首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptor for the serine protease thrombin, the protease-activated receptor-1 (PAR-1), has been recently characterized. Its key roles in thrombin-stimulated human platelet activation, vascular endothelial and smooth muscle proliferation, inflammatory responses and neurodegeneration suggest receptor involvement in various disorders such as arterial thrombosis, atherosclerosis, restenosis, inflammation and myocardial infarction. It has been established that thrombin elicits the majority of its effects via PAR-1. PAR-1 has a novel mechanism of activation. The receptor, a member of the seven-transmembrane domain receptor family, is cleaved by thrombin at a specific site on the N-terminal extension, and a newly exposed N-terminus acts as a tethered ligand to activate the receptor itself. The need for development of a PAR-1 antagonist that may be valuable as a therapeutic agent has been recognized. An intriguing challenge is the necessity of the antagonist to compete with an intramolecular ligand while showing no intrinsic activity. The lead compounds were found to be synthetic peptides containing N-terminal hexapeptide or pentapeptide (Ser-Phe-Leu-Leu-Arg-Asn, Ser-Phe-Leu-Leu-Arg) or modified sequences (TRAPs; thrombin receptor-activating peptides), which exhibit full PAR-1 agonist activity. Selective PAR-1 antagonists have already been synthesized. Though their potency is still not enough to justify therapeutic use, it is clear that future progress will bring a novel class of drugs-thrombin receptor antagonists. The emphasis of this review, therefore, will be placed on advances in the discovery of potent and selective PAR-1 antagonists.  相似文献   

2.
20世纪90年代初克隆和发现的凝血酶受体(PAR-1)为研制抗血栓药物提供了一个新靶点,引起学术界和制药业的广泛关注。由于凝血酶受体的特殊活化机制,其自身相连的活化氮端与活化中心近在咫尺,只有结合力很高的小分子化合物才能有效地拮抗凝血酶受体。因此,多年来,只有少数化合物被发现具有较好的凝血酶受体拮抗活性,其中vorapaxar和atopaxar进入了临床试验。vorapaxar在Ⅲ期临床试验发现有显著疗效,但也有出血不良反应,尤其不适用于有中风史的患者。最近,vorapaxar与PAR-1结合的晶体结构已经发表。这些结果为设计和研制新一代凝血酶受体拮抗剂指出了优化的方向,提供了分子水平的结构信息。本文从药物化学角度综述近年来凝血酶受体拮抗剂的研究进展和现状,重点描述vorapaxar、atopaxar以及相关化合物和最新发表的PAR-1拮抗剂。  相似文献   

3.
《Inhalation toxicology》2013,25(10):577-586
Abstract

Background: Protease-activated receptor-1 (PAR-1) is widely distributed in platelets and involved in coagulation cascade activated by thrombin. In this study, we intend to explore the role of PAR-1 in the process of thrombin-inducing transforming growth factor-β1 (TGF-β1) to promote airway remodeling in ovalbumin (OVA)-allergic rats.

Materials and methods: A rat model of chronic asthma was set up by systemic sensitization and repeated challenge to OVA. The doses of thrombin, recombinant hirudin, PAR-1 inhibitor ER-112780-06 varied for different groups. We evaluated the bronchoalveolar lavage fluid (BALF) concentration of thrombin in these groups. The protein and gene expression of PAR-1 was assessed and the expression of TGF-β1 was also detected.

Results: The PAR-1 mRNA level and the protein level were higher in the airway of asthmatic rats than those of normal rats, and were significantly increased by thrombin treatment but decreased by thrombin-inhibitor treatment. Airway remodeling was strengthened by thrombin but weakened by thrombin inhibitor and PAR-1 antagonist. Expression of TGF-β1 protein in asthmatic rats was significantly increased by thrombin treatment and decreased by thrombin-inhibitor treatment and PAR-1 antagonist treatment.

