首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of signal transduction in cells derives in part from subcellular, in particular plasma membrane, microdomains that organize signaling molecules and signaling complexes. Two related plasma membrane domains that compartmentalize G-protein coupled receptor (GPCR) signaling complexes are lipid (membrane) rafts, domains that are enriched in certain lipids, including cholesterol and sphingolipids, and caveolae, a subset of lipid rafts that are enriched in the protein caveolin. This review focuses on the properties of lipid rafts and caveolae, the mechanisms by which they localize signaling molecules and the identity of GPCR signaling components that are organized in these domains.  相似文献   

2.
Cyclic nucleotide-gated (CNG) channels are the primary targets of light- and odorant-induced signaling in photoreceptors and olfactory sensory neurons. Compartmentalized cyclic nucleotide signaling is necessary to ensure rapid and efficient activation of these nonselective cation channels. However, relatively little is known about the subcellular localization of CNG channels or the mechanisms of their membrane partitioning. Lipid raft domains are specialized membrane microdomains rich in cholesterol and sphingolipids that have been implicated in the organization of many membrane-associated signaling pathways. Herein, we report that the alpha subunit of the olfactory CNG channel, CNGA2, associates with lipid rafts in heterologous expression systems and in rat olfactory epithelium. However, CNGA2 does not directly bind caveolin, and its membrane localization overlaps only slightly with that of caveolin at the surface of human embryonic kidney (HEK) 293 cells. To test for a possible functional role of lipid raft association, we treated HEK 293 cells with the cholesterol-depleting agent, methyl-beta-cyclodextrin. Cholesterol depletion abolished prostaglandin E1-stimulated CNGA2 channel activity in intact cells. Recordings from membrane patches excised from CNGA2-expressing HEK 293 cells revealed that cholesterol depletion dramatically reduced the apparent affinity of homomeric CNGA2 channels for cAMP but only slightly reduced the maximal current. Our results show that olfactory CNG channels target to lipid rafts and that disruption of lipid raft microdomains dramatically alters the function of CNGA2 channels.  相似文献   

3.
Oxidative stress has been implicated in many physiopathologies including neurodegenerative diseases, cancer, cardiovascular and respiratory diseases, and in mechanisms of action of environmental toxicants. tert-butylhydroperoxide (t-BHP) is an organic lipid hydroperoxide analogue, which is commonly used as a pro-oxidant for evaluating mechanisms involving oxidative stress in cells and tissues. This study investigates mechanisms of apoptosis induced by oxidative stress in hepatocytes, in particular, the involvement of caspases and subcellular compartments. Freshly isolated hepatocytes were exposed to 0.4 mM t-BHP during 1 h. A general caspase inhibitor, Boc-D-FMK, reduced t-BHP-induced apoptosis (chromatin condensation), confirming the involvement of caspases in apoptosis. A caspase-9 inhibitor, Z-LEHD-FMK, also reduced t-BHP-induced apoptosis, suggesting that caspase-9 plays a critical role in this process. Procaspase-9 underwent cleavage in mitochondria and translocation to the nucleus, where increased caspase-9 activity was detected. The caspase-9 substrates, caspase-3 and caspase-7, were not activated. Caspase-7 was translocated from the cytosol to the endoplasmic reticulum (ER), where it underwent processing; however, enzymatic activity of caspase-7 was inhibited by t-BHP. t-BHP caused cleavage of procaspase-12 at the ER and its subsequent translocation to the nucleus, where increased caspase-12 activity was found. t-BHP caused translocation of calpain from the cytosol to the ER. Calpain inhibition reduced chromatin condensation and caspase-12 activity in the nucleus, suggesting that calpain is involved in caspase-12 activation and apoptosis. This study demonstrates that caspase-9 and caspase-12 are activated in t-BHP-induced apoptosis in hepatocytes. We highlight the importance of subcellular compartments such as mitochondria, ER and nuclei in the apoptotic process.  相似文献   

4.
5.
Recently, microRNAs (miRNAs) have received increasing attention in the field of cancer research. miRNAs play important roles in many normal biological processes; however, the aberrant miRNA expression and its correlation with the development and progression of cancers is an emerging field. Therefore, miRNAs could be used as biomarkers for diagnosis of cancer and prediction of prognosis. Importantly, some miRNAs could regulate the formation of cancer stem cells and the acquisition of epithelial–mesenchymal transition, which are critically associated with drug resistance. Moreover, some miRNAs could target genes related to drug sensitivity, resulting in the altered sensitivity of cancer cells to anti-cancer drugs. Emerging evidences have also shown that knock-down or re-expression of specific miRNAs by synthetic anti-sense oligonucleotides or pre-miRNAs could induce drug sensitivity, leading to increased inhibition of cancer cell growth, invasion, and metastasis. More importantly, recent studies have shown that natural agents including isoflavone, 3,3′-diindolylmethane, and (?)-epigallocatechin-3-gallate altered miRNA expression profiles, leading to an increased sensitivity of cancer cells to conventional therapeutics. These emerging results suggest that specific targeting of miRNAs by different approaches could open new avenues for cancer treatment through overcoming drug resistance and thereby improve the outcome of cancer therapy.  相似文献   

