首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two to six months after implantation of fetal striatal primordia into the kainic acid-lesioned neostriatum of adult rats, spiny neurons in the grafts were stained intracellularly with biocytin. To determine whether the spiny neurons in the grafts differentiate morphologically as in the host neostriatum, the intracellularly stained spiny neurons in the grafts were studied with light and electron microscopy and compared with that of spiny neurons in the host neostriatum. The spiny neurons in the grafts had ovoid or polygonal cell bodies with dendrites radiating in all directions. The somata were smooth and the dendrites, except for their most proximal portions, were rich in spines. All these features resembled the appearance of spiny neurons in the intact neostriatum. However, quantitative studies showed that the somata of spiny neurons in the grafts were larger than those in the host neostriatum (projected cross-sectional areas of 230 +/- 64.6 microns 2 in the grafts and 158 +/- 28.9 microns 2 in the host) and the spine density of graft neurons was lower than that of host neurons. Cells near the border of the grafts had dendrites extending both into the graft and into the host neostriatum. In these cells, the dendrites in the grafts had fewer spines than the dendrites in the host tissue. The axons of spiny neurons in the grafts had very large and dense intrastriatal collateral arborizations, which occupied a much larger volume than that of the dendritic domain of the parent cells. The local axonal arborizations of each of these cells filled almost the entire graft. In some cells, axonal branches were traced outside the grafts and were seen to enter the internal capsule fascicles. Unlike spiny neurons in the normal adult neostriatum, the spiny cells of the graft could have nuclear indentations. With this exception, the ultrastructural features of spiny neurons in the grafts were very similar to those in the hosts. Many unlabeled boutons made synapses on identified spiny neurons in the grafts. Terminals with small round vesicles made synaptic contacts on dendritic shafts and dendritic spines, while terminals with flattened or pleomorphic vesicles contacted somata, dendrites, and dendritic spines. Labeled axon collaterals of graft neurons made symmetrical synapses on somata, dendrites and spines in the grafts and in the host neostriatum. In the grafts, more than 60% of the axon terminals contacted dendritic shafts. The proportion of axosomatic and axospinous synapses varied substantially from cell to cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Gajendiran M  Ling GY  Pang Z  Xu ZC 《Neuroscience》2001,105(1):139-152
Spiny neurons in neostriatum are vulnerable to cerebral ischemia. To reveal the mechanisms underlying the postischemic neuronal damage, the spontaneous activities, evoked postsynaptic potentials and membrane properties of spiny neurons in rat neostriatum were compared before and after transient forebrain ischemia using intracellular recording and staining techniques in vivo. In control animals the membrane properties of spiny neurons were about the same between the left and right neostriatum but the inhibitory synaptic transmission was stronger in the left striatum. After severe ischemia, the spontaneous firing and membrane potential fluctuation of spiny neurons dramatically reduced. The cortically evoked initial excitatory postsynaptic potentials were suppressed after ischemia indicated by the increase of stimulus threshold and the rise time of these components. The paired-pulse facilitation test indicated that such suppression might involve presynaptic mechanisms. The inhibitory postsynaptic potentials in spiny neurons were completely abolished after ischemia and never returned to the control levels. A late depolarizing postsynaptic potential that was elicited from approximately 5% of the control neurons by cortical stimulation could be evoked from approximately 30% of the neurons in the left striatum and approximately 50% in the right striatum after ischemia. The late depolarizing postsynaptic potential could not be induced after acute thalamic transection. The intrinsic excitability of spiny neurons was suppressed after ischemia evidenced by the significant increase of spike threshold and rheobase as well as the decrease of repetitive firing rate following ischemia. The membrane input resistance and time constant increased within 6 h following ischemia and the amplitude of fast afterhyperpolarization significantly increased after ischemia. These results indicate the depression of excitatory monosynaptic transmission, inhibitory synaptic transmission and excitability of spiny neurons after transient forebrain ischemia whereas the excitatory polysynaptic transmission in neostriatum was potentiated. The facilitation of excitatory polysynaptic transmission is stronger in the right neostriatum than in the left neostriatum after ischemia. The suppression of inhibitory component and the facilitation of excitatory polysynaptic transmission may contribute to the pathogenesis of neuronal injury in neostriatum after transient cerebral ischemia.  相似文献   

