首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
cDNAs encoding the large subunit of human replication factor C.   总被引:13,自引:1,他引:13       下载免费PDF全文
Replication factor C (RFC) is a multisubunit, DNA polymerase accessory protein required for the coordinated synthesis of both DNA strands during simian virus 40 DNA replication in vitro. Previous studies have shown that RFC is a DNA-dependent ATPase that binds in a structure-specific manner to the 3' end of a primer hybridized to a template DNA, an activity thought intrinsic to the 140-kDa component of this multisubunit complex. Here, the isolation and analysis of cDNAs encoding this subunit is described. Analysis of the full-length coding sequence revealed an open reading frame of 3.4 kb, encoding an 1148-amino acid protein with a predicted molecular mass of 130 kDa. A putative ATP-binding motif was observed that is similar to a motif in several of the smaller subunits of RFC and in functionally homologous replication factors of bacterial and viral origin. A "DEAD" box is also conserved among these proteins. The predicted protein shows significant identity with a DNA-binding protein of murine origin (B. Luckow, P. Lichter, and G. Schütz, personal communication). Regions of similarity were also seen between the amino acid sequences of the 140-kDa subunit of RFC, poly(ADP-ribose) polymerase, and bacterial DNA ligases--possibly representing a conserved structural feature of these proteins that bind similar DNA substrates.  相似文献   

2.
The elongation of primed DNA templates by DNA polymerase delta and DNA polymerase epsilon requires the action of two accessory proteins, proliferating cell nuclear antigen and activator 1 (A1, also called replication factor C). A1 is an enzyme that contains five different subunits (145, 40, 38, 37, and 36.5 kDa). In this paper, we describe the isolation of the gene encoding the 37-kDa subunit from HeLa cells. This gene was cloned, sequenced, and overexpressed in Escherichia coli. The amino acid sequence shows a high degree of homology to the 40-kDa subunit of A1; they both contain the identical ATP-binding motif, but in contrast to the bacterial expressed 40-kDa protein, the 37-kDa expressed protein did not bind ATP. Both the 37- and 40-kDa proteins share substantial homology with the phage T4 gene 44 protein and to a lesser extent with the tau and gamma subunits of the E. coli DNA polymerase III holoenzyme. Polyclonal antibodies against the bacterially expressed 37- and 40-kDa proteins do not crossreact and are specific in their interaction. Antibodies against the 37-kDa protein maximally inhibited (by 50%) the A1-dependent synthesis of DNA by DNA polymerase delta; antibodies against the 40-kDa protein quantitatively inhibited the same reaction. When A1-dependent synthesis of DNA was partially inhibited by antibodies against the 40-kDa subunit, the addition of antibodies against the 37-kDa subunit inhibited DNA synthesis to a greater extent than the anti-37-kDa antibody alone. These results suggest that both the 37- and 40-kDa subunits of A1 are required for the biological role of A1 and that they may function differently in this process.  相似文献   

3.
4.
Activator 1 (A1; also called replication factor C), in conjunction with proliferating-cell nuclear antigen (PCNA), is essential for the elongation of primed DNA templates by DNA polymerases delta and epsilon. A1 contains five distinct subunits of 145, 40, 38, 37, and 36.5 kDa. Here we describe the isolation, sequence, and bacterial expression of a cDNA coding for the 40-kDa subunit. In keeping with the presence of an ATP-binding motif, the bacterially expressed 40-kDa subunit binds ATP. The interaction between the 40-kDa subunit and ATP was reduced by the addition of PCNA. In addition, antibodies raised against the 40-kDa subunit abolished the A1- and PCNA-dependent synthesis of DNA catalyzed by polymerase delta. The putative amino acid sequence of the 40-kDa subunit of A1 revealed significantly homology with the bacteriophage T4 gene 44 protein and, to a lesser degree, with the tau and gamma subunits of Escherichia coli DNA polymerase III holoenzyme.  相似文献   

5.
Many overlapping surveillance and repair mechanisms operate in eukaryotic cells to ensure the stability of the genome. We have screened to isolate yeast mutants exhibiting increased levels of recombination between repeated sequences. Here we characterize one of these mutants, elg1. Strains lacking Elg1p exhibit elevated levels of recombination between homologous and nonhomologous chromosomes, as well as between sister chromatids and direct repeats. These strains also exhibit increased levels of chromosome loss. The Elg1 protein shares sequence homology with the large subunit of the clamp loader replication factor C (RFC) and with the product of two additional genes involved in checkpoint functions and genome maintenance: RAD24 and CTF18. Elg1p forms a complex with the Rfc2-5 subunits of RFC that is distinct from the previously described RFC-like complexes containing Rad24 and Ctf18. Genetic data indicate that the Elg1, Ctf18, and Rad24 RFC-like complexes work in three separate pathways important for maintaining the integrity of the genome and for coping with various genomic stresses.  相似文献   

