidney tumors were induced in male Syrian hamsters by treatment with estradiol for 8 months. Cytochrome P-450 and cytochrome b5 concentrations in tumors were below detectable levels. However, when cytochrome P-450-mediated oxidation was analyzed by product formation assays, the oxidation of E-diethylstilbestrol to diethylstilbestrol-4',4"-quinone by tumor microsomes was 10-20% of the rate found in control microsomes. In kidney tissue surrounding estrogen-induced tumors, cytochrome P-450 and b5 contents were 50-60% less than those in untreated kidney. Activities of reducing enzymes of drug metabolism (cytochrome P-450, cytochrome b5 and NADH:cytochrome c reductases), glutathione metabolism enzymes (glutathione peroxidase, glutathione transferase, glutathione reductase, and gamma-glutamyl transpeptidase), and free radical scavenging enzymes (superoxide dismutase, catalase, and quinone reductase) in tumor were significantly lower than in untreated kidney tissue. The activities of these enzymes in renal tumor surrounding tissue were between those observed in tumor and control kidney. Glucose-6-phosphate dehydrogenase activity was increased by 50% in surrounding tissue and 430% in tumor compared to values in untreated controls. The decreased enzyme activity levels in hormone-exposed tissue surrounding tumors likely represented an adaptation of this tissue to the neoplastic environment induced by chronic estrogen treatment.  相似文献   

6.
Summary Carbon tetrachloride is an hepatotoxin that depresses hepatic microsomal cytochrome P-450 and other enzyme activities. Cyclophosphamide is an anticancer drug that is activated by hepatic microsomal cytochrome P-450, while the products of cyclophosphamide metabolism by cytochrome P-450 can be metabolized by other hepatic enzymes. Carbon tetrachloride pretreatment has been found to increase the in vivo antitumor activity of cyclophosphamide against murine leukemia P-388. Carbon tetrachloride did not, however, affect the direct cytotoxicity of cyclophosphamide or 4-hydroxycyclo-phosphamide to cells in culture. Pharmacokinetic studies in mice revealed a delayed plasma disappearance of cyclophosphamide after carbon-tetrachloride pretreatment with an apparent initial half-time of 20.4 min compared to 9.0 min in non carbon-tetrachloride-pretreated mice. Plasma levels of total alkylating activity and plasma 4-hydroxycyclophosphamide increased more slowly and reached a lower peak, but were maintained for a longer time period in mice pretreated with carbon-tetrachloride than in untreated mice. The half-life for plasma elimination of 4-hydroxycyclophosphamide in untreated mice was 12 min and in carbon-tetrachloride-pretreated mice 27 min. There was, however, no difference in the area under the curve for either plasma total alkylating activity or plasma 4-hydroxycyclophosphamide between the two groups. It is suggested that prolonged exposure of tumor cells to 4-hydroxycyclophosphamide might be responsible for the increased antitumor activity of cyclophosphamide following carbon-tetrachloride pretreatment.  相似文献   