3.
Intracellular recordings from association cortical areas 5 and 7 were performed in cats under barbiturate or ketamine-xylazine anesthesia to investigate the activities of different classes of neurons involved in callosal pathways, which were electrophysiologically characterized by depolarizing current steps. Excitatory postsynaptic potentials (EPSPs), inhibitory postsynaptic potentials (IPSPs), and/or antidromic responses were elicited by stimulating homotopic sites in the contralateral cortical areas. Differential features of EPSPs related to latencies, amplitudes, and slopes were detected in closely located (50 microm or less) neurons recorded in succession along the same electrode track. In contrast to synchronous thalamocortical volleys that excited most neurons within a cortical column, stimuli applied to homotopic sites in the contralateral cortex activated neurons at restricted cortical depths. Median latencies of callosally evoked EPSPs were 1.5 to 4 ms in various cortical cell-classes. Fast-rhythmic-bursting neurons displayed EPSPs whose amplitudes were threefold larger, and latencies two- or threefold shorter, than those found in the three other cellular classes. Converging callosal and thalamic inputs were recorded in the same cortical neuron. EPSPs or IPSPs were elicited by stimulating foci spaced by <1 mm in the contralateral cortex. In the overwhelming majority of neurons, latencies of antidromic responses were between 1.2 and 3.1 ms; however, some callosal neurons had much longer latencies, 相似文献   

4.
1. Extracellular and intracellular recordings in rat hippocampal slices were used to compare the synaptic responses to perforant path stimulation of granule cells of the dentate gyrus, spiny "mossy" cells of the hilus, and area CA3c pyramidal cells of hippocampus. Specifically, we asked whether aspects of the local circuitry could explain the relative vulnerability of spiny hilar neurons to various insults to the hippocampus. 2. Spiny hilar cells demonstrated a surprising lack of inhibition after perforant path activation, despite robust paired-pulse inhibition and inhibitory postsynaptic potentials (IPSPs) in adjacent granule cells and area CA3c pyramidal cells in response to the same stimulus in the same slice. However, when the slice was perfused with excitatory amino acid antagonists [6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), or CNQX with 2-amino-5-phosphonovaleric acid (APV)], IPSPs could be observed in spiny hilar cells in response to perforant path stimulation. 3. The IPSPs evoked in spiny hilar cells in the presence of CNQX were similar in their reversal potentials and bicuculline sensitivity to IPSPs recorded in dentate granule cells or hippocampal pyramidal cells in the absence of CNQX. 4. These results demonstrate that, at least in slices, perforant path stimulation of spiny hilar cells is primarily excitatory and, when excitation is blocked, underlying inhibition can be revealed. This contrasts to the situation for dentate and hippocampal principal cells, which are ordinarily dominated by inhibition, and only when inhibition is compromised can the full extent of excitation be appreciated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. Intracellular microelectrodes were used to obtain recordings from neurons in layer II/III of rat frontal cortex. A bipolar electrode positioned in layer IV of the neocortex was used to evoke postsynaptic potentials. Graded series of stimulation were employed to selectively activate different classes of postsynaptic responses. The sensitivity of postsynaptic potentials and iontophoretically applied neurotransmitters to the non-N-methyl-D-asparate (NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) was examined. 2. As reported previously, low-intensity electrical stimulation of cortical layer IV evoked short-latency early excitatory postsynaptic potentials (eEPSPs) in layer II/III neurons. CNQX reversibly antagonized eEPSPs in a dose-dependent manner. Stimulation at intensities just subthreshold for activation of inhibitory postsynaptic potentials (IPSPs) produced long-latency (10 to 40-ms) EPSPs (late EPSPs or 1EPSPs). CNQX was effective in blocking 1EPSPs. 3. With the use of stimulus intensities at or just below threshold for evoking an action potential, complex synaptic potentials consisting of EPSP-IPSP sequences were observed. Both early, Cl(-)-dependent and late, K(+)-dependent IPSPs were reduced by CNQX. This effect was reversible on washing. This disinhibition could lead to enhanced excitability in the presence of CNQX. 4. Iontophoretic application of quisqualate produced a membrane depolarization with superimposed action potentials, whereas NMDA depolarized the membrane potential and evoked bursts of action potentials. At concentrations up to 5 microM, CNQX selectively antagonized quisqualate responses. NMDA responses were reduced by 10 microM CNQX. D-Serine (0.5-2 mM), an agonist at the glycine regulatory site on the NMDA receptor, reversed the CNQX depression of NMDA responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To elucidate synaptic mechanisms and the involvement of N-methyl-D-aspartate (NMDA) receptors in inspiratory off-switching (IOS) evoked by the stimulation of the nucleus parabrachialis medialis (NPBM), excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) were recorded from bulbar augmenting inspiratory (aug-I) and postinspiratory (PI) neurons in vagotomized cats. Stimulation of NPBM produced either transient inhibition or premature termination of inspiration (reversible or irreversible IOS), depending on the stimulus intensity. Each neuron displayed four-phasic postsynaptic responses during the reversible IOS, i.e. Phase 1 EPSPs, Phase 2 IPSPs, Phase 3 EPSPs and Phase 4 IPSPs in aug-I neurons, and Phase 1 plus 2 EPSPs, Phase 3 IPSPs and Phase 4 EPSPs in PI neurons. During the irreversible IOS, Phase 4 responses were replaced by sustained hyperpolarization in aug-I neurons and decrementing depolarization in PI neurons. Blockade of NMDA receptors by dizocilpine (0.3 mg kg(-1) i.v.) selectively increased Phase 4 potentials in both types of neurons and decreased the thresholds for evoking the irreversible IOS. The NPBM-induced responses had a pattern and time-course similar to those induced by vagal stimulation. The present results suggest that pneumotaxic and vagal inputs converge on the common IOS circuit, and the effectiveness of both inputs is modulated by NMDA receptors.  相似文献   

