首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Although ethanol causes acute pancreatitis (AP) and lipolytic fatty acid (FA) generation worsens AP, the contribution of ethanol metabolites of FAs, ie, FA ethyl esters (FAEEs), to AP outcomes is unclear. Previously, pancreata of dying alcoholics and pancreatic necrosis in severe AP, respectively, showed high FAEEs and FAs, with oleic acid (OA) and its ethyl esters being the most abundant. We thus compared the toxicities of FAEEs and their parent FAs in severe AP. Pancreatic acini and peripheral blood mononuclear cells were exposed to FAs or FAEEs in vitro. The triglyceride of OA (i.e., glyceryl tri-oleate) or OAEE was injected into the pancreatic ducts of rats, and local and systemic severities were studied. Unsaturated FAs at equimolar concentrations to FAEEs induced a larger increase in cytosolic calcium, mitochondrial depolarization, and necro-apoptotic cell death. Glyceryl tri-oleate but not OAEE resulted in 70% mortality with increased serum OA, a severe inflammatory response, worse pancreatic necrosis, and multisystem organ failure. Our data show that FAs are more likely to worsen AP than FAEEs. Our observations correlate well with the high pancreatic FAEE concentrations in alcoholics without pancreatitis and high FA concentrations in pancreatic necrosis. Thus, conversion of FAs to FAEE may ameliorate AP in alcoholics.Although fat necrosis has been associated with severe cases of pancreatitis for more than a century,1, 2 and alcohol consumption is a well-known risk factor for acute pancreatitis (AP),3 only recently have we started understanding the mechanistic basis of these observations.4, 5, 6, 7 High amounts of unsaturated fatty acids (UFAs) have been noted in the pancreatic necrosis and sera of severe AP (SAP) patients by multiple groups.8, 9, 10, 11, 12 These high UFAs seem pathogenically relevant because several studies show UFAs can cause pancreatic acinar injury or can worsen AP.11, 12, 13, 14 Ethanol may play a role in AP by distinct mechanisms,3 including a worse inflammatory response to cholecystokinin,4 increased zymogen activation,15 basolateral enzyme release,16 sensitization to stress,7 FA ethyl esters (FAEEs),17 cytosolic calcium,18 and cell death.19Because the nonoxidative ethanol metabolite of fatty acids (FAs), FAEEs, were first noted to be elevated in the pancreata of dying alcoholics, they have been thought to play a role in AP.17, 19, 20, 21, 22 Conclusive proof of the role of FAEEs in AP in comparison with their parent UFAs is lacking. Uncontrolled release of lipases into fat, whether in the pancreas or in the peritoneal cavity, may result in fat necrosis, UFA generation, which has been associated with SAP.11, 12 Pancreatic homogenates were also noted to have an ability to synthesize FAEEs from FAs and ethanol,20, 23 and the putative enzyme for this was thought to be a lipase.24, 25 It has been shown that the FAEE synthase activity of the putative enzyme exceeds its lipolytic capacity by several fold.25Triglyceride (TG) forms >80% of the adipocyte mass,26, 27, 28 oleic acid (OA) being the most enriched FA.9, 29 We recently showed that lipolysis of intrapancreatic TG worsens pancreatitis.11, 12 Therefore, after noting the ability of the pancreas to cause lipolysis of TG into FAs and also to have high FAEE synthase activity and FAEE concentrations, we decided to compare the relative ability of FAEEs and their parent FAs to initiate deleterious signaling in pancreatitis and to investigate their impact on the severity of AP.  相似文献   

3.
To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2–inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.

In December 2019, a novel β coronavirus was isolated from patients who presented with severe and ultimately fatal pneumonia in Wuhan, China.1 The virus was designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rapidly spread through human-to-human transmission, causing the current global pandemic of coronavirus disease 2019 (COVID-19). As of September 2021, there have been >218 million confirmed cases and >4.5 million deaths globally attributed to SARS-CoV-2 infection [World Health Organization: Coronavirus Disease (COVID-19) Pandemic, https://www.who.int/emergencies/diseases/novel-coronavirus-2019, last accessed September 2, 2021).Although many organ systems can be affected by SARS-CoV-2 infection, pulmonary disease has been most frequently associated with severe and fatal cases of COVID-19.2 The earliest stage of disease is characterized by edema and vascular damage, including endothelial cell degeneration and necrosis, with neutrophilic infiltration of alveolar septa and capillaries (endothelialitis and capillaritis) and microthrombosis.2, 3, 4, 5 This is followed by an exudative phase of diffuse alveolar damage, with fibrinous edema in the alveolar spaces, increased numbers of macrophages and epithelial multinucleated giant cells, hyaline membrane formation, and epithelial necrosis, followed by type 2 pneumocyte hyperplasia. In addition, vascular changes occur, including endothelial necrosis, hemorrhage, thrombosis of capillaries and small arteries, and vasculitis.4,6 In turn, the organizing stage of diffuse alveolar damage and the final fibrotic stage of diffuse alveolar damage ensue, which may include proliferation of myofibroblasts within the lung interstitium and deposition of collagen, leading to fibrosis. Squamous metaplasia has also been observed.2,7The emergent and widespread nature of this pandemic necessitated the rapid development of multiple animal models and biological systems to study various aspects of pathogenesis, treatment, and prevention of disease. To date, reported animal models of COVID-19 pathology include human angiotensin-converting enzyme 2 transgenic mice,8, 9, 10, 11 golden Syrian hamsters,11, 12, 13, 14, 15, 16, 17 nonhuman primates,18,19 and ferrets.20,21 Recent comprehensive reviews of animal models of COVID-19 were provided by Zeiss et al22 and Veenhuis and Zeiss23 in 2021. Each model species has advantages and limitations with respect to similarity to disease in humans, expense, and practicality. The hamster model offers several advantages over other animal models: it is a relatively small, immunocompetent animal that is susceptible to infection with varied SARS-CoV-2 clinical isolates and readily develops pulmonary disease. Specifically, hamsters consistently develop moderate to severe bronchointerstitial pneumonia characterized by acute inflammation, edema, and necrosis 2 to 4 days after SARS-CoV-2 challenge, progressing to proliferative interstitial pneumonia with type II pneumocyte hyperplasia by 7 days after challenge. Pulmonary lesions have been reported to resolve around 10 to 14 days after inoculation, with little to no evidence of residual damage.12,17,19,24Although several studies have provided an overview of pulmonary pathology during acute infection, comprehensive longitudinal assessments of pulmonary pathology are lacking, including chronic time points. Likewise, there is a dearth of information integrating clinical, pathology, virology, and immunology findings or reporting systemic pathologic findings associated with SARS-CoV-2 infection in hamsters. Accordingly, the current study provides in-depth, longitudinal, pathologic characterization of multisystemic disease manifestation caused by SARS-CoV-2 infection in male and female golden Syrian hamsters. Furthermore, tissue damage and inflammatory responses were measured by digital image analysis using an open-source platform, QuPath.25,26 The current results show that inoculating hamsters intranasally with SARS-CoV-2 reliably induces acute damage to the respiratory tract with initial viral replication, followed by a macrophage-dominant pulmonary immune response. In turn, a reparative phase follows, with abundant type II pneumocyte hyperplasia restoring the alveolar lining, mirroring SARS-CoV-2 infection in humans.  相似文献   

4.
Certain genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of substantial concern because they may be more transmissible or detrimentally alter the pandemic course and disease features in individual patients. SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist health care system diagnosed from January 1 through May 31, 2021 are reported here. Prevalence of the B.1.1.7 (Alpha) variant increased rapidly and caused 63% to 90% of new cases in the latter half of May. Eleven B.1.1.7 genomes had an E484K replacement in spike protein, a change also identified in other SARS-CoV-2 lineages. Compared with non–B.1.1.7-infected patients, individuals with B.1.1.7 had a significantly lower cycle threshold (a proxy for higher virus load) and significantly higher hospitalization rate. Other variants [eg, B.1.429 and B.1.427 (Epsilon), P.1 (Gamma), P.2 (Zeta), and R.1] also increased rapidly, although the magnitude was less than that in B.1.1.7. Twenty-two patients infected with B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants had a high rate of hospitalization. Breakthrough cases (n = 207) in fully vaccinated patients were caused by a heterogeneous array of virus genotypes, including many not currently designated variants of interest or concern. In the aggregate, this study delineates the trajectory of SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as the major cause of new cases in Houston, TX, and heralds the arrival of B.1.617 variants in the metroplex.