Conclusion: The expression of PAR-1 is regulated by thrombin that induces the expression of TGF-β1 to promote airway remodeling via PAR-1 in OVA-allergic rats.  相似文献   

4.
In addition to its central role in blood coagulation and hemostasis, human alpha-thrombin is a growth factor for a variety of cell types, including monocytes and endothelial cells, involved in the control of angiogenesis. Different cytokines produced by mononuclear cells have been implicated in angiogenic processes associated with tissue repair and certain human malignancies. We have previously shown that thrombin enhances proliferative responses in T lymphocytes. More recently, we reported that interferon-gamma-differentiated monocytes have increased expression of protease-activated receptor-1 (PAR-1) and increased thrombin binding. Since cytokines may be involved directly and indirectly in angiogenesis, we initiated studies to determine thrombin effects on the induction of cytokines, such as interleukin (IL)-1 and IL-6, in human mononuclear cells. IL-1 and IL-6 protein expression was significantly enhanced by thrombin (P<.05), as determined by enzyme-linked immunosorbent assay (ELISA). Treating mononuclear cells with the PAR-1 peptide, SFLLRN, has effects similar to those of thrombin. Thus, it appears that these thrombin effects are mediated through activation of PAR-1. These results confirm that thrombin is a strong activator of monocytes and could be involved in angiogenesis by inducing cytokines that could enhance the angiogenic process in tissue repair.  相似文献   

5.
1. The in vitro motor function of protease-activated recepter-1 (PAR-1), PAR-2 and PAR-4 and the presence by immunohistochemistry of PAR-1 in the human renal artery have been investigated. 2. Thrombin and the human PAR-1 (SFLLRN-NH(2)) activating peptide, but not the PAR-1 reverse peptide (NRLLFS-NH(2)), contracted both endothelial-intact and endothelial-denuded human renal artery strips, whereas no relaxation was observed either in strips non-precontracted or precontracted with phenylephrine. Maximum contraction by thrombin or SFLLRN-NH(2) was about 60% of phenylephrine. However, thrombin was approximately 1000-fold more potent than SFLLRN-NH(2). 3. PAR-1 desensitisation, using repeated applications of SFLLRN-NH(2), almost completely blocked the response to thrombin. The contractile effect produced by thrombin and SFLLRN-NH(2) was not affected by nitric oxide synthase inhibition, but was significantly reduced by cyclooxygenase blockade. 4. Trypsin, the PAR-2 (SLIGKV-NH(2) and SLIGRL-NH(2)) and PAR-4 (GYPGQV-NH(2) and AYPGKF-NH(2)) activating peptides did not produce any significant contraction or relaxation. 5. In agreement with the motor function data immunohistochemistry showed specific staining patterns for PAR-1 in the human renal artery. 6. Combined, these studies would suggest a possible role for PAR-1 in renal vascular homeostasis.  相似文献   

6.
Structurally novel thrombin receptor (protease activated receptor 1, PAR-1) antagonists based on the natural product himbacine are described. The prototypical PAR-1 antagonist 55 showed a Ki of 2.7 nM in the binding assay, making it the most potent PAR-1 antagonist reported. 55 was highly active in several functional assays, showed excellent oral bioavailability in rat and monkey models, and showed complete inhibition of agonist-induced ex vivo platelet aggregation in cynomolgus monkeys after oral administration.  相似文献   