7.
Sensory inputs from the whiskers reach the primary somatosensory thalamus through the medial lemniscus tract. The main role of the thalamus is to relay these sensory inputs to the neocortex according to the regulations dictated by behavioural state. Intracellular recordings in urethane-anaesthetized rats show that whisker stimulation evokes EPSP-IPSP sequences in thalamic neurons. Both EPSPs and IPSPs depress with repetitive whisker stimulation at frequencies above 2 Hz. Single-unit recordings reveal that during quiescent states thalamic responses to repetitive whisker stimulation are suppressed at frequencies above 2 Hz, so that only low-frequency sensory stimulation is relayed to the neocortex. In contrast, during activated states, induced by stimulation of the brainstem reticular formation or application of acetylcholine in the thalamus, high-frequency whisker stimulation at up to 40 Hz is relayed to the neocortex. Sensory suppression is caused by the depression of lemniscal EPSPs in relatively hyperpolarized thalamocortical neurons. Sensory suppression is abolished during activated states because thalamocortical neurons depolarize and the depressed lemniscal EPSPs are able to reach firing threshold. Strong IPSPs may also contribute to sensory suppression by hyperpolarizing thalamocortical neurons, but during activated states IPSPs are strongly reduced altogether. The results indicate that the synaptic depression of lemniscal EPSPs and the level of depolarization of thalamocortical neurons work together in thalamic primary sensory pathways to suppress high-frequency sensory inputs during non-activated (quiescent) states while permitting the faithful relay of high-frequency sensory information during activated (processing) states.  相似文献   

8.
In the encéphale isolé cat preparation the surface of precruciate cortex was electrically stimulated. Intracellular responses underneath the stimulated site were recorded to assess the vertical spread of activities across the cortical layers. To the epicortical stimulation (EPICS) with intensity adjusted to evoke a pure negative wave in the direct cortical response (DCR), only some neurons in relatively superficial layers responded with excitatory postsynaptic potentials (EPSPs). Stimuli intensified to evoke both the negative and subsequent positive waves in DCR produced in all tested cells either EPSPs, inhibitory postsynaptic potentials (IPSPs), or both. Direct or axonal antidromic excitation of the cell was observed only infrequently. Cells with EPSPs distributed through all the layers with two peak populations in laminae II and V-VI. Those with IPSPs were located mainly in the upper half of lamina III with a few in more superficial as well as in deeper layers. Both EPSPs and IPSPs showed mono- or oligosynaptic latencies (0.6-10 msec) that tended to become longer in deep than in superficial layers. Some deep layer cells including fast and slow pyramidal tract cells showed slowly rising monosynaptic EPSPs of dendritic origin. Further late responses consisted of EPSPs, IPSPs, disfacilitation (DF), and disinhibition (DI). DF or DI occurred in some deep layer cells. Two modes of vertical spread of activities were postulated: one the cascade transmissions which increased response repertoire toward the depths, and the other the electrotonic spread of EPSPs along dendrites.  相似文献   