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that began in early 2020 has been challenging for every academic health center and health system, hospital, and public health system in the United States and countries worldwide.1, 2, 3, 4, 5, 6, 7 The pandemic has also provided unprecedented opportunities for basic and translational research in all biomedical fields. Molecular population genomics of SARS-CoV-2 were systematically analyzed in the ethnically and socioeconomically diverse metropolitan Houston, TX, area (population 7 million) since the first coronavirus disease 2019 (COVID-19) cases were reported in early March 2020.8, 9, 10, 11 These studies are facilitated by a central molecular diagnostic laboratory that comprehensively identifies and retains all COVID-19 diagnostic specimens from our large health care system, which includes eight hospitals, emergency care clinics, and outpatient centers distributed throughout the metropolitan region. In addition, the longstanding interest in pathogen genomics and sequencing infrastructure was leveraged to investigate the spread of SARS-CoV-2 in metropolitan Houston.8, 9, 10, 11, 12, 13, 14, 15, 16 SARS-CoV-2 viruses causing infections in the earliest phase of the pandemic affecting Houston had substantial genomic diversity and are progeny of strains derived from several continents, including Europe and Asia.8,9 These findings indicated that SARS-CoV-2 was introduced into our region many times independently by individuals who had traveled from different parts of the country and the world. Subsequently, sequence analysis of 5085 genomes causing the first disease wave and massive second disease wave in Houston showed that all strains in the second wave had a D614G amino acid replacement in the spike protein.9 The D614G polymorphism increases human transmission and infectivity in vitro and in vivo in animal infection models.17, 18, 19, 20, 21, 22 More importantly, this was the first study to analyze the molecular architecture of SARS-CoV-2 in two infection waves in any major metropolitan region.One of the key goals since the start of the pandemic has been to sequence all positive SARS-CoV-2 specimens from patients in our hospital system and rapidly identify mutations that may be associated with detrimental patient outcome, including therapeutic or vaccine failure. Similarly, with the recognition of an increasing number of SARS-CoV-2 variants of interest (VOIs) and variants of concern (VOCs) by public health agencies, such as the US CDC, World Health Organization, and Public Health England (https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html, last accessed June 8, 2021; and https://www.gov.uk/government/collections/new-sars-cov-2-variant, last accessed June 8, 2021), there is now substantial domestic and international need to identify these virus genotypes rapidly and understand their velocity and patterns of dissemination. In particular, VOC B.1.1.7 (also termed Alpha), first identified in the United Kingdom, is of special interest because it has the ability to transmit effectively, it can spread through populations rapidly, and has been reported to have a significantly higher mortality rate than non-B.1.1.7 infections (Virological, https://virological.org/t/preliminary-genomic-characterisation- of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563, last accessed June 8, 2021; Public Health England, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/947048/technical_briefing_voc_sh_njl2_sh2.pdf, last accessed June 8, 2021; New and Emerging Respiratory Virus Threats Advisory Group, https://app.box.com/s/3lkcbxepqixkg4mv640dpvvg978ixjtf/file/756963730457, last accessed June 8, 2021; Centre for Mathematical Modelling of Infectious Diseases, https://cmmid.github.io/topics/covid19/uk-novel-variant.html, last accessed June 8, 2021; and https://virological.org/t/lineage-specific-growth-of-sars-cov-2-b-1-1-7-during-the-english-national-lockdown/575, last accessed June 8, 2021).23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 VOCs B.1.351 (β) and P.1 (Gamma), found to cause widespread disease in South Africa and Brazil, respectively, have sequence changes in spike protein that make them less susceptible to host and some therapeutic antibodies.37, 38, 39, 40 Recently, two additional VOIs, B.1.427 and B.1.429 (Epsilon), were recognized by the CDC in part because of their rapid transmission in many California communities41 (Outbreak.info, https://outbreak.info/situation-reports?pango=b.1.427, last accessed June 8, 2021; and https://outbreak.info/situation-reports?pango=b.1.4279, last accessed June 8, 2021).Based on sequencing 20,453 SARS-CoV-2 genomes causing COVID-19 disease in Houston, all named VOIs and VOCs are circulating in the metropolitan region, making it the first community to document their presence.10 A follow-up study reported rapid increase of VOC UK B.1.1.7 in Houston11; cases infected with the variant were estimated to have a doubling time of approximately 7 days. This rapid B.1.1.7 growth trajectory raised the possibility that this variant would cause nearly all new COVID-19 cases in metropolitan Houston by the end of March or early April 2021, a time frame similar to an estimate made in late January by the CDC.33This study reports integrated virus genome and patient data for 12,476 unique COVID-19 cases identified between January 1, 2021, and May 31, 2021, including 3276 patients with the B.1.1.7 VOC. In the latter half of May, depending on the day, 63% to 90% of all new COVID-19 cases in metropolitan Houston were caused by B.1.1.7. Linked medical record information, available for virtually all sequenced genomes, was used to study the relationship between virus genotypes and patient phenotypes. Patients infected with B.1.1.7 had significantly lower cycle threshold (CT) values in nasopharyngeal specimens (considered to be a proxy for higher virus load) and a significantly higher hospitalization rate compared with non-B.1.1.7 patients. There was no difference between these two groups in hospital length of stay or mortality. Of the 3276 B.1.1.7 genomes, 11 (0.3%) had an E484K change in spike protein that reduces binding by some neutralizing antibodies. Unexpectedly, five cases of B.1.1.7 were detected from samples collected in early December, resulting in a revised time frame for the introduction of this variant to Houston. Twenty-two patients were identified with COVID-19 caused by B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants reported to be causing widespread disease and extensive public health problems in India, other Southeast Asian countries, and many regions of the United Kingdom (World Health Organization, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-2021, last accessed June 9, 2021).42, 43, 44, 45, 46, 47, 48, 49 These patients also had a high rate of hospitalization. Vaccine breakthrough cases (n = 207) were caused by diverse virus genotypes, many of which were not VOCs or VOIs. Our genome data show that VOCs and VOIs now account for the great majority of all new COVID-19 cases in this region, identify B.1.1.7 as the major cause of new cases in Houston, and document the arrival and spread of B.1.617 variants in the Houston metroplex.  相似文献   