7.
Hexachlorobenzene (HCB) and 2,3,4,4',5-pentachlorobiphenyl induced a similar spectrum of cytochrome-P-450-dependent mono-oxygenase activities in the rat, including 4-dimethylaminoantipyrine N-demethylase, aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD). Levels of individual cytochrome P-450 isozymes and various mono-oxygenase activities in liver microsomes from rats treated with substituted pentachlorobenzene (X-C6Cl5) and 4'-substituted-2,3,4,5-tetrachlorobiphenyl (X-C12 H5Cl4) analogues demonstrated the remarkable effects of substituent structure on induction activities. The chloro- and bromopentachlorobenzenes induced hepatic microsomal 4-dimethylaminoantipyrine N-demethylase, AHH and EROD; the iodo-, fluoro-, acetamino- and nitropentachlorobenzene analogues together with pentachlorobenzene weakly induced both AHH and EROD (approximately 2-fold or less); and the remaining substituted pentachlorobenzenes tested (X = CH3, OCH3 and OH) were relatively inactive as inducers of microsomal mono-oxygenases. Substituent effects were observed for the induction of liver microsomal cytochromes P-450a, P-450b + e, P-450c, P-450d and total cytochrome P-450 by the X-C6Cl5 and X-C12H5Cl4 analogues. The chloro- and bromopentachlorobenzene analogues in both series induced total cytochrome P-450 and cytochromes P-450a to P-450d, whereas the hydroxy-, methyl- and methoxy-substituted analogues in both series were relatively inactive as inducers of cytochrome P-450. Iodo-, fluoro- and nitropentachlorobenzene were weak 3-methylcholanthrene-type inducers and, in contrast to the corresponding biphenyl analogues, had little or no effect on the induction of cytochromes P-450a, P-450c and P-450d.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The expressions of hepatic microsomal cytochrome P-450 isozymes in male rats, mice, hamsters and guinea pigs were studied comparatively with or without an ip injection of a cytochrome P-450 inducer. The activity and quantity of microsomal cytochrome P-450 isozymes were determined respectively by a bacterial mutation assay with Salmonella typhimurium TA98 and immunochemical assays using monoclonal antibodies against rat cytochrome P-450 isozymes. 3-Methoxy-4-aminoazobenzene (3-MeO-AAB), 2-amino-3-methyl-9 H -pyrido[2,3- b ]indole acetate (MeAαC) and 3-methylcholanthrene were used as cytochrome P-450 inducers, and 7 carcinogenic aromatic amines including 3-MeO-AAB and MeAαC were used as substrates for the mutation assay. By means of these assays, we examined the species differences among rodents in the activity and induction rate of hepatic cytochrome P-450 isozymes responsible for the mutagenic activation of carcinogenic aromatic amines.  相似文献   

9.
The ability of cigarette smoke condensate to induce a genotoxic response has been measured in liver microsomal and reconstituted monooxygenase systems containing rat and human cytochrome P-450 (P-450) enzymes, as determined by umu gene expression in Salmonella typhimurium TA1535/pSK1002. The reactivities of amino-alpha-carboline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), two compounds known to be present at considerable levels in cigarette smoke condensate, were also determined and compared with regard to genotoxicity. Amino-alpha-carboline and PhIP are activated principally by P-450 1A2 enzymes in human and rat liver microsomes: (a) activation of both compounds was catalyzed efficiently by liver microsomes prepared from rats treated with 5,6-benzoflavone, isosafrole, or the commercial polychlorinated biphenyl mixture Aroclor 1254, and the activities could be considerably inhibited by antibodies raised against P-450 1A1 or 1A2; (b) the rates of activation of these compounds were correlated with the amount of human P-450 1A2 and of phenacetin O-deethylation activity in different human liver microsomal preparations, and these activities were inhibited by anti-P-450 1A2; (c) reconstituted enzyme systems containing P-450 1A enzymes isolated from rats and humans showed the highest rates of activation of amino-alpha-carboline and PhIP. In rat liver microsomes PhIP may also be activated by P-450 3A enzymes; activity was induced in rats treated with pregnenolone 16 alpha-carbonitrile and was inhibited by anti-human P-450 3A4. However, in humans the contribution of P-450 3A enzymes could be excluded as judged by the very low effects of anti-P-450 3A4 on the microsomal activities and poor correlation with P-450 3A4-catalyzed activities in various liver samples. Cigarette smoke condensate strongly inhibited the activation of several potent procarcinogens by human liver microsomes, particularly the reactions catalyzed by P-450 1A2, but was not so inhibitory of the activation reactions catalyzed by P-450 3A4 and of P-450 2D6-catalyzed bufuralol 1'-hydroxylation. Genotoxic components of the cigarette smoke condensate were extracted by using copper phthalocyanine cellulose (blue cotton). Genotoxicity of this extract was observed only after activation by P-450, and the inhibition of P-450 1A2 activities by these extracts was slight.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
There are two major R,S-1-(tetrahydro-2-furanyl)-5-fluorouracil (ftorafur) activation pathways to 5-fluorouracil, one that is mediated by microsomal cytochrome P-450 oxidation at C-5' of the tetrahydrofuran moiety and one that is mediated by soluble enzymes. This report demonstrates that the soluble enzyme pathway proceeds via enzymatic cleavage (possibly hydrolytic) of the N-1--C-2' bond to yield 5-fluorouracil and 4-hydroxybutanal, which is immediately further metabolized to gamma-butyrolactone or gamma-hydroxybutyric acid. The soluble activation pathway was present in liver, small intestine, and brain. Because of the limited distribution of cytochrome P-450 in body tissues and because of the lack of redistribution of 5-fluorouracil via the systemic circulation after ftorafur administration, we propose that the soluble enzyme pathway is at least in part responsible for organ toxicity and possibly antitumor effect. Distinction of the microsomal (C-5') and the soluble enzyme (C-2') activation pathways can be exploited in the design of more selective prodrug analogues.  相似文献   