9.
To study the interactions between thalamic and cortical inputs onto neocortical neurons, we used paired-pulse stimulation (PPS) of thalamic and cortical inputs as well as PPS of two cortical or two thalamic inputs that converged, at different time intervals, onto intracellularly recorded cortical and thalamocortical neurons in anesthetized cats. PPS of homosynaptic cortico-cortical pathways produced facilitation, depression, or no significant effects in cortical pathways, whereas cortical responses to thalamocortical inputs were mostly facilitated at both short and long intervals. By contrast, heterosynaptic interactions between either cortical and thalamic, or thalamic and cortical, inputs generally produced decreases in the peak amplitudes and depolarization area of evoked excitatory postsynaptic potentials (EPSPs), with maximal effect at approximately 10 ms and lasting from 60 to 100 ms. All neurons tested with thalamic followed by cortical stimuli showed a decrease in the apparent input resistance (R(in)), the time course of which paralleled that of decreased responses, suggesting that shunting is the factor accounting for EPSP's decrease. Only half of neurons tested with cortical followed by thalamic stimuli displayed changes in R(in). Spike shunting in the thalamus may account for those cases in which decreased synaptic responsiveness of cortical neurons was not associated with decreased R(in) because thalamocortical neurons showed decreased firing probability during cortical stimulation. These results suggest a short-lasting but strong shunting between thalamocortical and cortical inputs onto cortical neurons.  相似文献   

10.
H. Kita 《Neuroscience》1996,70(4):925-940
Glutamatergic and GABAergic responses of the neostriatal spiny neurons to intrastriatal and cortical stimulation were characterized by intracellular recording in brain slice preparations. This study also demonstrated the role of each response in the spike activity of the spiny neuron. Single neostriatal stimulation induced postsynaptic potentials consisting of multiple components. The early part of the postsynaptic potential, which was isolated by the GABAA antagonist bicuculline methiodide and the N-methyl-d-aspartate antagonist 3-(2-carboxypiperzin-4-yl)-propyl-1-phosphonic acid (CPP), was mainly an -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor-mediated response. Perfusion of magnesium-free medium containing bicuculline methiodide and the AMPA/kainate antagonist 3-dihydroxy-6-nitro-7-sulfamoyl-benzo]f]quinoxaline (NBQX) disclosed a large, slow N-methyl-d-aspartate receptor-mediated response. the N-methyl-d-aspartate response in magnesium-containing perfusing medium was small in neurons at the resting membrane potential, but became a significant component when the neurons were depolarized to subthreshold membrane potential. The duration of the N-methyl-d-aspartate response was over 300 ms. The nicotinic antagonists dihydro-β-erythroidine hydrobromide and mecamylamine failed to change responses to single stimulation.

Repetitive intrastriatal stimulation induced a large, long-duration depolarization with action potentials in the spiny neurons. This stimulation-induced response resembles that of the depolarization stage observed in anesthetized animals. Bicuculline methiodide increased the response amplitude. In contrast, CPP reduced the amplitude of the response to the below the spike generation threshold. The CPP-sensitive N-methyl-d-aspartate response was large and lasted several hundred milliseconds after the termination of repetitive stimulation. Responses of the neostriatal neurons to cortical stimulation were similar to those induced after intrastriatal stimulation. CPP greatly reduced both the response amplitude and the number of spikes triggered from the response. Bicuculline methiodide, on the other hand, greatly increased the response amplitude and the number of spikes. The AMPA/kainate response alone, which was isolated by application of bicuculline methiodide and CPP, did not induce sustained depolarization in spiny neurons to repetitive cortical stimulation. Application of NBQX diminished GABAA response to cortical stimulation. This observation indicates that, for neostriatal spiny neurons to respond with GABAA response after cortical stimulation, the AMPA/kainate response must be induced in the GABAergic secondary neurons in the neostriatum.

This study indicates that the main synaptic driving forces of neostriatal spiny neurons include AMPA/kainate, N-methyl-d-aspartate and GABAA responses. Although AMPA/kainate response is the main synaptic input, the generation of the action potentials in neostriatal neurons is greatly influenced by both GABAA and N-methyl-d-aspartate responses.  相似文献   