5.
6.
7.
8.
Remodeling of blood vessels and lymphatics are prominent features of sustained inflammation. Angiopoietin-2 (Ang2)/Tie2 receptor signaling and tumor necrosis factor-α (TNF)/TNF receptor signaling are known to contribute to these changes in airway inflammation after Mycoplasma pulmonis infection in mice. We determined whether Ang2 and TNF are both essential for the remodeling on blood vessels and lymphatics, and thereby influence the actions of one another. Their respective contributions to the initial stage of vascular remodeling and sprouting lymphangiogenesis were examined by comparing the effects of function-blocking antibodies to Ang2 or TNF, given individually or together during the first week after infection. As indices of efficacy, vascular enlargement, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic vessel sprouting were assessed. Inhibition of Ang2 or TNF alone reduced the remodeling of blood vessels and lymphatics, but inhibition of both together completely prevented these changes. Genome-wide analysis of changes in gene expression revealed synergistic actions of the antibody combination over a broad range of genes and signaling pathways involved in inflammatory responses. These findings demonstrate that Ang2 and TNF are essential and synergistic drivers of remodeling of blood vessels and lymphatics during the initial stage of inflammation after infection. Inhibition of Ang2 and TNF together results in widespread suppression of the inflammatory response.Remodeling of blood vessels and lymphatics contributes to the pathophysiology of many chronic inflammatory diseases, including asthma, chronic bronchitis, chronic obstructive pulmonary disease, inflammatory bowel disease, and psoriasis.1, 2, 3 When inflammation is sustained, capillaries acquire venule-like properties that expand the sites of plasma leakage and leukocyte influx. Consistent with this transformation, the remodeled blood vessels express P-selectin, intercellular adhesion molecule 1 (ICAM-1), EphB4, and other venular markers.4, 5, 6 The changes are accompanied by remodeling of pericytes and disruption of pericyte-endothelial crosstalk involved in blood vessel quiescence.7 Remodeling of blood vessels is accompanied by plasma leakage, inflammatory cell influx, and sprouting lymphangiogenesis.6, 8, 9Mycoplasma pulmonis infection causes sustained inflammation of the respiratory tract of rodents.10 This infection has proved useful for dissecting the features and mechanisms of vascular remodeling and lymphangiogenesis.6, 9, 10 At 7 days after infection, there is widespread conversion of capillaries into venules, pericyte remodeling, inflammatory cell influx, and lymphatic vessel sprouting in the airways and lung.4, 5, 6, 7, 8, 9 Many features of chronic M. pulmonis infection in mice are similar to Mycoplasma pneumoniae infection in humans.11Angiopoietin-2 (Ang2) is a context-dependent antagonist of Tie2 receptors12, 13 that is important for prenatal and postnatal remodeling of blood vessels and lymphatic vessels.13, 14, 15 Ang2 promotes vascular remodeling,4, 5 lymphangiogenesis,15, 16, 17 and pericyte loss18 in disease models in mice. Mice genetically lacking Ang2 have less angiogenesis, lymphangiogenesis, and neutrophil recruitment in inflammatory bowel disease.3 Ang2 has proved useful as a plasma biomarker of endothelial cell activation in acute lung injury, sepsis, hypoxia, and cancer.19Like Ang2, tumor necrosis factor (TNF)-α is a mediator of remodeling of blood vessels and lymphatics.8, 9, 20, 21 TNF triggers many components of the inflammatory response, including up-regulation of expression of vascular cell adhesion molecule-1, ICAM-1, and other endothelial cell adhesion molecules.22 TNF inhibitors reduce inflammation in mouse models of inflammatory disease23, 24 and are used clinically in the treatment of rheumatoid arthritis, ankylosing spondylitis, Crohn''s disease, psoriatic arthritis, and some other inflammatory conditions.24, 25 Indicative of the complex role of TNF in disease, inhibition or deletion of TNF can increase the risk of serious infection by bacterial, mycobacterial, fungal, viral, and other opportunistic pathogens.26TNF and Ang2 interact in inflammatory responses. TNF increases Ang2 expression in endothelial cells in a time- and dose-dependent manner, both in blood vessels27 and lymphatics.16 Administration of TNF with Ang2 increases cell adhesion molecule expression more than TNF alone.16, 28 Similarly, Ang2 can promote corneal angiogenesis in the presence of TNF, but not alone.29 In mice that lack Ang2, TNF induces leukocyte rolling but not adherence to the endothelium.28 Ang2 also augments TNF production by macrophages.30, 31 Inhibition of Ang2 and TNF together with a bispecific antibody can ameliorate rheumatoid arthritis in a mouse model.32With this background, we sought to determine whether Ang2 and TNF act together to drive the remodeling of blood vessels and lymphatics in the initial inflammatory response to M. pulmonis infection. In particular, we asked whether Ang2 and TNF have synergistic actions in this setting. The approach was to compare the effects of selective inhibition of Ang2 or TNF, individually or together, and then assess the severity of vascular remodeling, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic sprouting. Functional consequences of genome-wide changes in gene expression were analyzed by Ingenuity Pathway Analysis (IPA)33, 34 and the Database for Annotation, Visualization and Integrated Discovery (DAVID).35 The studies revealed that inhibition of Ang2 and TNF together, but not individually, completely prevented the development of vascular remodeling and lymphatic sprouting and had synergistic effects in suppressing gene expression and cellular pathways activated during the initial stage of the inflammatory response.  相似文献   

9.
Ischemia/reperfusion injury is a major cause of acute kidney injury. Improving renal repair would represent a therapeutic strategy to prevent renal dysfunction. The innate immune receptor Nlrp3 is involved in tissue injury, inflammation, and fibrosis; however, its role in repair after ischemia/reperfusion is unknown. We address the role of Nlrp3 in the repair phase of renal ischemia/reperfusion and investigate the relative contribution of leukocyte- versus renal-associated Nlrp3 by studying bone marrow chimeric mice. We found that Nlrp3 expression was most profound during the repair phase. Although Nlrp3 expression was primarily expressed by leukocytes, both leukocyte- and renal-associated Nlrp3 was detrimental to renal function after ischemia/reperfusion. The Nlrp3-dependent cytokine IL-1β remained unchanged in kidneys of all mice. Leukocyte-associated Nlrp3 negatively affected tubular apoptosis in mice that lacked Nlrp3 expression on leukocytes, which correlated with reduced macrophage influx. Nlrp3-deficient (Nlrp3KO) mice with wild-type bone marrow showed an improved repair response, as seen by a profound increase in proliferating tubular epithelium, which coincided with increased hepatocyte growth factor expression. In addition, Nlrp3KO tubular epithelial cells had an increased repair response in vitro, as seen by an increased ability of an epithelial monolayer to restore its structural integrity. In conclusion, Nlrp3 shows a tissue-specific role in which leukocyte-associated Nlrp3 is associated with tubular apoptosis, whereas renal-associated Nlrp3 impaired wound healing.Ischemia/reperfusion (IR) injury is a major cause of acute kidney injury1 and increases the risk of developing chronic kidney disease (CKD).2 After injury, wounded tissue organizes an efficient response that aims to combat infections, clear cell debris, re-establish cell number, and reorganize tissue architecture. First, necrotic tissue releases danger-associated molecular patterns, such as high-mobility group box-13 or mitochondrial DNA,4 which leads to chemokine secretion5 and a subsequent influx of leukocytes. Second, neutrophils and macrophages clear cellular debris but also increase renal damage because depletion of neutrophils6 or macrophages within 48 hours of IR will reduce renal damage.7 At approximately 72 hours of reperfusion, the inflammatory phase transforms into the repair phase and is characterized by surviving tubular epithelial cells (TECs) that dedifferentiate, migrate, and proliferate to restore renal function.8Previously, we have shown that Toll-like receptor (TLR) 2 and TLR4 play a detrimental role after acute renal IR injury.9, 10, 11 In addition, TLR2 appeared also pivotal in mediating tubular repair in vitro after cisplatin-induced injury,12 indicating a dual role for TLR2. The cytosolic innate immune receptor Nlrp3 is able to sense cellular damage13 and mediates renal inflammation and pathological characteristics after IR14, 15, 16 or nephrocalcinosis.17 Next to the detrimental role of Nlrp3 in different renal disease models and consistent with the dual role of TLR2, Nlrp3 was shown to protect against loss of colonic epithelial integrity.18 We, therefore, speculate that Nlrp3, which contributes to sterile renal inflammation during acute renal IR injury, might also drive subsequent tubular repair.To test this hypothesis, we investigated the role of leukocyte- versus renal-associated Nlrp3 with respect to tissue repair after renal IR. We observed that both renal- and leukocyte-associated Nlrp3s are detrimental to renal function after renal IR injury; however, this is through different mechanisms. Leukocyte-associated Nlrp3 is related to increased tubular epithelial apoptosis, whereas renal-associated Nlrp3 impairs the tubular epithelial repair response. Our data suggest Nlrp3 as a negative regulator of resident tubular cell proliferation in addition to its detrimental role in renal fibrosis and inflammation.14, 19  相似文献   