6.
We have determined the nucleotide sequence of a region of the vaccinia virus genome encoding RNA polymerase subunits of 22 and 147 kDa and have mapped the 5' and 3' ends of the two mRNAs. The predicted amino acid sequence of the vaccinia 147-kDa subunit shows extensive homology with the largest subunit of Escherichia coli RNA polymerase, yeast RNA polymerases II and III, and Drosophila RNA polymerase II. The regions of homology between the five RNA polymerases are subdivided into five separate domains that span most of the length of each. A sixth domain shared by the vaccinia and the eukaryotic polymerases is absent from the E. coli sequence. In all specified regions, the vaccinia large subunit has greater homology with eukaryotic RNA polymerases II and III than with the E. coli polymerase. Vaccinia virus and eukaryotic RNA polymerases may therefore have evolved from a common ancestral gene after the latter diverged from prokaryotes.  相似文献   

7.
8.
A complex containing the 80,000-dalton precursor to the adenovirus (Ad)-encoded terminal protein (pTP) and a 140,000-dalton protein is required for Ad DNA replication in vitro. This complex has been separated into subunits by glycerol gradient centrifugation in the presence of urea. The isolated 140,000-dalton subunit contains a DNA polymerase activity which can be differentiated from all host DNA polymerases. No enzyme activity was detected with the isolated pTP. The requirements for reactions involved in the initiation of Ad DNA replication were determined by using the isolated subunits. The covalent addition of dCMP, the first nucleotide in the DNA chain, to the pTP, which serves as the primer for replication, required the DNA polymerase subunit as well as the pTP. Synthesis of viral DNA in vitro also required both subunits. The properties of the DNA polymerase suggest that it may be a viral gene product.  相似文献   

9.
DNA polymerase III (polIII) holoenzyme of Escherichia coli has 3'----5' exonuclease ("editing") activity in addition to its polymerase activity, a property shared by other prokaryotic DNA polymerases. The polymerization activity is carried by the large alpha subunit, the product of the dnaE gene. Mutations affecting the fidelity of DNA replication in vivo and the activity of 3'----5' exonuclease assayed in vitro are found in the dnaQ gene, which specifies the epsilon subunit. To determine whether epsilon carries the 3'----5' exonuclease activity, we have used an overproduction protocol to purify epsilon separately from the other subunits of polIII holoenzyme. We find that epsilon has 3'----5' exonuclease activity indistinguishable from that of polIII core, the subassembly of polIII holoenzyme consisting of the alpha, epsilon, and theta subunits. We conclude that the editing and polymerization activities of polIII holoenzyme reside on distinct subunits, in contrast to DNA polymerase I of E. coli and DNA polymerase of phage T4. This functional separation may provide for regulation of exonucleolytic editing independently of polymerization, allowing cellular control of replication fidelity.  相似文献   

10.
Human replication factor C (RFC, also called activator 1) is a five-subunit protein complex (p140, p40, p38, p37, and p36) required for proliferating cell nuclear antigen (PCNA)-dependent processive DNA synthesis catalyzed by DNA polymerase δ or . Here we report the reconstitution of the RFC complex from its five subunits simultaneously overexpressed in baculovirus-infected insect cells. The purified baculovirus-produced RFC appears to contain equimolar levels of each subunit and was shown to be functionally identical to its native counterpart in (i) supporting DNA polymerase δ-catalyzed PCNA-dependent DNA chain elongation; (ii) catalyzing DNA-dependent ATP hydrolysis that was stimulated by PCNA and human single-stranded DNA binding protein; (iii) binding preferentially to DNA primer ends; and (iv) catalytically loading PCNA onto singly nicked circular DNA and catalytically removing PCNA from these DNA molecules.  相似文献   