11.
Onn SP  Lin M  Liu JJ  Grace AA 《Neuroscience》2008,151(3):802-816
The roles of dopamine and cyclic-AMP regulated phosphoprotein-32 (DARPP-32) in mediating dopamine (DA)-dependent modulation of corticoaccumbens transmission and intercellular coupling were examined in mouse accumbens (NAC) neurons by both intracellular sharp electrode and whole cell recordings. In wild-type (WT) mice bath application of the D2-like agonist quinpirole resulted in 73% coupling incidence in NAC spiny neurons, compared with baseline (9%), whereas quinpirole failed to affect the basal coupling (24%) in slices from DARPP-32 knockout (KO) mice. Thus, D2 stimulation attenuated DARPP-32-mediated suppression of coupling in WT spiny neurons, but this modulation was absent in KO mice. Further, whole cell recordings revealed that quinpirole reversibly decreased the amplitude of cortical-evoked excitatory postsynaptic potentials (EPSPs) in spiny neurons of WT mice, but this reduction was markedly attenuated in KO mice. Bath application of the D1/D5 agonist SKF 38393 did not alter evoked EPSP amplitude in WT or KO spiny neurons. Therefore, DA D2 receptor regulation of both cortical synaptic (chemical) and local non-synaptic (dye coupling) communications in NAC spiny neurons is critically dependent on intracellular DARPP-32 cascades. Conversely, in fast-spiking interneurons, blockade of D1/D5 receptors produced a substantial decrease in EPSP amplitude in WT, but not in KO mice. Lastly, in putative cholinergic interneurons, cortical-evoked disynaptic inhibitory potentials (IPSPs) were attenuated by D2-like receptor stimulation in WT but not KO slices. These data indicate that DARPP-32 plays a central role in 1) modulating intercellular coupling, 2) cortical excitatory drive of spiny and aspiny GABAergic neurons, and 3) local feedforward inhibitory drive of cholinergic-like interneurons within accumbens circuits.  相似文献   

12.
Intracellular recordings were made from neurons of the zebra finch song control nucleus, the robust nucleus of the archistriatum (RA), in slice preparations to examine synaptic responses. RA neurons receive two separate inputs from the lateral magnocellular nucleus of the anterior neostriatum (1MAN) and the caudal nucleus of the ventral hyperstriatum (HVc). Excitatory postsynaptic potentials (EPSPs) elicited by stimulation of the fibers of the 1MAN were greatly reduced by 2-amino-5-phosphonopentanoic acid in many cells, whereas EPSPs elicited by stimulation of the fibers of the HVc were greatly reduced by 6-cyano-7-nitroquinoxaline-2,3-dione in all cells. It is concluded that RA neurons receive inputs mediated mostly by N-methyl-D-aspartate (NMDA) receptors from the 1MAN, and inputs mediated mostly by non-NMDA receptors from the HVc.  相似文献   