11.
The growth-inhibitory effects of ketoconazole, an antifungal agent which inhibits arachidonic acid lipoxygenases and cytochrome P-450 enzymes, were tested in human colon and breast cancer cell lines. In the serum independent HT29-S-B6 colon cell clone, ketoconazole reduced cell proliferation and [3H]thymidine incorporation in a dose-dependent fashion, with a 50% inhibitory concentration of approximately 2.5 microM. Flow cytometry showed an accumulation of cells in the G0-G1 phase of the cell cycle and a concomitant decrease of the percentage of cells in S phase. Ketoconazole also inhibited [3H]thymidine incorporation in the hormone-independent breast cancer cells MDA-MB-231 and Evsa-T, with respective 50% inhibitory concentration of approximately 13 and 2 microM. The mechanism of action of ketoconazole is unknown. However, another lipoxygenase inhibitor, BW755C, inhibited only weakly [3H]-thymidine incorporation and accumulated the cells in S and G2. Conversely, clotrimazole and SKF525A, inhibitors of cytochrome P-450 enzymes, had effects similar to those of ketoconazole on HT29-S-B6 cells whereas metronidazole and secnidazole, other azole derivatives which do not inhibit cytochrome P-450 enzymes, had no effect. The results suggest that cytochrome P-450 enzyme(s) activity(ies) could be implicated in the antiproliferative effects of ketoconazole.  相似文献   

12.
Hepatic N-oxidation and aryl ring oxidation are generally regarded as critical activation and detoxification pathways for arylamine carcinogenesis. In this study, we examined the in vitro hepatic metabolism of the carcinogens, 2-aminofluorene (2-AF) and 2-naphthylamine (2-NA), and the suspected carcinogen, 1-naphthylamine (1-NA), using high-pressure liquid chromatography. Hepatic microsomes from rats, dogs, and humans were shown to catalyze the N-oxidation of 2-AF and of 2-NA, but not of 1-NA; and the rates of 2-AF N-oxidation were 2- to 3-fold greater than the rates of 2-NA N-oxidation. In each species, rates of 1-hydroxylation of 2-NA and 2-hydroxylation of 1-NA were comparable and were 2- to 5-fold greater than 6-hydroxylation of 2-NA or 5- and 7-hydroxylation of 2-AF. Purified rat hepatic monooxygenases, cytochromes P-450UT-A, P-450UT-H, P-450PB-B, P-450PB-D, P-450BNF-B, and P-450ISF/BNF-G but not P-450PB-C or P-450PB/PCN-E, catalyzed several ring oxidations as well as the N-oxidation of 2-AF. Cytochromes P-450PB-B, P-450BNF-B, and P-450ISF/BNF-G were most active; however, only cytochrome P-450ISF/BNF-G, the isosafrole-induced isozyme, catalyzed the N-oxidation of 2-NA. The purified porcine hepatic flavin-containing monooxygenase, which was known to carry out the N-oxidation of 2-AF, was found to catalyze only ring oxidation of 1-NA and 2-NA. No activity for 1-NA N-oxidation was found with any of the purified enzymes. These data support the hypothesis that 1-NA is probably not carcinogenic. Furthermore, carcinogenic arylamines appear to be metabolized similarly in humans and experimental animals and perhaps selectively by a specific form of hepatic cytochrome P-450. Enzyme mechanisms accounting for the observed product distributions were evaluated by Hückel molecular orbital calculations on neutral, free radical, and cation intermediates. A reaction pathway is proposed that involves two consecutive one-electron oxidations to form a paired substrate cation-enzyme hydroxyl anion intermediate that collapses to ring and N-hydroxy products.  相似文献   