6.
Abstract

In the present investigation, imiquimod (IMQ) was coupled to oleic acid (OLA; IMQ-OLA) to synthesise prodrug to reduce crystallinity that later amalgamated with oil-in-water (o/w) emulsion cream (IMQ-OLA cream) for the treatment of melanoma tumour. The synthesis of IMQ-OLA prodrug was verified by FT-IR, 1HNMR and mass spectroscopy. The crystalline lattice of IMQ was transformed to somewhat amorphous structure in IMQ-OLA prodrug. IMQ-OLA cream retained 35.6% of IMQ within skin, significantly (p?<?0.05) higher than 22.3% and 10.6% retained by marketed IMQ cream and IMQ solution, respectively. IMQ-OLA cream suppressed the melanoma tumour to 70.3?mm3 in C57BL6J mice as compared to 72.6?mm3 tumour, reduced by marketed IMQ cream with no significant difference (p?>?0.05) at day 32 over 17-day period of treatment. IMQ-OLA cream followed the multiple mechanisms of cell death. IMQ-OLA cream warrants further in depth investigations for translating in to a clinically viable topical dermal product.  相似文献   

7.
Importance of the field: Screening compounds with a cell-based phenotypic approach complements target-based discovery programs because of the opportunity to investigate targets in the context of the cellular milieu and to discover novel targets. Areas covered in this review: Utilizing a cell-based apoptotic phenotype screen for discovery and optimization of apoptosis inducers and affirming activity as potential anticancer agents in vivo with xenograft models. Subsequently, chemical genetic tools are utilized to identify and validate previously unrecognized cancer targets. Case studies showing the various multidisciplinary approaches utilized for several years are reviewed. What the reader will gain: The interactive nature of the drug and target discovery processes, and insights that come from integration of cellular biology, medicinal chemistry and animal research. Take home message: Phenotype proapoptotic screen followed by chemical genetics is useful for anticancer drug research, for the discovery of potential drugs and identification of druggable targets.  相似文献   

8.
Importance of the field: Screening compounds with a cell-based phenotypic approach complements target-based discovery programs because of the opportunity to investigate targets in the context of the cellular milieu and to discover novel targets.

Areas covered in this review: Utilizing a cell-based apoptotic phenotype screen for discovery and optimization of apoptosis inducers and affirming activity as potential anticancer agents in vivo with xenograft models. Subsequently, chemical genetic tools are utilized to identify and validate previously unrecognized cancer targets. Case studies showing the various multidisciplinary approaches utilized for several years are reviewed.

What the reader will gain: The interactive nature of the drug and target discovery processes, and insights that come from integration of cellular biology, medicinal chemistry and animal research.

Take home message: Phenotype proapoptotic screen followed by chemical genetics is useful for anticancer drug research, for the discovery of potential drugs and identification of druggable targets.  相似文献   

9.
10.
一叶秋碱诱导K562细胞凋亡   总被引:8,自引:0,他引:8  
目的研究一叶秋碱(SEC)能否诱导K562细胞凋亡。方法细胞增殖抑制采用MTT法;形态学研究采用电子和荧光显微镜;流式细胞仪和琼脂糖凝胶电泳检测DNA断裂。结果SEC10~160mg·L-1呈剂量依赖性抑制K562细胞增殖(r=09613,P<005);SEC作用48h后,电镜下可见细胞膜完整,核染色质边聚和凋亡小体;荧光显微镜下核染色质凝聚成点状结构;流式细胞仪出现凋亡峰;DNA琼脂糖凝胶电泳可见“梯状”图谱。结论SEC可诱导K562细胞调亡。  相似文献   