11.
12.
An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.  相似文献   

13.
M.1 monoclonal antibody has previously been shown to passively transfer partial resistance to schistosome infection within mice and to recognize a 28-kDa antigen that has peptide sequence homology with triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1). We have now isolated the complete coding DNA for Schistosoma mansoni TPI and confirmed that this cDNA encodes the 28-kDa antigen recognized by M.1. The predicted translation product has strong homology with other TPIs, particularly from higher eukaryotes, and the sequence homology is greatest in regions known to form the active site. The complete coding DNA has been expressed within an Escherichia coli host to produce high levels of soluble, recombinant S. mansoni TPI protein. The product is recognized and purified by the M.1 antibody and is a functional TPI with an intrinsic specific activity comparable to that of rabbit and yeast TPI.  相似文献   

14.
The DNA polymerase-primase from Drosophila lacks 3'----5' exonuclease activity. However, a potent exonuclease can be detected after separating the 182-kDa polymerase subunit from the other three subunits of the enzyme (73, 60, and 50 kDa) by glycerol gradient sedimentation in the presence of 50% ethylene glycol. The exonuclease activity cosediments with the polymerase subunit, suggesting that the two activities reside in the same polypeptide. The 3'----5' exonuclease excises mismatched bases at the 3' termini of primed synthetic and natural DNA templates. Excision of a mispaired base at the 3' terminus occurs at a 10-fold greater rate than excision of the correctly paired base. When replication fidelity is measured by the bacteriophage phi X174 am3 reversion assay, the isolated polymerase subunit is at least 100-fold more accurate than either the intact polymerase-primase or a complex of the 182- and 73-kDa subunits. These results suggest that the 3'----5' exonuclease functions as a proofreading enzyme during Drosophila DNA replication in vitro and very likely in vivo.  相似文献   

15.
Prokaryotic and eukaryotic RNA polymerases have homologous core subunits.   总被引:54,自引:9,他引:54  
Eukaryotic RNA polymerases are complex aggregates whose component subunits are functionally ill-defined. The gene that encodes the 140,000-dalton subunit of Saccharomyces cerevisiae RNA polymerase II was isolated and studied in detail to obtain clues to the protein's function. This gene, RPB2, exists in a single copy in the haploid genome. Disruption of the gene is lethal to the yeast cell. RPB2 encodes a protein of 138,750 daltons, which contains sequences implicated in binding purine nucleotides and zinc ions and exhibits striking sequence homology with the beta subunit of Escherichia coli RNA polymerase. These observations suggest that the yeast and the E. coli subunit have similar roles in RNA synthesis, as the beta subunit contains binding sites for nucleotide substrates and a portion of the catalytic site for RNA synthesis. The subunit homologies reported here, and those observed previously with the largest RNA polymerase subunit, indicate that components of the prokaryotic RNA polymerase "core" enzyme have counterparts in eukaryotic RNA polymerases.  相似文献   

16.
We have isolated and characterized a plasmid (pChug 20.1) that contains the cDNA of a nuclear uracil DNA glycosylase (UDG) gene isolated from normal human placenta. This cDNA directed the synthesis of a fusion protein (Mr 66,000) that exhibited UDG activity. The enzymatic activity was specific for a uracil-containing polynucleotide substrate and was inhibited by a glycosylase antibody or a beta-galactosidase antibody. Sequence analysis demonstrated an open reading frame that encoded a protein of 335 amino acids of calculated Mr 36,050 and pI 8.7, corresponding to the Mr 37,000 and pI 8.1 of purified human placental UDG. No homology was seen between this cDNA and the UDG of herpes simplex virus, Escherichia coli, and yeast; nor was there homology with the putative human mitochondrial UDG cDNA or with a second human nuclear UDG cDNA. Surprisingly, a search of the GenBank data base revealed that the cDNA of UDG was completely homologous with the 37-kDa subunit of human glyceraldehyde-3-phosphate dehydrogenase. Human erythrocyte glyceraldehyde-3-phosphate dehydrogenase was obtained commercially in its tetrameric form. A 37-kDa subunit was isolated from it and shown to possess UDG activity equivalent to that seen for the purified human placental UDG. The multiple functions of this 37-kDa protein as here and previously reported indicate that it possesses a series of activities, depending on its oligomeric state. Accordingly, mutation(s) in the gene of this multifunctional protein may conceivably result in the diverse cellular phenotypes of Bloom syndrome.  相似文献   