13.
Rat liver microsomes metabolized the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to the genotoxic metabolite 2-hydroxamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (2-hydroxamino-PhIP) and to the detoxified product 2-amino-4'-hydroxy-1-methyl-6-phenylimidazo[4,5-b]pyridine (4'-hydroxy-PhIP). A 25-fold higher rate of metabolism was measured in microsomes from polychlorinated-biphenyl-treated rats (94 nmol/mg proteins/30 min) in comparison with those from untreated rats. Other effective inducers of PhIP metabolism were beta-naphthoflavone and isosafrole (ISF), whereas phenobarbital was ineffective. About twice as much 2-hydroxamino-PhIP as 4'-hydroxy-PhIP was formed in microsomes irrespective of the inducer the rats had been treated with. The metabolism was dependent on NADPH and was abolished by the cytochrome P450 inhibitor alpha-naphthoflavone. In a reconstituted enzyme system purified rat cytochrome P450 IA2 (P450ISF-G) had the highest N-hydroxylation rate (30 nmol/nmol P450/30 min) closely followed by the rat cytochrome P450 IA1 (P450BNF-B). Less activity was seen with rat P450 IIC11 (P450UT-A) and rabbit P450 IA2 (P450 LM4). Rat P450 IIE1 (P450j), P450 IIB1 (P450PB-B) and rabbit P450 IIB4 (P450 LM-2) and P450 IIE1 (P450 LM3a) were essentially inactive. Rat P450 IA1 (P450BNF-B) produced five times more 4'-hydroxy-PhIP (32 +/- 2 nmol/nmol P450/30 min) than did P450 IA2 (P450ISF-G). Hence, the measured ratio of activation to detoxication for rat P450 IA2 (P450ISF-G) enzyme was 7-fold higher than that of the other active P450 enzymes.  相似文献   

14.
The cis isomer of N-nitroso-2,6-dimethylmorpholine (NNDM), a pancreatic carcinogen for the Syrian golden hamster, is metabolized by hamster liver microsomes to yield N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine (HPOP) as the major product. Rabbit liver microsomes catalyze the metabolism of cis-NNDM to HPOP at a rate slower than that observed with hamster microsomes, but significantly faster than that obtained with rat microsomes. Pretreatment of rabbits with phenobarbital results in a 6-fold increase in the cis-NNDM hydroxylase activity of the rabbit microsomes to levels equal to that observed with the hamster; pretreatment of rabbits with other xenobiotics had no effect on the hydroxylation of cis-NNDM. The role of rabbit liver microsomal cytochrome P-450 in the metabolism of the cis isomer of NNDM was studied in the reconstituted system consisting of NADPH:cytochrome P-450 reductase, phospholipid, and cytochrome P-450. Cytochrome P-450LM2, which is induced by pretreatment with phenobarbital, exhibited the highest activity for the metabolism of cis-NNDM. The Vmax for the formation of HPOP was 1.78 nmol/min/nmol cytochrome P-450LM2, and the apparent Km was 360 microM. Cytochrome P-450LM3a also catalyzed the metabolism of NNDM to HPOP at a significant rate (0.25 nmol/min/nmol cytochrome P-450). Of the four other isozymes of cytochrome P-450 (forms 3b, 3c, 4, and 6) tested in the reconstituted system, only forms 3b and 3c exhibited measurable activities (approximately 0.04 nmol of HPOP formed/min/nmol cytochrome P-450). The addition of antibodies to isozyme 2 to microsomes from phenobarbital-treated rabbits resulted in approximately 95% inhibition of the metabolism of NNDM, while the addition of antibodies to LM3a inhibited NNDM metabolism by only 7%. In microsomes from untreated rabbits, inhibition by anti-LM2 and anti-LM3a antibodies was 50 and 64%, respectively. The addition of antibodies to isozyme 3a to microsomes isolated from ethanol-treated rabbits caused approximately 90% inhibition of the metabolism of NNDM. These data conclusively demonstrate that several forms of cytochrome P-450 can catalyze the metabolism of cis-NNDM and that isozymes 2 and 3a play important roles in the rabbit hepatic metabolism of NNDM to HPOP, the proximate carcinogenic metabolite.  相似文献   