10.
Hyperactivation of the CXCL12-CXCR4 axis occurs in endometriosis; the therapeutic potential of treatments aimed at global inhibition of the axis was recently reported. Because CXCR4 is predominantly expressed on epithelial cells in the uterus, this study explored the effects of targeted disruption of CXCR4 in endometriosis lesions. Uteri derived from adult female mice homozygous for a floxed allele of CXCR4 and co-expressing Cre recombinase under control of progesterone receptor promoter were sutured onto the peritoneum of cycling host mice expressing the green fluorescent protein. Four weeks after endometriosis induction, significantly lower number of lesions developed in Cxcr4-conditional knockout lesions relative to those in controls (37.5% vs. 68.8%, respectively). In lesions that developed in Cxcr4-knockout, reduced epithelial proliferation was associated with a lower ratio of epithelial to total lesion area compared with controls. Furthermore, while CD3+ lymphocytes were largely excluded from the epithelial compartment in control lesions, in Cxcr4-knockout lesions, CD3+ lymphocytes infiltrated the Cxcr4-deficient epithelium in the diestrus and proestrus stages. Current data demonstrate that local CXCR4 expression is necessary for proliferation of the epithelial compartment of endometriosis lesions, that its downregulation compromises lesion numbers, and suggest a role for epithelial CXCR4 in lesion immune evasion.

Endometriosis is one of the most common gynecologic diseases in women of reproductive age, with a prevalence rate of approximately 10%.1 Various theories have been proposed for the origin of endometriosis, including the most widely accepted theory of retrograde menstruation, in which shed endometrial tissue is refluxed through the fallopian tubes and proliferates within the pelvis.2,3 Because the majority of women have retrograde menstruation, yet only about one in 10 develops endometriosis, it has been proposed that factors promoting survival, invasiveness, and growth of endometrial fragments in the peritoneal cavity play a role in their persistence at ectopic sites in women with endometriosis. Such predisposing factors include somatic mutations in the highly proliferative endometrial epithelium (ie, KRAS, ARID1A4), aberrant progenitor/stem cell populations (endometrial or bone marrow (BM) derived5, 6, 7, 8, 9) at ectopic sites, and/or an immune-tolerant microenvironment permissive to proliferation and neoangiogenesis of ectopic endometrial fragments. This immunosuppressive microenvironment is characterized by elevated levels of activated peritoneal macrophages, reduced natural killer cell activity, and abnormally high levels of T-regulatory cells,10 which suppress immune mechanisms aimed at eliminating implantation of misplaced autologous cells.The chemokine-receptor CXCL12-CXCR4 axis is up-regulated in endometriosis.11, 12, 13, 14 The axis has roles in promoting cell survival, proliferation, chemotaxis, invasion, and angiogenesis. In cancer, hyperactivation of the axis is associated with disease progression and correlates with poor clinical outcome.15, 16, 17, 18, 19 This axis was also proposed to function in immune modulation: CXCL12 binding to CXCR4-expressing intratumoral (epithelial) cells was suggested to be a mechanism mediating cancer evasion of immune surveillance.20,21 Therapeutic blockade of the axis with the CXCR4 antagonist AMD3100 exhibited antitumor effects, including reduced tumor proliferation and increased apoptosis, both associated with T-cell accumulation within the tumor epithelium.20,22, 23, 24Endometrial CXCR4 is predominantly expressed on luminal and glandular epithelia, whereas the stroma is the principal source of the ligand CXCL12.13,25 Stromal-derived CXCL12 exerts its proliferative effect on the epithelium through paracrine interactions with its cognate receptor CXCR4.26 Estradiol stimulates CXCL12 production and progesterone to inhibit this stimulation.27,28 In vitro, AMD3100 blocked the CXCL12-mediated proliferative effects on epithelial cells.29 Acute treatment of experimental endometriosis in mice with AMD3100 significantly decreases lesion volume and reduces BM cell trafficking to lesions.30 AMD3100 was also shown to reduce recruitment of BM-derived endothelial progenitor cells into lesions and compromise their vascularization.31 Based on these studies, whether the inhibitory action of AMD3100 on lesion growth is mediated via local effects (ie, inhibiting lesion-endogenous CXCR4) or systemic effects (ie, inhibiting exogenous CXCR4-expressing cells, which infiltrate lesions with endometriosis induction) was explored. Moreover, in a manner similar to cancer, lesion-derived CXCR4 may have a role in immune evasion.To achieve these goals, endometriosis was induced using uteri derived from 8- to 10- week–old PgrCre/+ Cxcr4−/− female mice homozygous for a floxed CXCR4 allele and harboring a progesterone receptor promoter–driven Cre recombinase. Endometriosis was induced in syngeneic green fluorescent protein (GFP) transgenic host mice, allowing discrimination of host-derived populations from endometrial cells within uterine explants. A significant reduction in the number of lesions was found in mice harboring Cxcr4-conditional knockout lesions. In lesions that did develop, epithelial thinning was observed concomitant with the appearance of intraepithelial lymphocytes. At the proliferative stage, Ki-67 staining was absent from the epithelium of lesions, suggesting that diminished lesion numbers may be attributed to loss of epithelial proliferation, ultimately undermining lesion integrity.  相似文献   