13.
1. The interaction between inhibitory interneurons and cortical pyramidal neurons was studied by use of computer simulations to test whether inhibitory interneurons could assist in phase-locking postsynaptic cells. Two models were used: a simplified model, which included only 3 membrane channels, and a detailed 11-channel model. 2. The 11-channel model included most of the ion channels known to be present in neocortical pyramidal neurons as well as calcium diffusion and other membrane mechanisms. The kinetics for the channels were obtained from voltage-clamp studies in a variety of preparations. The parameters were then adjusted to produce repetitive bursting similar to that seen in some cortical pyramidal cells entrained during visual stimulation. 3. Phase-locking to a train of inhibitory postsynaptic potentials (IPSPs) located on or near the soma was observed in the 3-channel model cell subjected to random synaptic bombardment. In the 11-channel model, phase-locking due to multiple IPSPs was compared with phase-locking due to multiple excitatory postsynaptic potentials (EPSPs). Phase-locking began to occur when 20% of the IPSPs (20/100) or 40% of the EPSPs (4,000/10,000) were synchronized. The exact percentages differed with different 11-channel models, but either EPSPs or IPSPs would generally produce entrainment with approximately 40% synchronization. Thus 40 inhibitory boutons had an effect equivalent to 4,000 excitatory boutons in producing phase-locking. 4. Phase-locking with IPSPs in these models was possible because the IPSPs could cause either an increase or a decrease in firing rate over a limited range. The IPSPs served a modulatory role, increasing the rate of firing in some cases and decreasing it in others, depending on the state of the cell. 5. We examined frequency entrainment by IPSPs. In the 3-channel model, frequency entrainment of a postsynaptic cell was observed with a rapid train of strong (20-100 nS), brief, compound IPSPs. A 40-Hz compound IPSP train of 60 nS entrained cells having initial firing rates between 32 and 47 Hz. Below this range, cells could be partially entrained. Above the range, entrainment would fail. Frequency entrainment in the 3-channel model generally occurred on the first cycle after onset of the IPSPs. 6. Phase-locking and frequency entrainment were less robust in the 11-channel model. This was partly because bursts rather than individual spikes were being entrained. A 40-Hz, 90-nS compound IPSP train entrained a model cell upward from 34 Hz. Downward frequency entrainment also occurred.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Dopamine and synaptic plasticity in the neostriatum   总被引:3,自引:0,他引:3  
After the unilateral destruction of the dopamine input to the neostriatum there are enduring changes in rat behaviour. These have been ascribed to the loss of dopamine and the animals are often referred to as ‘hemiparkinsonian’. In the denervated neostriatum, we have shown that not only are the tyrosine hydroxylase positive boutons missing, but also the medium sized densely spiny output cells have fewer spines. Spines usually have asymmetric synapses on their heads. In a recent stereological study we were able to show that there is a loss of approximately 20% of asymmetric synapses in the lesioned neostriatum by 1 mo after the lesion. Current experiments are trying to establish the specificity of this loss. So far we have evidence suggesting that there is no obvious preferential loss of synapses from either D1 or D2 receptor immunostained dendrites in the neostriatum with damaged dopamine innervation. These experiments suggest that dopamine is somehow necessary for the maintenance of corticostriatal synapses in the neostriatum. In a different series of experiments slices of cortex and neostriatum were maintained in vitro in such a way as to preserve at least some of the corticostriatal connections. In this preparation we have been able to show that cortical stimulation results in robust excitatory postsynaptic potentials (EPSPs) recorded from inside striatal neurons. Using stimulation protocols derived from the experiments on hippocampal synaptic plasticity we have shown that the usual consequence of trains of high frequency stimulation of the cortex is the depression of the size of EPSPs in the striatal cell. In agreement with similar experiments by others, the effect seems to be influenced by NMDA receptors since the unblocking of these receptors with low Mg++ concentrations in the perfusate uncovers a potentiation of the EPSPs after trains of stimulation. Dopamine applied in the perfusion fluid round the slices has no effect but pulsatile application of dopamine, close to the striatal cell being recorded from, and in temporal association with the cortical trains, leads to a similar LTP like effect. The reduction of K+ channel conductance in the bath with TEA also has the effect of making cortical trains induce potentiation of corticostriatal transmission. TEA applied only to the cell being recorded from has no similar effect; the cortical stimulation again depresses the EPSP amplitude, so the site of action of TEA may well be presynaptic to the striatal cell. The morphological and physiological experiments may not necessarily be related but it is tempting to suggest that dopamine protects some corticostriatal synapses by potentiating them but that in the absence of dopamine others simply disconnect and are no longer detectable on electron microscopy.  相似文献   