15.
The metabolism of N-nitrosodiethylamine (NDEA) and its modulation by inhibitors of cytochrome P450 and prostaglandin H synthetase enzymes was investigated in seven well-differentiated early-passage human lung cancer cell lines. NDEA metabolism was assessed by covalent binding and evolution of carbon dioxide. Morphological diagnosis of cell lines was done by light and electron microscopy. Two cell lines (NCI-H69, NCI-H128) with characteristics of small-cell cancer did not metabolize NDEA. Two cells lines (NCI-H322) with features of adenocarcinoma, comprised of Clara cells, and (NCI-H727), with features of pulmonary endocrine cells, were more potent than all other cell lines in metabolizing NDEA. A cell line divided from an adenocarcinoma but comprised of alveolar type-II cells (NCI-H358) metabolized NDEA predominantly via prostaglandin H synthetase. Similarly, several cell lines with features of well-differentiated pulmonary endocrine cells (NCI-H727, NCI-H460) metabolized NDEA via prostaglandin H synthetase, while the cell line comprised of Clara cells (NCI-H322) activated the nitrosamine by cytochrome P450 but not by prostaglandin H synthetase. Although cancer cells may react differently from normal cells to xenobiotics, our data provide substantial evidence for the hypothesis that--as in the hamster--Clara cells and pulmonary endocrine cells are potential major targets of NDEA carcinogenesis in human lung. It is of particular interest that different cell types activate the nitrosamine via different enzyme systems.  相似文献   

16.
Metabolic activation of phenacetin by liver microsomes proceeds via both phenetidine and N-hydroxyphenacetin to direct-acting mutagens, i.e., N-hydroxyphenetidine and p-nitrosophenetole. Five different molecular species of cytochrome P-450 have been purified from liver microsomes of drug-pretreated Wistar rats or Syrian hamsters and their abilities to activate phenetidine and phenacetin were compared using reconstituted microsome systems. High-spin forms of cytochrome P-450 purified from 3-methylcholanthrene-pretreated rats (MC-P-448-H) or hamsters (P-488 ham-II) showed higher catalytic activity for N-hydroxylation of phenetidine than three other low-spin forms of cytochrome P-450 purified from the same animals or from phenobarbital-pretreated rats. MC-P-448-H and P-488 ham-II required the presence of cytochrome b5 for their maximum activities in the reconstituted system. The five forms of cytochrome P-450, however, exhibited no measurable activity for N-hydroxylation of phenacetin either with or without cytochrome b5. The mutagenicity of phenacetin and phenetidine toward Salmonella typhimurium TA100 was generated when the reconstituted microsomes containing MC-P-488-H or P-488 ham-II were used as activating enzymes. From these results, it was suggested that high-spin forms of cytochrome P-450 (MC-P-448-H and P-448 ham-II) played an important role in the metabolic activation of phenacetin to the direct-acting mutagens.  相似文献   

17.
The potent carcinogen dibenzo[a,l]pyrene (DB[a,l]P) has been reported to form both stable and depurinating DNA adducts upon activation by cytochrome P450 enzymes and/or cellular peroxidases. Only stable DB[a,l]P-DNA adducts were detected in DNA after reaction of DB[a,I]P-11,12-diol-13,14-epoxides in solution or cells in culture. To determine whether DB[a,l]P can be activated to metabolites that form depurinating adducts in cells with either high peroxidase (human leukemia HL-60 cell line) or cytochrome P450 activity (human mammary carcinoma MCF-7 cell line), cultures were treated with DB[a,l]P for 4 h, and the levels of stable adducts and apurinic (AP) sites in the DNA were determined. DNA samples from DB[a,l]P-treated HL-60 cells contained no detectable levels of either stable adducts or AP sites. MCF-7 cells exposed to 2 microM DB[a,l]P for 4 h contained 4 stable adducts per 10(6) nucleotides, but no detectable increase in AP sites. The results indicate that metabolic activation of DB[a,l]P by cytochrome P450 enzymes to diol epoxides that form stable DNA adducts, rather than one-electron oxidation catalyzed either by cytochrome P450 enzymes or peroxidases to form AP sites, is responsible for the high carcinogenic activity of DB[a,l]P.  相似文献   