7.
We have investigated the ability of protease-activated receptor-1 (PAR-1), PAR-2, PAR-3 and PAR-4 agonists to induce contractile responses in isolated guinea-pig gallbladder. Thrombin, trypsin, mouse PAR-1 activating (SFLLRN-NH(2)) peptide, and mouse PAR-2 activating (SLIGRL-NH(2)) and human PAR-2 activating (SLIGKV-NH(2)) peptides produced a concentration-dependent contractile response. Mouse PAR-4 activating (GYPGKF-NH(2)) peptide, the mouse PAR-1 reverse (NRLLFS-NH(2)) peptide, the mouse PAR-2 reverse (LRGILS-NH(2)) and human PAR-2 reverse (VKGILS-NH(2)) peptides caused negligible contractile responses at the highest concentrations tested. An additive effect was observed following the contractile response induced by either trypsin or thrombin, with the addition of a different PAR agonist (SFLLRN-NH(2) and SLIGRL-NH(2), respectively). Desensitization to PAR-2 activating peptide attenuated the response to trypsin but failed to attenuate the response to PAR-1 agonists, and conversely desensitization to PAR-1 attenuated the response to thrombin but failed to alter contractile responses to PAR-2 agonists. The contractile responses produced by thrombin, trypsin, SFLLRN-NH(2) and SLIGRL-NH(2) were markedly reduced in the presence of the cyclo-oxygenase inhibitor, indomethacin, whilst the small contractile response produced by NRLLFS-NH(2) and LRGILS-NH(2) were insensitive to indomethacin. The contractile responses to thrombin, trypsin, SFLLRN-NH(2) and SLIGRL-NH(2) were unaffected by the presence of: the non-selective muscarinic antagonist, atropine; the nitric oxide synthase inhibitor, L-NAME; the sodium channel blocker, tetrodotoxin; the combination of selective tachykinin NK(1) and NK(2) receptor antagonists, (S)-1-[2-[3-(3,4-dichlorphenyl)-1 (3-isopropoxyphenylacetyl) piperidin-3-yl] ethyl]-4-phenyl-1 azaniabicyclo [2.2.2] octane chloride (SR140333) and (S)-N-methyl-N-[4-acetylamino-4-phenylpiperidino-2-(3, 4-dichlorophenyl)-butyl] benzamide (SR48968), respectively. The results indicate that PAR-1 and PAR-2 activation causes contractile responses in the guinea-pig gallbladder, an effect that is mediated principally by prostanoid release, and is independent of neural mechanisms.  相似文献   

8.
Proteinase-activated receptor-1 (PAR-1) is activated by thrombin and can be selectively activated by synthetic peptides (PAR-1-activating peptide: PAR-1-AP) corresponding to the receptor's tethered ligand. PAR-1 being expressed by afferent neurons, we investigated the effects of PAR-1 agonists on nociceptive responses to mechanical and thermal noxious stimuli. Intraplantar injection of selective PAR-1-AP increased nociceptive threshold and withdrawal latency, leading to mechanical and thermal analgesia, while control peptide had no effect. Intraplantar injection of thrombin also showed analgesic properties in response to mechanical, but not to thermal stimulus. Co-injection of PAR-1-AP with carrageenan significantly reduced carrageenan-induced mechanical and thermal hyperalgesia, while thrombin reduced carrageenan-induced mechanical but not thermal hyperalgesia. The fact that thrombin is not a selective agonist for PAR-1 may explain the different effects of thrombin and PAR-1-AP. These results identified analgesic properties for selective PAR-1 agonists that can modulate nociceptive response to noxious stimuli in normal and inflammatory conditions.  相似文献   

9.
喜巴辛衍生物SCH-530348是蛋白酶激活受体1(PAR-1)的抑制剂,PAR-1是人血小板凝血酶最主要的一种受体。SCH-530348是第一种能抑制凝血酶诱导的血小板聚集而不影响凝血酶对胶原酶原活化能力的化合物。文中综述了SCH-530348的临床前和Ⅰ~Ⅲ期临床试验结果。这些研究表明SCH-530348具有降低缺血性事件发生风险的几率,同时不会明显增加机体出血的风险,临床上可应用于急性冠脉综合征的治疗和缺血性心血管事件的预防。  相似文献   