11.
Inhibition of lipolysis by palmitate, H(2)O(2), and the antidiabetic sulfonylurea drug, glimepiride, in rat adipocytes has been shown previously to rely on the concerted degradation of cAMP by the glycosylphosphatidylinositol (GPI)-anchored phosphodiesterase Gce1 and 5'-nucleotidase CD73, which both gain access to the lipid droplets (LDs). The present report demonstrates the translocation of Gce1 and CD73, harboring the intact GPI anchor, from detergent-insoluble glycolipid-enriched plasma membrane domains (DIGs) to the LDs in response to palmitate, H(2)O(2), and glimepiride by analysis of their steady-state distribution using photoaffinity labeling and activity determination as well as of their redistribution after pulse or equilibrium metabolic labeling. We were surprised to find that palmitate, H(2)O(2), and glimepiride induced the activation of the GPI-specific phospholipase C (GPI-PLC) at DIGs of rat adipocytes, leading to anchorless Gce1 and CD73. Inhibition of the GPI-PLC or the presence of nonhydrolyzable substrate analogs of Gce1 and CD73 interfered with the palmitate-, H(2)O(2)-, and glimepiride-induced 1) lipolytic cleavage of Gce1 and CD73, 2) translocation of their GPI-anchored versions from DIGs to LDs, 3) up-regulation of cAMP degradation, and 4) inhibition of lipolysis. These data suggest a novel insulin-independent antilipolytic mechanism in rat adipocytes, which relies on the palmitate-, H(2)O(2)-, and glimepiride-induced and GPI-PLC-dependent translocation of (c)AMP-degrading GPI-anchored proteins from the adipocyte plasma membrane to LDs. The findings may shed new light on the biogenesis and degradation of LDs in response to physiological and pharmacological stimuli.  相似文献   

12.
Glycyrrhetinic acid (GA) is known to inhibit glucocorticoid metabolism inhibiting 11beta-hydroxysteroid dehydrogenase (11beta-HSD). Moreover, GA administration to mice has been shown to affect the lymphoid organs through elevation of endogenous corticosterone concentration. The effect of GA administration on thymus has been demonstrated to show that considerable amounts of thymocytes undergo apoptosis by elevated levels of corticosterone in systemic circulation. However, the effect of GA administration on peripheral lymphocytes has remained unknown. In our current study, we demonstrated that a significant involution of spleen as well as thymus occurred within 24 h of a single administration of GA in mice. In addition, a flow cytometric analysis of the splenocytes taken from mice treated with GA showed a significant increase in the number of apoptotic cells which exhibited translocated phosphatidylserine outside the plasma membrane. Furthermore, considerable inhibition of 11beta-HSD activity in GA-treated mice was observed in liver and spleen, resulting in a significant increase in concentration of corticosterone in the blood. These facts showed that the apoptosis of splenocytes was the result of indirect effect of GA through elevated levels of corticosterone. We confirmed this using cultured splenocytes in vitro where no apoptotic effect of GA was observed. We concluded that GA administration induces cell death of not only thymocytes that are naive to corticosterone, but also splenocytes that are usually stable to its physiological concentrations.  相似文献   

13.
Mechanism of cadmium induced apoptosis in the immunocyte   总被引:1,自引:0,他引:1  
Cadmium is the major component of polluted environment which can be fatal by mechanisms that are not fully clear. Our study indicates immunosupression may be one of the reason for that. It is well known that cadmium (Cd) has toxic and carcinogenic effects in rhondents and humans, but the effects of cadmium on apoptosis are still not clear. Although some studies have shown that cadmium has apoptotic potential, other studies have shown that cadmium can be anti-apoptotic. In the present study, we aimed to determine the mode of cell death and its mechanism in Swiss albino mice splenocyte by cadmium for its toxic effects. To identify the nature of cell death, our result signifies apoptotic mode of killing. In search of the mechanism behind it we found that cadmium increased cell death and lowered the survival of the host in a dose dependent manner. In search of the reason we found increased expression of the pro-apoptotic proteins p53 in splenic lymphocytes. Here we showed that cadmium induced p53-dependent apoptosis through cooperation between Bcl-xl down regulation without changing the Bcl-2 and Bax expression, the common target of p53. The down regulation of Bcl-xl strongly indicating mitochondrial involvement in apoptosis. It is confirmed by the release of cytochrome c and activation of caspase-3. All of these findings establish an important role of p53 and mitochondrial function in cadmium induced toxic environment in the host.  相似文献   

14.
药物性胰腺炎是因药物干预机体而诱导产生的一种消化道急症,近年来,针对该病不断上升的发病率,国内外开展了大量关于药物性胰腺炎的研究,而儿童作为药物介导胰腺炎的高危人群,缺少明显的临床表征,具有病情发展迅速,死亡率较高的特点。从儿童药物性胰腺炎的发病机制、常见药物、早期诊断等进行综述,旨在提高临床医师对此病的重视程度,早期识别、及时处理,以期为儿童药物性胰腺炎的诊治提供参考依据。  相似文献   