18.
Male Sprague-Dawley rats were maintained on a vitamin A-deficient diet for 5 weeks. Although serum and hepatic levels of vitamin A were significantly lower at this time, no outward signs of vitamin A deficiency were present. Hepatic microsomal levels of cytochrome P-450 in the vitamin A-deficient animals were 70% that of the control animals. Of the three microsomal enzymes studied, ethylmorphine N-demethylase, aniline hydroxylase, and aminopyrine N-demethylase, only the last one was adversely affected by vitamin A deficiency. 3-Methylcholanthrene, phenobarbital, and 2-acetylaminofluorene had a greater inductive effect and cytochrome P-450 in vitamin A-deficient rats. 4-Dimethylaminoazobenzene treatment decreased in the level of cytochrome P-450 in control rats more than in deficieny rats. The hepatic concentration of vitamin A was significantly reduced in control rats that were given injections of 3-methylcholanthrene, 2-acetylaminofluorene, or phenobarbital. Benzo(a)pyrene and 4-dimethylaminoazobenzene had less effect.  相似文献   

19.
Hepatocytes from male Sprague-Dawley rats pretreated with a cytochrome P-450 inducer, 3-methoxy-4-aminoazobenzene (3-MeO-AAB), 3-methylcholanthrene (MC) or phenobarbital (PB), were cultured in vitro, and changes in the quantity and activity of microsomal cytochrome P-450 isozymes in the cells were determined by means of immunochemical methods and a bacterial mutation test, respectively. The results of enzyme-linked immunosorbent assay using monoclonal antibodies against rat P-450 isozymes revealed that the amount of cytochrome P-450d induced by 3-MeO-AAB or MC declined rapidly during culture and fell to 10 to 15% of the initial value after 24 h. A similar tendency was observed with PB-induced cytochrome P-450b/e. By contrast, cytochrome P-450c in MC-induced hepatocytes declined more slowly than cytochrome P-450d and remained at 45 to 60% of the initial value after 24 h. Similar quantitative changes of the individual cytochrome P-450 isozymes in culture were also observed by immunoblotting using the anti-cytochrome P-450 monoclonal antibodies. Changes in the activities of individual cytochrome P-450 isozymes in hepatocytes by culture were in accordance with the quantitative changes of the cytochromes, as determined by a mutation test using Salmonella typhimurium TA 98 and carcinogenic aromatic amines. These results indicate that microsomal cytochrome P-450c in primary cultured rat hepatocytes is more stable in culture, in terms of both quantity and activity, than cytochrome P-450d and P-450b/e.  相似文献   

20.
1, 2-DichJoroethane, 1, 1, 1-trichloroethane and 1, 1, 2, 2-tetra-chloroethaneappear to be metabolized by hepatic nudear cytochrome P-450.All of these compounds are converted to chlorinated metabolitesafter incubation with hepatic nuclei and an NADPH-generatingsystem plus EDTA, with the omission of any component eliminatingmetabolite production. In addition, CO, an inhibitor of cytochromeP-450, diminished the production of the chlorinated metabolitesby hepatic nudear preparations. The major metabolites of thechlorinated ethanes from hepatic mtcrosomal cytochrome P-450,viz. chloroacetaldehyde from 1, 2-dichloroethane, 2, 2, 2-trichloroethanolfrom 1, 1, 1-trichloroethane, and dichloroacetic add from 1,1, 2, 2-tetrachloroethane, were also produced from the threechloroaikanes by hepatic nudear cytochrome P-450. The levelsof the metabolites produced were 65, 0.09 and 4.4 nmol/nmolcytochrome P-450/60 min. It is proposed that the pathways forthe formation of these metabolites by hepatic nudear cytochromeP-450 are as for their production by hepatic microsomal cytochromeP-450. Chloral hydrate was produced from 1, 1, 1-trichloroethaneby hepatic nudei plus NADPH, but not by hepatic microsomes.The presence of reactive species or transient enzyme bound intermediatesin the pathways for the cytochrome P-450 dependent metabolismof the chloroethanes in hepatic nudei is suggested by the observationthat nuclear cytochrome P-450 is degraded in the presence ofthe chloroethanes in a NADPH dependent process which is inhibitedby CO. It is proposed that, although the cytochrome P-450 dependentmetabolism of the chloroethanes in microsomes can greatly exceedthat in nudei, the metabolism of 1, 2-dichloroethane and 1,1, 2, 2-tetrachloroethane by nudear cytochrome P-450 may inpart mediate the mutagenidty and carcinogenidty of parent compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号