15.
1. Single and dual intracellular recordings were performed in neocortical slices obtained from tissue samples surgically removed from children (8 mo to 15 yr) for the treatment of intractable epilepsy. Electrical stimulation and glutamate microapplication were used to study local synaptic inputs to pyramidal cells. 2. In recordings with potassium-acetate electrodes, activation of presynaptic neocortical neurons with glutamate microdrops did not elicit a clear increase in postsynaptic potentials (PSPs) but did suppress current-evoked repetitive spike firing in recorded neurons. Bicuculline (10 microM) blocked this effect, suggesting it was caused by the activation of presynaptic gamma-aminobutyric acid (GABA) cells. In recordings with KCl electrodes, glutamate microdrops elicited an increase in the frequency and amplitude of depolarizing PSPs. Bicuculline (5-10 microM) blocked the glutamate-evoked PSPs, suggesting they were reversed GABAA-receptor-mediated inhibitory postsynaptic potentials (IPSPs). In one cell recorded with a KCl electrode (total n = 8), current-evoked spike trains elicited afterdischarges of reversed IPSPs, thus revealing a recurrent inhibitory circuit. Therefore local inhibitory synaptic circuits were robust and could be observed in tissue from patients as young as 11 mo. 3. In addition to short-latency (10-25 ms), monosynaptic excitatory postsynaptic potentials (EPSPs), electrical stimulation at low intensities sometimes elicited delayed EPSPs (20-60 ms). When GABAA-receptor-mediated synaptic inhibition was partially reduced in bicuculline (5-10 microM), electrical stimulation evoked large EPSPs at long and variable latencies (100-300 ms). Glutamate microapplication caused an increase in the frequency and amplitude of EPSPs; preliminary results suggest that glutamate microdrops were less likely to evoke EPSPs in tissue from younger patients (8-12 mo) than in slices from patients greater than 4 yr. Evidence for local excitatory synaptic circuits was thus found when synaptic inhibition was partially reduced. 4. After further reduction of inhibition in bicuculline (5-50 microM), electrical stimulation elicited epileptiform bursts. In pairs of simultaneously recorded neurons, bursts were generated synchronously from long-latency EPSPs (100-300 ms) in slices from patients as young as 8 mo. Reflected EPSPs at very long and variable latencies (500-1,100 ms) and repetitive epileptiform bursts could be evoked synchronously in pairs of cells. Glutamate activation of local presynaptic neurons elicited robust epileptiform events in recorded cells. This was seen in slices from patients as young as 16 mo. 5. These data provide physiological evidence for the presence of local inhibitory and excitatory synaptic circuits in human neocortex at least as early as 11 and 8 mo, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
In neocortex, synaptic inhibition is mediated by gamma-aminobutyric acid-A (GABAA) and GABAB receptors. By using intracellular and patch-clamp recordings in slices of rat visual cortex we studied the balance of excitation and inhibition in different intracortical pathways. The study was focused on the strength of fast GABAA- and slow GABAB-mediated inhibition in interareal forward and feedback connections between area 17 and the secondary, latero-medial visual area (LM). Our results demonstrate that in most layer 2/3 neurons forward inputs elicited excitatory postsynaptic potentials (EPSPs) that were followed by fast GABAA- and slow GABAB-mediated hyperpolarizing inhibitory postsynaptic potentials (IPSPs). These responses resembled those elicited by horizontal connections within area 17 and those evoked by stimulation of the layer 6/white matter border. In contrast, in the feedback pathway hyperpolarizing fast and slow IPSPs were rare. However weak fast and slow IPSPs were unmasked by bath application of GABAB receptor antagonists. Because in the feedback pathway disynaptic fast and slow IPSPs were rare, polysynaptic EPSPs were more frequent than in forward, horizontal, and interlaminar circuits and were activated over a broader stimulus range. In addition, in the feedback pathway large-amplitude polysynaptic EPSPs were longer lasting and showed a late component whose onset coincided with that of slow IPSPs. In the forward pathway these late EPSPs were only seen with stimulus intensities that were below the activation threshold of slow IPSPs. Unlike strong forward inputs, feedback stimuli of a wide range of intensities increased the rate of ongoing neuronal firing. Thus, when forward and feedback inputs are simultaneously active, feedback inputs may provide late polysynaptic excitation that can offset slow IPSPs evoked by forward inputs and in turn may promote recurrent excitation through local intracolumnar circuits. This may provide a mechanism by which feedback inputs from higher cortical areas can amplify afferent signals in lower areas.  相似文献   

17.
Intracellular recording revealed two general categories of ganglion cells in Auerbach's plexus. The characteristics of one category were relatively low resting potentials, high input resistance, discharge of spikes throughout a depolarizing current pulse, stimulus-evoked synaptic potentials and spontaneous electrical activity. Characteristics of the second category were high resting potentials, low input resistance, spikes only at the onset of a depolarizing current pulse and long duration hyperpolarizing after-potentials. Responses to extracellular electrical stimulation of the ganglia and interganglionic fiber tracts consisted of electrotonic spread of spikes from the processes to the cell soma, somal action potentials and depolarizing and hyperpolarizing responses that were probably EPSPs and IPSPs. Some of the neurons which received excitatory synaptic input responded with a prolonged train of spikes that outlasted by many seconds the duration of the stimulus to the fiber tract. Spontaneous electrical activity consisted of single EPSPs, patterned bursts of spikes that originated in the cell processes and spread electrotonically to, the recording site, IPSPs and action potentials. The burst-type activity showed periodic conversions from a burst pattern to a trainlike pattern of continuous discharge. Spontaneous discharge of single action potentials was superimposed upon a background of continuous synaptic input to the cell. Spontaneously occurring hyperpolarizing potentials were converted to depolarizing potentials when the membrane was hyperpolarized by current injected through the recording electrode. This work was supported by BMVg In San and National Institutes of Health AM 16813  相似文献   