15.
16.
17.
Gabapentin (GBP), an antiepileptic and anti-neuropathic agent, suffers from short half-life (5–7?h), has narrow absorption window, and is absorbed via carrier-mediated mechanism resulting in frequent dosing, poor compliance, and poor bioavailability (<60%). Moreover, GBP is a freely water-soluble drug, thus it is considered a challenging candidate to be formulated as extended release dosage form. In this study, raft forming systems were investigated as a potential drug delivery system for prolonging gastric residence time of GBP. A 23 full factorial design was adopted to study the effect of formulation variables (% gellan gum, % GMO, and % LM-pectin 101), on the percent of GBP released at different time intervals (1, 5, and 8?h) as well as the gel strength, and thus was achieved an optimized formula with zero-order release profile suitable for once-daily administration. In vivo assessment was performed in rats to evaluate gastric residence of the gel formed. In addition, the oral bioavailability of GBP relative to commercially available Neurontin® immediate release oral solution was also investigated. Significant increase was observed for Cmax, AUC(0–t), and AUC(0–∞). The increase in relative bioavailability of GBP from the optimized formula was 1.7 folds.  相似文献   

18.
药物在发挥治疗作用的同时,会对肝脏产生毒性或对肝脏致敏导致药物性肝炎。产生药物性肝炎的药物较多,包括中西药制剂,目前尚无明确归类的治疗药物,本文探讨了几种治疗药物;临床上应合理选择药物,结合具体病情,参照保肝药物,以及中医的辨证理论,结合临床实践,确保患者的健康。  相似文献   

19.
Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used in the treatment of inflammation and pain. In many reports, NSAIDs have induced apoptosis in a variety of cell lines such as colon cancer cells. On the other hand, more recently a few reports have found that NSAIDs protect against apoptosis. Here we investigate endoplasmic reticulum (ER)-stress-induced apoptosis of neuronal cells. The aim of this study is to examine the involvement of NSAIDs, in particular diclofenac, on ER-stress-induced apoptosis of human neuroblastoma SH-SY5Y cells. Diclofenac significantly suppressed SH-SY5Y cell death induced by two types of ER-stress-inducing agents: thapsigargin, an inhibitor of Ca2+-ATPase on the endoplasmic reticulum membrane, and tunicamycin, a glycosylation blocker. Other NSAIDs, such as indomethacin, ibuprofen, aspirin, and ketoprofen, also suppressed ER-stress-induced SH-SY5Y cell death. The dose-dependent anti-apoptotic effect of diclofenac did not correlate with the reduction of prostaglandin release. Administration of prostaglandin E2, which was a primary product of arachidonic metabolism, showed no effects against anti-apoptotic effects produced by diclofenac. Thapsigargin and tunicamycin each significantly activated caspase-3, -9, and -2 in the intrinsic apoptotic pathway in SH-SY5Y cells. Diclofenac suppressed the activation of caspases induced by both ER stresses. Thapsigargin and tunicamycin decreased the mitochondrial membrane potential in SH-SY5Y cells. Diclofenac suppressed the mitochondrial depolarization induced by both ER stresses. Diclofenac inhibited ER-stress-induced apoptosis of SH-SY5Y cells by suppressing the activation of caspases in the intrinsic apoptotic pathway. This is the first report to find that diclofenac has protective effects against ER-stress-induced apoptosis.  相似文献   

20.
To better understand the anticancer activity of Levamisole (LMS), which serves as an adjuvant in colon cancer therapy in combination with 5-Fluorouracil, this study analyses LMS' ability to induce apoptosis and growth arrest in cultured human micro- and macrovascular endothelial cells (ECs) and fibroblasts. Cells exposed (24 h) to Levamisole (range: 0.5 - 2 mmol l(-1)) alone or in combination with antioxidants (10 mmol l(-1) glutathione or 5 mmol l(-1) N-Acetylcysteine or 0.1 mmol l(-1) Tocopherol) were evaluated for apoptosis ((3)H-thymidine assays, in situ staining), mRNA/protein expression (Northern/Western blot), and proliferation ((3)H-thymidine incorporation). Levamisole dose-dependently increased apoptosis in ECs to 230% (HUVECs-human umbilical vein ECs), 525% (adult human venous ECs) and 600% (human uterine microvascular ECs) but not in fibroblasts compared to control cells (set as 100%). Levamisole increased in ECs integrin-dependent matrix adhesion, inhibited proliferation (-70%), reduced expression of survival factors such as clusterin (-30%), endothelin-1 (-43%), bcl-2 (-34%), endothelial NO-synthase (-32%) and pRb (Retinoblastoma protein: -89%), and increased that of growth arrest/death signals such as p21 (+73%) and bak (+50%). LMS (2 mmol l(-1))-induced apoptosis was inhibited by glutathione (-50%) and N-Acetylcysteine (-36%), which also counteracted reduction by Levamisole of pRb expression, suggesting reactive oxygen species and pRb play a role in these processes. The ability of LMS to selectively induce apoptosis and growth arrest in endothelial cells potentially hints at vascular targeting to contribute to Levamisole's anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号