11.
Ehrlichia species are intracellular bacteria that cause fatal ehrlichiosis, mimicking toxic shock syndrome in humans and mice. Virulent ehrlichiae induce inflammasome activation leading to caspase-1 cleavage and IL-18 secretion, which contribute to development of fatal ehrlichiosis. We show that fatal infection triggers expression of inflammasome components, activates caspase-1 and caspase-11, and induces host-cell death and secretion of IL-1β, IL-1α, and type I interferon (IFN-I). Wild-type and Casp1−/− mice were highly susceptible to fatal ehrlichiosis, had overwhelming infection, and developed extensive tissue injury. Nlrp3−/− mice effectively cleared ehrlichiae, but displayed acute mortality and developed liver injury similar to wild-type mice. By contrast, Ifnar1−/− mice were highly resistant to fatal disease and had lower bacterial burden, attenuated pathology, and prolonged survival. Ifnar1−/− mice also had improved protective immune responses mediated by IFN-γ and CD4+ Th1 and natural killer T cells, with lower IL-10 secretion by T cells. Importantly, heightened resistance of Ifnar1−/− mice correlated with improved autophagosome processing, and attenuated noncanonical inflammasome activation indicated by decreased activation of caspase-11 and decreased IL-1β, compared with other groups. Our findings demonstrate that IFN-I signaling promotes host susceptibility to fatal ehrlichiosis, because it mediates ehrlichia-induced immunopathology and supports bacterial replication, perhaps via activation of noncanonical inflammasomes, reduced autophagy, and suppression of protective CD4+ T cells and natural killer T-cell responses against ehrlichiae.Ehrlichia chaffeensis is the causative agent of human monocytotropic ehrlichiosis, a highly prevalent life-threatening tickborne disease in North America.1, 2, 3 Central to the pathogenesis of human monocytotropic ehrlichiosis is the ability of ehrlichiae to survive and replicate inside the phagosomal compartment of host macrophages and to secrete proteins via type I and type IV secretion systems into the host-cell cytosol.4 Using murine models of ehrlichiosis, we and others have demonstrated that fatal ehrlichial infection is associated with severe tissue damage caused by TNF-α–producing cytotoxic CD8+ T cells (ie, immunopathology) and the suppression of protective CD4+ Th1 immune responses.5, 6, 7, 8, 9, 10, 11, 12, 13, 14 However, neither how the Ehrlichia bacteria trigger innate immune responses nor how these responses influence the acquired immunity against ehrlichiae is entirely known.Extracellular and intracellular pattern recognition receptors recognize microbial infections.15, 16, 17, 18 Recently, members of the cytosolic nucleotide-binding domain and leucine-rich repeat family (NLRs; alias NOD-like receptors), such as NLRP3, have emerged as critical pattern recognition receptors in the host defense against intracellular pathogens. NLRs recognize intracellular bacteria and trigger innate, protective immune responses.19, 20, 21, 22, 23 NLRs respond to both microbial products and endogenous host danger signals to form multimeric protein platforms known as inflammasomes. The NLRP3 inflammasome consists of multimers of NLRP3 that bind to the adaptor molecules and apoptosis-associated speck-like protein (ASC) to recruit pro–caspase-1 and facilitate cleavage and activation of caspase-1.15, 16, 24 The canonical inflammasome pathway involves the cleavage of immature forms of IL-1β and IL-18 (pro–IL-1β and pro–IL-18) into biologically active mature IL-1β and IL-18 by active caspase-1.25, 26, 27, 28 The noncanonical inflammasome pathway marked by the activation of caspase-11 has been described recently. Active caspase-11 promotes the caspase-1–dependent secretion of IL-1β/IL-18 and mediates inflammatory lytic host-cell death via pyroptosis, a process associated with the secretion of IL-1α and HMGB1.17, 29, 30, 31 Several key regulatory checkpoints ensure the proper regulation of inflammasome activation.16, 32 For example, blocking autophagy by the genetic deletion of the autophagy regulatory protein ATG16L1 increases the sensitivity of macrophages to the inflammasome activation induced by TLRs.33 Furthermore, TIR domain-containing adaptor molecule 1 (TICAM-1; alias TRIF) has been linked to inflammasome activation via the secretion of type I interferons α and β (IFN-α and IFN-β) and the activation of caspase-11 during infections with Gram-negative bacteria.2, 34, 35, 36, 37, 38, 39We have recently demonstrated that fatal ehrlichial infection induces excess IL-1β and IL-18 production, compared with mild infection,8, 12, 13, 14 and that lack of IL-18 signaling enhances resistance of mice to fatal ehrlichiosis.12 These findings suggest that inflammasomes play a detrimental role in the host defense against ehrlichial infection. Elevated production of IL-1β and IL-18 in fatal ehrlichiosis was associated with an increase in hepatic expression of IFN-α.14 IFN-I plays a critical role in the host defense against viral and specific bacterial infections.28, 36, 37, 40, 41, 42, 43 However, the mechanism by which type I IFN contributes to fatal ehrlichial infection remains unknown. Our present results reveal, for the first time, that IFNAR1 promotes detrimental inflammasome activation, mediates immunopathology, and impairs protective immunity against ehrlichiae via mechanisms that involve caspase-11 activation, blocking of autophagy, and production of IL-10. Our novel finding that lipopolysaccharide (LPS)-negative ehrlichiae trigger IFNAR1-dependent caspase-11 activation challenges the current paradigm that implicates LPS as the major microbial ligand triggering the noncanonical inflammasome pathway during Gram-negative bacterial infection.  相似文献   

12.
13.
Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to dramatically alter the landscape of the coronavirus disease 2019 (COVID-19) pandemic. The recently described variant of concern designated Omicron (B.1.1.529) has rapidly spread worldwide and is now responsible for the majority of COVID-19 cases in many countries. Because Omicron was recognized recently, many knowledge gaps exist about its epidemiology, clinical severity, and disease course. A genome sequencing study of SARS-CoV-2 in the Houston Methodist health care system identified 4468 symptomatic patients with infections caused by Omicron from late November 2021 through January 5, 2022. Omicron rapidly increased in only 3 weeks to cause 90% of all new COVID-19 cases, and at the end of the study period caused 98% of new cases. Compared with patients infected with either Alpha or Delta variants in our health care system, Omicron patients were significantly younger, had significantly increased vaccine breakthrough rates, and were significantly less likely to be hospitalized. Omicron patients required less intense respiratory support and had a shorter length of hospital stay, consistent with on average decreased disease severity. Two patients with Omicron stealth sublineage BA.2 also were identified. The data document the unusually rapid spread and increased occurrence of COVID-19 caused by the Omicron variant in metropolitan Houston, Texas, and address the lack of information about disease character among US patients.

Over the past 14 months, the Alpha and Delta variants of concern (VOCs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused two distinct coronavirus disease 2019 (COVID-19) surges in the United States, Southeast Asia, Europe, and elsewhere (https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html, last accessed December 30, 2021; https://www.gov.uk/government/collections/new-sars-cov-2-variant, last accessed December 30, 2021), and remodeled the landscape of human behavior and many societies. Delta replaced the Alpha variant as the cause of virtually all COVID-19 in many countries (https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---13-july-2021, last accessed August 18, 2021; https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/9july2021, last accessed August 18, 2021).At the start of the pandemic almost 2 years ago, the Houston Methodist health care system instituted a comprehensive and integrated population genomics project designed to sequence all SARS-CoV-2 samples causing COVID-19 in patients cared for at our facilities, which include eight hospitals located throughout the metroplex. The project was implemented when the initial Houston Methodist COVID-19 case was diagnosed at the end of February 2020, and has continued unabated.1, 2, 3, 4, 5, 6, 7 This project was facilitated by the existence of a single large diagnostic laboratory that serves the entire system and is seamlessly integrated with a research institute with extensive genomics expertise and capacity. A key goal was to comprehensively map the population genomics, trajectory, and other features of the pandemic in metropolitan Houston, Texas, with a population size of approximately 7.2 million. Houston is the fourth largest city in the United States, is the most ethnically diverse metropolitan area in the country, and is a major port of entry. To date, SARS-CoV-2 genomes have been sequenced from >70,000 patient samples. Many features of four distinct SARS-CoV-2 waves in Houston have been described.2, 3, 4, 5, 6The successes of rapid SARS-CoV-2 vaccine development and documented efficacy, coupled with the significant downturn of the disease wave caused by Delta in Houston and elsewhere in fall 2021,6 suggested that the pandemic was abating. However, the identification of a new VOC designated B.1.1.529 and known as Omicron that has spread rapidly in South Africa and the United Kingdom has tempered this optimism.8, 9, 10 Inasmuch as Omicron was recognized recently, and much is not known about its epidemiology and clinical characteristics and course, we used our integrated infrastructure in an effort to address the lack of information available for US Omicron patients. Genome sequencing identified 4468 COVID-19 patients with symptomatic disease caused by Omicron in the Houston Methodist health care system beginning in late November 2021 and ending January 5, 2022. In 3 weeks, Omicron spread throughout the Houston metropolitan region to become the cause of 90% of new COVID-19 cases, and at the end of the study period caused 98% of all new cases. Compared with patients infected with either Alpha or Delta variant and cared for in our system, significantly fewer Omicron patients were hospitalized, and those who were hospitalized required significantly less intense respiratory support and had a shorter length of stay. Our findings are consistent with decreased disease severity among Houston Methodist Omicron patients. Many factors undoubtedly have contributed, including but not limited to increased vaccination uptake, population immunity, and patient demographics, such as younger age. The extent to which our findings translate to other cities and other patient populations, including children, is unknown. These data expand on our initial Omicron work7 and address the lack of information about disease character among US patients with COVID-19 caused by this VOC.  相似文献   