10.
Thrombin is a powerful agonist for a variety of cellular responses including platelet aggregation and vascular smooth muscle cell (SMC) proliferation. These actions are mediated by a thrombin receptor known as protease-activated receptor-1 (PAR-1). Recently we discovered that 1-(3-tert-butyl-4-methoxy-5-morpholinophenyl)-2-(5,6-diethoxy-7-fluoro-1-imino-1,3-dihydro-2H-isoindol-2-yl)ethanone hydrobromide (E5555, atopaxar) is a potent and selective thrombin receptor antagonist. This study characterized the pharmacological effects of E5555 on SMC proliferation in vitro and in a rat model of intimal thickening after balloon injury in vivo. E5555 selectively inhibited rat aortic SMC proliferation induced by thrombin and thrombin receptor-activating peptide (TRAP) with half maximal inhibitory concentration (IC(50)) values of 0.16 and 0.038 μM, respectively. E5555 did not inhibit rat SMC proliferation induced by basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) at concentrations up to 1μM. In addition, E5555 inhibited human aortic SMC proliferation induced by thrombin at concentrations of 0.3 and 3units/ml with IC(50) values of 0.028 and 0.079 μM, respectively, whereas it did not affect bFGF-induced proliferation at concentrations up to 1μM. Repeated oral administration of 30 mg/kg E5555 (once daily for 16 days) significantly reduced neointimal formation in the balloon-injured rat arterial model. These results suggested that a PAR-1 antagonist could be effective for treating restenosis following vascular intervention in addition to preventing thrombus formation. E5555 could thus have therapeutic potential for restenosis and chronic atherothrombotic disease.  相似文献   

11.
We examined the mechanism of thrombin on proliferation of synovial fibroblasts obtained from rheumatoid arthritis (RA). Thrombin concentration-dependently induced proliferation of synovial fibroblasts. Proliferation in response to thrombin (10 U/ml) was completely blocked by hirudin. TP367 and TP508, peptides corresponding to 2 noncatalytic regions of thrombin, failed to induce cell proliferation. Thrombin did not induce the production of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), and epidermal growth factor (EGF) in synovial fibroblasts. Expression of proteinase-activated receptor (PAR)-1 and PAR-3 mRNAs was observed in synovial fibroblasts. Thrombin and PAR-1 agonist peptide (AP), but not PAR-3 AP, induced intracellular calcium mobilization. PAR-1 AP induced cell proliferation whereas PAR-3 AP and PAR-4 AP had no effect on proliferation. Pertussis toxin (PTX), a Gialpha protein inhibitor; wortmannin, a PI (phosphatidylinositol) 3-kinase inhibitor; and PD98059, a specific MEK [mitogen-activated protein (MAK) kinase kinase] inhibitor, inhibited the thrombin-induced cell proliferation. Furthermore, the proliferation of synovial fibroblasts was suppressed by U-73122, a PLC (phospholipase C) inhibitor; 2-APB, an antagonist of InsP3 (inositol 1,4,5-triphosphate) receptor; and GF-109203X, a PKC (protein kinase C) inhibitor. These results suggest that thrombin induces the proliferation of RA synovial fibroblasts through the activation of PAR-1, leading to the PTX-sensitive G proteins - PI3 kinase pathway and PTX-insensitive G proteins - PLC (InsP3 receptor) Ca(2+)-PKC branch.  相似文献   

12.
黑色素瘤由于转移性强,成为皮肤癌中死亡率最高的恶性肿瘤之一,目前没有有效的治疗方法。凝血酶蛋白酶激活受体-1(PAR-1)在黑色素瘤的发病过程中起到重要作用,PAR-1通过激活肿瘤细胞黏附和侵袭以及新生血管因子生成促进黑色素瘤转移。PAR-1有望成为治疗转移性黑色素瘤药物新靶点。  相似文献   