17.
The signal-transducing guanine nucleotide-binding regulatory (G) proteins are heterotrimers composed of three subunits--alpha, beta, and gamma. Although multiple distinctive forms of the alpha subunit have been described, only two forms of the beta subunits of the G proteins have been identified. To investigate further the structural diversity of the beta subunits, we screened bovine and human retina cDNA libraries and isolated clones encoding three distinct types of G protein beta subunit. One form was identical to previously isolated beta 1-subunit cDNA clones that encode the 36-kDa form of the beta subunit, whereas a second form was identical to previously described beta 2 cDNAs that encode the 35-kDa beta isoform. In addition, we identified another species, designated beta 3 subunit, which encodes a third distinct form of the beta subunit. The beta 3-subunit cDNA corresponds to a 2.0-kilobase mRNA expressed in all tissues and clonal cell lines examined. Nucleotide sequence analysis indicates that the encoded peptide consists of 340-amino acid residues with a Mr of 37,221. The amino acid sequences of the three beta subunits are closely related: 83% identity between beta 1 and beta 3 subunits and 81% identity between beta 2 and beta 3 subunits. By contrast, the 3'-untranslated regions of the three cDNAs show no significant homology. Our data support the hypothesis that a family of beta-subunit polypeptides exists and extend understanding of beta-subunit structure.  相似文献   

18.
The proliferating-cell nuclear antigen (PCNA) and the replication factors A and C (RF-A and RF-C) are cellular proteins essential for complete elongation of DNA during synthesis from the simian virus 40 origin of DNA replication in vitro. All three cooperate to stimulate processive DNA synthesis by DNA polymerase delta on a primed single-stranded M13 template DNA and as such can be categorized as DNA polymerase accessory proteins. Biochemical analyses with highly purified RF-C and PCNA have demonstrated functions that are completely analogous to the functions of bacteriophage T4 DNA polymerase accessory proteins. A primer-template-specific DNA binding activity and a DNA-dependent ATPase activity copurified with the multisubunit protein RF-C and are similar to the functions of the phage T4 gene 44/62 protein complex. Furthermore, PCNA stimulated the RF-C ATPase activity and is, therefore, analogous to the phage T4 gene 45 protein, which stimulates the ATPase function of the gene 44/62 protein complex. Indeed, some primary sequence similarities between human PCNA and the phage T4 gene 45 protein could be detected. These results demonstrate a striking conservation of the DNA replication apparatus in human cells and bacteriophage T4.  相似文献   

19.
The linkage of sister chromatids after DNA replication ensures the faithful inheritance of chromosomes by daughter cells. In budding yeast, the establishment of sister chromatid cohesion requires Ctf8, Dcc1, and Ctf18, a homologue of the p140 subunit of the replication factor C (RFC). In this report we demonstrate that in 293T cells, Flag-tagged Ctf18 forms a seven-subunit cohesion-RFC complex comprised of Ctf18, Dcc1, Ctf8, RFCp40, RFCp38, RFCp37, and RFCp36 (Ctf18-RFC). We demonstrate that a stoichiometric heteroheptameric Ctf18-RFC complex can be assembled by coexpressing the seven proteins in baculovirus-infected insect cells. In addition, the two other stable subcomplexes were formed, which include a pentameric complex comprised of Ctf18, RFCp40, RFCp38, RFCp37, and RFCp36 and a dimeric Dcc1-Ctf8. Both the five- and seven-subunit Ctf18-RFC complexes bind to single-stranded and primed DNAs and possess weak ATPase activity that is stimulated by the addition of primed DNA and proliferating cell nuclear antigen (PCNA). These complexes catalyzed the ATP-dependent loading of PCNA onto primed and gapped DNA but not onto double-stranded nicked or single-stranded circular DNAs. Consistent with these observations, both Ctf18-RFC complexes substituted for the replicative RFC in the PCNA-dependent DNA polymerase delta-catalyzed DNA replication reaction. These results support a model in which sister chromatid cohesion is linked to DNA replication.  相似文献   

20.
The enzyme nucleoside-diphosphate kinase (Ndk), responsible for the conversion of (deoxy)ribonucleoside diphosphates to their corresponding triphosphates, has been purified from Pseudomonas aeruginosa. The N-terminal 12 amino acid sequence of P. aeruginosa Ndk shows significant homology with that of Myxococcus xanthus and that of Escherichia coli. Ndk enzyme activity is also associated with succinyl-CoA synthetase activity in P. aeruginosa, whose alpha and beta subunits show extensive sequence homology with those of E. coli and Dictyostelium discoideum. The 33-kDa alpha subunit of succinyl-CoA synthetase of P. aeruginosa appears to undergo autophosphorylation in the presence of either ATP or GTP, although the presence of small amounts of Ndk activity may influence the level of such phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号