14.
Cullin (CUL) 4A and 4B ubiquitin ligases are often highly accumulated in human malignant neoplasms and are believed to possess oncogenic properties. However, the underlying mechanisms by which CUL4A and CUL4B promote pulmonary tumorigenesis remain largely elusive. This study reports that CUL4A and CUL4B are highly expressed in patients with non–small cell lung cancer (NSCLC), and their high expression is associated with disease progression, chemotherapy resistance, and poor survival in adenocarcinomas. Depletion of CUL4A (CUL4Ak/d) or CUL4B (CUL4Bk/d) leads to cell cycle arrest at G1 and loss of proliferation and viability of NSCLC cells in culture and in a lung cancer xenograft model, suggesting that CUL4A and 4B are oncoproteins required for tumor maintenance of certain NSCLCs. Mechanistically, increased accumulation of the cell cycle–dependent kinase inhibitor p21/Cip1/WAF1 was observed in lung cancer cells on CUL4 silencing. Knockdown of p21 rescued the G1 arrest of CUL4Ak/d or CUL4Bk/d NSCLC cells, and allowed proliferation to resume. These findings reveal that p21 is the primary downstream effector of lung adenocarcinoma dependence on CUL4, highlight the notion that not all substrates respond equally to abrogation of the CUL4 ubiquitin ligase in NSCLCs, and imply that CUL4Ahigh/CUL4Bhigh may serve as a prognostic marker and therapeutic target for patients with NSCLC.

Lung cancer is the most common cause of cancer mortality worldwide,1 accounting for 19.4% of all cancer-related deaths and representing a significant clinical burden.2 Among the subtypes of lung cancer, non–small cell lung cancer (NSCLC) accounts for 80% to 85% of cases.3, 4, 5 Although multimodality treatments, including targeted therapies and immunotherapies, have been applied to NSCLCs, with high rates of local and distant failure, the overall cure and survival rates for NSCLC remain low.6,7 Thus, understanding the molecular mechanisms underlying NSCLC development and progression is of fundamental importance for the development of new therapeutic strategies for patients with NSCLC.Cullin (CUL) 4, a molecular scaffold of the CUL4-RING ubiquitin ligase (CRL4), plays an important role in regulating key cellular processes through modulating the ubiquitylation and degradation of various protein substrates.8 Two CUL4 proteins, CUL4A and CUL4B, share an 82% sequence homology, with similar but distinct functions.9 CUL4 has been extensively studied in the process of nucleotide excision repair (NER) after UV irradiation.10, 11, 12, 13 Loss of CUL4A, but not CUL4B, elevates global genomic NER activity and confers increased protection against UV-induced skin carcinogenesis.11 In addition to DNA repair, CUL4 also plays a significant role in a wide spectrum of physiologic processes, such as the cell cycle, cell signaling, and histone methylation, which have direct relevance to the development of human cancers.14, 15, 16 Accumulating studies have found that CUL4A is amplified or expressed at abnormally high levels in multiple cancers, including breast cancer, squamous cell carcinoma, hepatocellular carcinomas, and lung cancer.9,17, 18, 19 More importantly, CUL4A and 4B overexpression is implicated in tumor progression, metastasis, and a poorer survival rate for patients with cancer.9,20,21 CUL4A, but not CUL4B, is inversely correlated with the NER protein xeroderma pigmentosum, complementation group C and the G1/S DNA damage checkpoint protein p21 in patients with lung squamous cell carcinoma, highlighting a reduced DNA damage response9 as well as promoting cell growth and tumorigenesis.22,23 Increased expression of CUL4A caused hyperplasia as well as lung adenocarcinomas in mice.24 However, the mechanistic basis and clinical significance of CUL4A dysregulation in NSCLC remain unclear.The CUL4A paralog CUL4B shares extensive sequence homology and redundant functions with CUL4A.9 To date, research on CUL4B has been focused mainly on its genetic association with human X-linked mental retardation.25, 26, 27, 28 Recently, CUL4B was found to be overexpressed in colon cancer and correlated with tumor stage, histologic differentiation, vascular invasion, and distant metastasis.29 Patients with lung and colon cancer with high levels of CUL4B had lower overall survival (OS) and disease-free survival (DFS) rates than those with low CUL4B expression.9,29 CUL4B is also overexpressed in cervical, esophageal, and breast cancers and associated with tumor invasion and lymph node metastasis.16,30,31 Furthermore, CUL4B overexpression promotes the development of spontaneous liver tumors at a high rate and enhances diethylnitrosamine-induced hepatocarcinogenesis in transgenic mice.32The molecular mechanisms underlying the capacity of CUL4 to promote pulmonary tumorigenesis remain largely elusive. CUL4A promotes NSCLC cell growth.22 CUL4 targets a panel of cell cycle regulators for ubiquitination and degradation, including Cdc6, Cdt1, p21, cyclin E, minichromosome maintenance 10 replication initiation factor, and forkhead box M1.33 However, which of the cell cycle substrates of CUL4 play a key role in tumor dependence on dysregulated CUL4A or CUL4B remains to be defined. This study found that attenuation of CUL4, especially CUL4B, inhibited NSCLC cell proliferation and tumorigenesis through increased accumulation of p21 and cell cycle arrest in G1.  相似文献   