13.
The protease-activated thrombin receptor-1 (PAR-1) can be activated by both the tethered ligand exposed by thrombin cleavage and a synthetic peptide having the tethered ligand sequence (thrombin receptor agonist peptide or TRAP). We conducted a mutational analysis of extracellular residues of the receptor potentially involved in interaction with both the tethered ligand and the soluble peptide agonist. Agonist-stimulated calcium efflux in X. laevis oocytes or inositol phosphate accumulation in COS-7 cells was used to assess receptor activation. We have also examined the binding of a radiolabeled TRAP for the wild-type and mutant PAR-1 receptors. Our results indicated that most of the mutations strongly affected TRAP-induced responses without significantly altering thrombin-induced responses or TRAP binding. Several point mutations and deletion of extracellular domains (DeltaEC3, DeltaNH3) drastically altered the ability of mutant receptors to respond to TRAP, but not to thrombin, and did not affect the affinity for the radiolabeled TRAP by these mutant receptors. Only mutations that disrupted the putative disulfide bond or substitution of multiple acidic residues in the second extracellular loop by alanine had a significant effect on both ligand binding and thrombin activation. These results suggest that although both agonists can activate PAR-1, there are profound differences in the ability of thrombin and TRAP to activate PAR-1. In addition, we have found PAR-1 mutants with the ability to dissociate receptor-specific binding from functional activity.  相似文献   

14.
The serine protease thrombin (EC 3.4.21.5) is central to the maintenance of haemostatic balance through its coagulant, anticoagulant and platelet activating properties. In addition, this enzyme affects numerous cellular responses in a wide variety of cells, such as cell proliferation, cytokine and growth factor release, lipid metabolism and tissue remodelling. A family of Gproteincoupled protease-activated receptors (PARs) mediates these cellular actions of thrombin. While thrombin can activate three of the four PAR family members, PAR-1 represents the primary thrombin-responsive receptor in human cells. The expression of PAR-1 in platelets, the vasculature and myocardium, in cells within atherosclerotic plaque and tissues after vascular injury, indicates that this receptor plays an important role during the response to tissue injury and associated inflammatory processes. With the development of PAR-deficient mice and small-molecule antagonists, it is now clear that intervening in processes mediated by PAR-1 presents a new approach to treating a variety of disorders dependent on thrombin generation, including thrombosis and restenosis. The full potential of PAR-1 antagonists has yet to be realised, but the promise of novel therapeutics that modulate receptor function rather than thrombin’s proteolytic activity, provides an alternative and, perhaps, more desirable means to dampen the pathological effects of thrombin.  相似文献   

15.
The serine protease thrombin (EC 3.4.21.5) is central to the maintenance of haemostatic balance through its coagulant, anticoagulant and platelet activating properties. In addition, this enzyme affects numerous cellular responses in a wide variety of cells, such as cell proliferation, cytokine and growth factor release, lipid metabolism and tissue remodelling. A family of G-protein-coupled protease-activated receptors (PARs) mediates these cellular actions of thrombin. While thrombin can activate three of the four PAR family members, PAR-1 represents the primary thrombin-responsive receptor in human cells. The expression of PAR-1 in platelets, the vasculature and myocardium, in cells within atherosclerotic plaque and tissues after vascular injury, indicates that this receptor plays an important role during the response to tissue injury and associated inflammatory processes. With the development of PAR-deficient mice and small-molecule antagonists, it is now clear that intervening in processes mediated by PAR-1 presents a new approach to treating a variety of disorders dependent on thrombin generation, including thrombosis and restenosis. The full potential of PAR-1 antagonists has yet to be realised, but the promise of novel therapeutics that modulate receptor function rather than thrombin's proteolytic activity, provides an alternative and, perhaps, more desirable means to dampen the pathological effects of thrombin.  相似文献   

16.
Both thrombin and tryptase have been shown to induce smooth muscle cell proliferation in vitro. We have used cultured primary guinea-pig tracheal smooth muscle in order to define pharmacologically the receptors involved in this effect. Tryptase, a protease-activated receptor (PAR)-2 agonist, induced DNA synthesis up to the second passage of the cells, thereafter the response waned. In contrast, thrombin, a PAR-1 agonist, and the PAR-1 activating peptide (SFLLRN) induced DNA synthesis starting from the third passage only. Thrombin and tryptase responses were dose-dependently inhibited by leupeptin. The selective PAR-2 activating peptide (SLIGRL-NH(2)) was unable to induce DNA synthesis in cells from passages 1 to 6. In agreement with the functional data, mRNA expression for PAR-1 was increased in cells in later passages. In contradiction with the functional data, however, equal mRNA expression for PAR-2 was found in all passages. These results suggest that thrombin induces guinea-pig tracheal smooth muscle DNA synthesis through activation of PAR-1. However, the differential effect of tryptase and SLIGRL-NH(2) suggests that tryptase might exert some of its effect via a non-PAR-2 receptor.  相似文献   