18.
1. Reeler is an autosomal recessive mutation of mice that alters neuronal migration during development, yielding a general inversion of the laminae in the neocortex. We recorded in vitro from slices of normal and reeler neocortex to study the influence of neuron position and shape on membrane properties and synaptic responses. 2. The intrinsic firing patterns, action-potential shapes, resting membrane potentials, input resistances, and evoked excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) did not differ between reelers and controls when data were grouped. 3. The depth distribution of intrinsic firing patterns was inverted in the reeler: intrinsically bursting (IB) neurons were found only in layer 5 in the normal mouse, but they were found exclusively in supragranular layers of the reeler cortex. 4. The spatial distribution of synaptic responses in the reeler was also inverted: very prominent IPSPs were characteristic of upper layer neurons in the normal mouse, but in the reeler similar inhibitory responses were observed predominantly in deep infragranular layers. 5. Dye injections in reeler pyramidal neurons revealed atypical morphologies, including distorted apical dendrites and cell inversion. 6. The data imply that cortical neurons develop the membrane and synaptic properties appropriate to their function, despite being malformed and mispositioned.  相似文献   

19.
Summary Field and intracellular potentials were recorded in the vestibular nuclei of the lizard following stimulation of the ipsi-and contralateral vestibular nerves. The field potentials induced by ipsilateral VIIIth nerve stimulation consisted of an early negative or positive-negative wave (presynaptic component) followed by a slow negativity (transsynaptic component). The spatial distribution of the field potential complex closely paralleled the extension of the vestibular nuclei. Mono- and polysynaptic EPSPs were recorded from vestibular neurons after ipsilateral VIIIth nerve stimulation. In some neurons early depolarizations preceded the EPSPs. These potentials may be elicited by electrical transmission. Often spikelike partial responses were superimposed on the EPSPs. It is assumed that these potentials represent dendritic spikes.Contralateral VIIIth nerve stimulation generated disynaptic and polysynaptic IPSPs in some neurons and EPSPs in others. The possible role of commissural inhibition in phylogeny is discussed.In a group of vestibular neurons stimulation of the ipsilateral VIIIth nerve evoked full action potentials with latencies ranging from 0.25–1.1 msec. These potentials are caused by antidromic activation of neurons which send their axons to the labyrinth.  相似文献   

20.
1. The organization of the synaptic pathways underlying midbrain tegmentum influence over the facial musculature was studied with the use of an acute electrophysiological approach in the cat. Under pentobarbital sodium anesthesia, synaptic potentials were recorded intracellularly in antidromically identified facial motoneurons following electrical stimulation of the paralemniscal zone. The cells of origin and the pathways responsible for the potentials evoked from the paralemniscal zone were defined with the use of retrograde transport of horseradish peroxidase (HRP). The putative role of the paralemniscal zone with regard to the production of disynaptic, tectally evoked potentials in facial motoneurons was investigated both by inactivating this nucleus with injections of lidocaine and by making acute brain stem lesions to sever the paralemniscal-facial and other afferent pathways. 2. Following paralemniscal stimulation, monosynaptic, excitatory postsynaptic potentials (EPSPs) with latencies ranging from 0.6 to 0.9 ms, steep rising phases, and amplitudes in excess of 4.0 mV were recorded in motoneurons of the temporal and auriculoposterior subdivisions, which supply the pinna muscles. Smaller amplitude EPSPs (less than 1.0 mV) with monosynaptic latencies were observed in the zygomatic subdivision. Polysynaptic EPSPs with latencies ranging from 1.0 to 1.8 ms were also observed in all three of these subdivisions. However, only long-latency EPSPs, arriving at 2.0 ms or later, were present in ventral subdivision motoneurons. 3. Inhibitory postsynaptic potentials (IPSPs) were also frequently recorded in facial motoneurons after paralemniscal stimulation. Monosynaptic IPSPs with latencies ranging from 0.8 to 1.2 ms and amplitudes in excess of 4.0 mV were recorded in facial motoneurons of the temporozygomatic and auriculoposterior subdivisions, as were polysynaptic IPSPs with latencies ranging from 1.2 to 1.8 ms. IPSPs were sometimes observed in combination with a smaller, shorter latency EPSPs. Only long-latency IPSPs of greater than 2.0 ms were recorded in ventral subdivision motoneurons. In all cases, both the EPSPs and the IPSPs were graded in character and could be augmented by multiple stimuli. 4. The contralateral paralemniscal zone and the supraoculomotor area, bilaterally, represented the two most prominent afferent sources labeled after HRP injection of the facial nucleus. The superior colliculus and numerous reticular formation regions were also identified as facial nucleus afferents by the presence of retrogradely labeled cells. The retrogradely labeled cells in the paralemniscal zone exhibited heterogeneous soma size. HRP-labeled axons of the paralemniscal-facial pathway were observed to cross the midline by traveling ventral to the brachium conjunctivum in the caudal mesencephalon.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号