15.
Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are conditions that affect peripheral nerves. The mechanisms that underlie demyelination in these neuropathies are unknown. Recently, we demonstrated that the node of Ranvier is the primary site of the immune attack in patients with GBS and CIDP. In particular, GBS patients have antibodies against gliomedin and neurofascin, two adhesion molecules that play a crucial role in the formation of nodes of Ranvier. We demonstrate that immunity toward gliomedin, but not neurofascin, induced a progressive neuropathy in Lewis rats characterized by conduction defects and demyelination in spinal nerves. The clinical symptoms closely followed the titers of anti-gliomedin IgG and were associated with an important deposition of IgG at nodes. Furthermore, passive transfer of antigliomedin IgG induced a severe demyelinating condition and conduction loss. In both active and passive models, the immune attack at nodes occasioned the loss of the nodal clusters for gliomedin, neurofascin-186, and voltage-gated sodium channels. These results indicate that primary immune reaction against gliomedin, a peripheral nervous system adhesion molecule, can be responsible for the initiation or progression of the demyelinating form of GBS. Furthermore, these autoantibodies affect saltatory propagation by dismantling nodal organization and sodium channel clusters. Antibodies reactive against nodal adhesion molecules thus likely participate in the pathologic process of GBS and CIDP.Guillain-Barré syndrome (GBS) is a group of inflammatory neuropathies that affect peripheral nerves. In Europe, acute inflammatory demyelinating polyneuropathy (AIDP) is the most common form of GBS. Autopsy and biopsy studies indicated that both humoral and cellular immune reaction against Schwann cell or axonal antigens are implicated in GBS etiology.1 Early investigations have found that conduction defects closely correlate with myelin retraction and macrophage invasion in many patients.2, 3, 4, 5 Some GBS cases also involve acute demyelination without immune cell invasion and are primarily humorally mediated.6, 7 In particular, deposition of complement on the abaxonal surface of the Schwann cells has been shown during the early stage of GBS8, 9, 10 and in experimental allergic neuritis (EAN).11 In a recent study, we demonstrated that nodes of Ranvier and paranodes are the targets of the immune attack in GBS and in chronic inflammatory demyelinating polyneuropathy (CIDP).12 Notably, cell adhesion molecules (CAMs) at nodes or paranodes (gliomedin, neurofascin, and contactin) were recognized by IgG antibodies in patients with GBS or CIDP.12, 13 Autoantibodies against neurofascin and gliomedin were also detected in a rat model of AIDP and correlated with important conduction defects.14 This finding suggested that antibodies to nodal CAMs may participate to the pathogenesis of AIDP and CIDP. However, the exact mechanisms by which these humoral factors mediate demyelination and conduction defects are still elusive.Several CAMs are implicated in node formation and are responsible for the enrichment of voltage-gated sodium (Nav) channels at the nodes of Ranvier.15 At peripheral, nodes gliomedin and NrCAM are secreted into the nodal gap lumen and interact with neurofascin-186 (NF186) expressed at nodal axolemma.16, 17, 18, 19 This interaction is crucial for Nav channel aggregation at nodes.19, 20, 21 In addition, the paranodal axoglial junctions are made by the association of contactin and contactin-associated protein (Caspr) with neurofascin-155 (NF155), a variant expressed in glia.22 This adhesive junction forms a barrier to the lateral diffusion of nodal channels.19, 21, 23 In a rat model of AIDP, we found that the loss of NF186 and gliomedin at nodes preceded paranodal demyelination and the diffusion of Nav channels in demyelinated segments.14 This finding indicated that antibodies to nodal CAMs may participate to conduction defects by dismantling axoglial attachment at nodes and paranodes.We investigated whether immunity toward gliomedin and NF186 can trigger peripheral neuropathies and be responsible for demyelination in GBS patients. We found that immunization against gliomedin induced a biphasic condition associated with conduction loss and demyelination. Passive transfer of antibodies to gliomedin exacerbated the clinical signs of EAN and resulted in the disorganization of the nodes of Ranvier. Altogether, these results demonstrate that humoral immune response directed against nodal CAMs participates in conduction abnormalities in peripheral nerves and in the etiology of GBS and CIDP.  相似文献   

16.
Adenosine has an important role in inflammation and tissue remodeling and promotes dermal fibrosis by adenosine receptor (A2AR) activation. Adenosine may be formed intracellularly from adenine nucleotides or extracellularly through sequential phosphohydrolysis of released ATP by nucleoside triphosphate diphosphohydrolase (CD39) and ecto-5′-nucleotidase (CD73). Because the role of these ecto-enzymes in fibrosis appears to be tissue specific, we determined whether these ectonucleotidases were directly involved in diffuse dermal fibrosis. Wild-type and mice globally deficient in CD39 knockout (CD39KO), CD73 (CD73KO), or both (CD39/CD73DKO) were challenged with bleomycin. Extracellular adenosine levels and dermal fibrosis were quantitated. Adenosine release from skin cultured ex vivo was increased in wild-type mice after bleomycin treatment but remained low in skin from CD39KO, CD73KO, or CD39/CD73DKO bleomycin-treated mice. Deletion of CD39 and/or CD73 decreased the collagen content, and prevented skin thickening and tensile strength increase after bleomycin challenge. Decreased dermal fibrotic features were associated with reduced expression of the profibrotic mediators, transforming growth factor-β1 and connective tissue growth factor, and diminished myofibroblast population in CD39- and/or CD73-deficient mice. Our work supports the hypothesis that extracellular adenosine, generated in tandem by ecto-enzymes CD39 and CD73, promotes dermal fibrogenesis. We suggest that biochemical or biological inhibitors of CD39 and/or CD73 may hold promise in the treatment of dermal fibrosis in diseases such as scleroderma.Tissue damage leads to the release of the signaling nucleoside adenosine, which, by engaging specific adenosine receptors (A1R, A2AR, A2BR, and A3R), exhibits both tissue-protective and tissue-destructive effects.1, 2, 3, 4 In particular, adenosine is a potent regulator of tissue repair, and we have previously reported that adenosine promotes dermal fibrosis via the A2AR receptor, as shown in vitro,5 in a bleomycin-induced dermal injury model of scleroderma,6 and in a model of elevated tissue adenosine.7 Similarly, we found that pharmacological blockade of A2AR diminishes skin scarring.8Elevations in extracellular adenosine can result from either an increase in intracellular adenosine, followed by release into the extracellular space, or the release of adenine nucleotides, followed by their extracellular catabolism into adenosine.9 The main source of extracellular adenosine stems from the enzymatic phosphohydrolysis of precursor nucleotides to adenosine.10, 11, 12, 13 This is achieved by a two-step enzymatic process involving the ecto-apyrase, CD39 (conversion of ATP/ADP to AMP) and the ecto-5′-nucleotidase, CD73 (conversion of AMP to adenosine).14 It is widely accepted that CD39 and CD73 promote anti-inflammatory effects of adenosine in the immune system,15, 16, 17 and both enzymes have been previously shown to attenuate acute injury and inflammation in models of ambient hypoxia,18, 19 cyclic mechanical stretch,20 and bleomycin-induced lung injury.2 However, CD39 and CD73 promote fibrosis in murine models of pancreatitis21 and hepatic fibrosis,22 respectively, suggesting an important role for CD39 and CD73 in the regulation of fibrogenesis in vivo.We hypothesized that limiting extracellular adenosine levels by CD39 and/or CD73 gene deletion may protect against bleomycin-induced dermal fibrosis, a model of scleroderma. CD39-deficient, CD73-deficient, and CD39/73 double-deficient mice were subjected to bleomycin-induced skin injury, and the extent of skin fibrosis was compared with the wild-type (WT) mice. Our results show that, after bleomycin injection, mice globally null for CD39 and/or CD79 released lower levels of adenosine and concurrently developed less dermal fibrosis, indicating that adenosine generation by CD39 and CD73 is highly likely to be a critical regulator of fibrogenesis in skin.  相似文献   