17.
Proteinase-activated receptors (PARs) have the common property of being activated by the proteolytic cleavage of their extracellular N-terminal domain. The new NH2-terminus acts as a 'tethered ligand' binding and activating the receptor itself. Four members of this family have been cloned, three of which are activated by thrombin (PAR-1, PAR-3 and PAR-4) while the fourth (PAR-2) is activated by trypsin or mast cell tryptase. In physiological or pathophysiological conditions, the gastrointestinal tract is exposed more than other tissues to proteinases (digestive enzymes, proteinases from pathogens or proteinases from inflammatory cells) that can activate PARs. Since PARs are highly expressed throughout the gastrointestinal tract, the study of the role of PARs in these tissues appears to be particularly important. It has already been shown that PAR-2 activation induces calcium mobilization and eicosanoid production in enterocytes as well as changes in ion transport in jejunal tissue segments. PAR-2 activation also causes calcium mobilization and stimulates amylase release from pancreatic acini. Moreover, both PAR-1 and PAR-2 activation can alter the gastrointestinal motility. In inflammatory or allergic conditions, the proteinases that constitute the major agonists for PARs (thrombin, trypsin and mast cell tryptase) are usually released. The activation of PARs by these proteinases might contribute to the gastrointestinal disorders associated with these pathologies. A complete understanding of the role of PARs in the gastrointestinal tract will require the development of selective receptor antagonists that are not yet available. Nonetheless, the use of PAR agonists has already highlighted new potential functions for proteinases in the gastrointestinal tract, thus the control of PAR activation might represent a promising therapeutic target.  相似文献   

18.
郭亚华  方浩 《现代药物与临床》2016,31(12):2067-2072
血栓栓塞性疾病严重威胁人类健康,应用抗血小板药物是当前主要的治疗手段之一。研究证明,凝血酶受体(又称蛋白酶激活受体-1,PAR-1)被凝血酶激活后,可诱导血小板活化。此外,PAR-1主要参与病理性血栓的形成,对人体正常的止血过程影响很小。因此,PAR-1已成为抗血小板药物研发的新兴靶点。目前,已有多个PAR-1拮抗剂如vorapaxar、F16618、F16357、ML161、RWJ-58259、PZ-128已上市或进入临床研究。综述了PAR-1的结构和作用机制以及小分子拮抗剂和多肽类拮抗剂的研究进展。  相似文献   

19.
The protease-activated receptor (PAR), a G protein-coupled receptor present on cell surface, mediates cellular actions of extracellular proteases. Proteases cleave the extracellular N-terminal of PAR molecules at a specific site, unmasking and exposing a novel N-terminal, a tethered ligand, that binds to the body of receptor molecules resulting in receptor activation. Amongst four distinct PARs that have been cloned, PARs 1, 3 and 4 are activated by thrombin, but PAR-2 is activated by trypsin or mast cell tryptase. Human platelets express two distinct thrombin receptors, PAR-1 and PAR-4, while murine platelets express PAR-3 and PAR-4. Apart from roles of PARs in platelet activation, PARs are distributed to a number of organs in various species, predicting their physiological importance. We have been evaluating agonists specific for each PAR, using multiple procedures including a HEK cell calcium signal receptor desensitization assay. Using specific agonists that we developed, we found the following: 1) the salivary glands express PAR-2 mRNA and secret saliva in response to PAR-2 activation; 2) pancreatic juice secretion occurs following in vivo PAR-2 activation; 3) PAR-1 and PAR-2 modulate duodenal motility. Collectively, PAR plays various physiological and/or pathophysiological roles, especially in the digestive systems, and could be a novel target for drug development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号