17.
18.
Notch signaling pathway is involved in the regulation of cell fate, differentiation, proliferation, and apoptosis in development and disease. Previous studies suggest the importance of Notch1 in myofibroblast differentiation in lung alveogenesis and fibrosis. However, direct in vivo evidence of Notch1-mediated myofibroblast differentiation is lacking. In this study, we examined the effects of conditional mesenchymal-specific deletion of Notch1 on pulmonary fibrosis. Crossing of mice bearing the floxed Notch1 gene with α2(I) collagen enhancer-Cre-ER(T)–bearing mice successfully generated progeny with a conditional knockout (CKO) of Notch1 in collagen I–expressing (mesenchymal) cells on treatment with tamoxifen (Notch1 CKO). Because Notch signaling is known to be activated in the bleomycin model of pulmonary fibrosis, control and Notch1 CKO mice were analyzed for their responses to bleomycin treatment. The results showed significant attenuation of pulmonary fibrosis in CKO relative to control mice, as examined by collagen deposition, myofibroblast differentiation, and histopathology. However, there were no significant differences in inflammatory or immune cell influx between bleomycin-treated CKO and control mouse lungs. Analysis of isolated lung fibroblasts confirmed absence of Notch1 expression in cells from CKO mice, which contained fewer myofibroblasts and significantly diminished collagen I expression relative to those from control mice. These findings revealed an essential role for Notch1-mediated myofibroblast differentiation in the pathogenesis of pulmonary fibrosis.Notch signaling is known to play critical roles in development, tissue homeostasis, and disease.1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Notch signaling is mediated via four known receptors, Notch 1, 2, 3, and 4, which serve as receptors for five membrane-bound ligands, Jagged 1 and 2 and Delta 1, 3, and 4.1, 11, 12, 13 The Notch receptors differ primarily in the number of epidermal growth factor-like repeats and C-terminal sequences.13 For instance, Notch 1 contains 36 of epidermal growth factor-like repeats, is composed of approximately 40 amino acids, and is defined largely by six conserved cysteine residues that form three conserved disulfide bonds.1, 13, 14, 15 These epidermal growth factor-like repeats can be modified by O-linked glycans at specific sites, which is important for their function.1, 14, 15 Modulation of Notch signaling by Fringe proteins,16, 17, 18 which are N-acetylglucosamine transferases, illustrates the importance of these carbohydrate residues.16, 18 Moreover, mutation of the GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase causes defective fucosylation of Notch1, resulting in impairment of the Notch1 signaling pathway and myofibroblast differentiation.19, 20, 21 Because myofibroblasts are important in both lung development and fibrosis, elucidation of the role of Notch signaling in their genesis in vivo will provide insight into the significance of this signaling pathway in either context.The importance of Notch signaling in tissue fibrosis is suggested in multiple studies.10, 21, 22, 23, 24 As in other organs or tissues, pulmonary fibrosis is characterized by fibroblast proliferation and de novo emergence of myofibroblasts, which is predominantly responsible for the increased extracellular matrix production and deposition.25, 26, 27, 28, 29, 30, 31 Animal models, such as bleomycin-induced pulmonary fibrosis, are characterized by both acute and chronic inflammation with subsequent myofibroblast differentiation that mainly originated from the mesenchymal compartment.21, 25, 26, 27, 28 In vitro studies of cultured cells implicate Notch signaling in myofibroblast differentiation,21 which is mediated by induction of the Notch1 ligand Jagged1 when lung fibroblasts are treated with found in inflammatory zone 1.21 Moreover, GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase knockout mice with defective fucosylation of Notch1 exhibit consequent impairment of Notch signaling and attenuated pulmonary fibrosis in studies using the bleomycin model.21 The in vivo importance of Notch signaling in myofibroblast differentiation during lung development has also been suggested by demonstration of impaired alveogenesis in mice deficient in lunatic fringe32 or Notch receptors.10, 33, 34, 35 These in vivo studies, however, do not pinpoint the cell type in which deficient Notch signaling is causing the observed impairment of myofibroblast differentiation. This is further complicated by the extensive evidence showing that, in addition to myofibroblast differentiation, Notch1 mediates multiple functional responses in diverse cell types, including inflammation and the immune system.21, 36, 37, 38 In the case of tissue injury and fibrosis, including the bleomycin model, the associated inflammation and immune response as well as parenchymal injury can affect myofibroblast differentiation via paracrine mechanisms.39, 40 Thus, although global impairment of Notch signaling can impair myofibroblast differentiation in vivo, it does not necessarily indicate a specific direct effect on the mesenchymal precursor cell. Furthermore, understanding the importance of Notch signaling in these different cell compartments is critical for future translational studies to develop effective drugs targeting this signaling pathway with minimal off-target or negative adverse effects.In this study, the effects of conditional selective Notch1 deficiency in the mesenchymal compartment on myofibroblast differentiation and bleomycin-induced pulmonary fibrosis were examined using a Cre-Lox strategy. The transgenic Cre mice bore the Cre-ER(T) gene composed of Cre recombinase and a ligand-binding domain of the estrogen receptor41 driven by a minimal promoter containing a far-upstream enhancer from the α2(I) collagen gene. When activated by tamoxifen, this enhancer enabled selective Cre expression only in type I collagen-expressing (mesenchymal) cells, such as fibroblasts and other mesenchymal cells,42 leading to excision of LoxP consensus sequence flanked target gene DNA fragment (floxed gene) of interest.41, 43, 44, 45, 46 To evaluate the importance of Notch1 in the mesenchymal compartment and discriminate its effects from those in the inflammatory and immune system and other compartments, the transgenic Cre-ER(T) mice [Col1α2-Cre-ER(T)+/0] were crossed with mice harboring the floxed (containing loxP sites) Notch1 gene (Notch1fl/fl). The resulting progeny mice [Notch1 conditional knockout (CKO)] that were homozygous for the floxed Notch1 allele and hemizygous for the Col1α2-Cre-ER(T) allele with genotype [Notch1fl/fl,Col1α2-Cre-ER(T)+/0] were Notch1 deficient in the mesenchymal compartment when injected with tamoxifen. Control Notch1 wild-type (WT) mice exhibited the expected pulmonary fibrosis along with induction of Jagged1 and Notch1 on treatment with bleomycin, consistent with previous observation of Notch signaling activation in this model.21 Isolated and cultured Notch1 CKO mouse lung fibroblasts were deficient in Notch1 and exhibited diminished myofibroblast differentiation compared with cells from the corresponding WT control mice. Most important, compared with WT control mice, the CKO mice exhibited diminished bleomycin-induced pulmonary fibrosis that was accompanied by significant reduction in α-smooth muscle actin (α-SMA) and type I collagen gene expression, consistent with defective myofibroblast differentiation. In contrast, enumeration of lung inflammatory and immune cells failed to show a significant difference in bleomycin-induced recruitment of these cells between control and CKO mice. Thus, selective Notch1 deficiency in mesenchymal cells caused impairment of fibrosis that is at least, in part, because of deficient myofibroblast differentiation, and without affecting the inflammatory and immune response in this animal model.  相似文献   

19.
Dipeptidyl peptidase 4 (DPP4, CD26), a type II transmembrane ectopeptidase, is the receptor for the Middle Eastern respiratory syndrome coronavirus (MERS-CoV). MERS emerged in 2012 and has a high mortality associated with severe lung disease. A lack of autopsy studies from MERS fatalities has hindered understanding of MERS-CoV pathogenesis. We investigated the spatial and cellular localization of DPP4 to evaluate an association MERS clinical disease. DPP4 was rarely detected in the surface epithelium from nasal cavity to conducting airways with a slightly increased incidence in distal airways. DPP4 was also found in a subset of mononuclear leukocytes and in serous cells of submucosal glands. In the parenchyma, DPP4 was found principally in type I and II cells and alveolar macrophages and was also detected in vascular endothelium (eg, lymphatics) and pleural mesothelia. Patients with chronic lung disease, such as chronic obstructive pulmonary disease and cystic fibrosis, exhibited increased DPP4 immunostaining in alveolar epithelia (type I and II cells) and alveolar macrophages with similar trends in reactive mesothelia. This finding suggests that preexisting pulmonary disease could increase MERS-CoV receptor abundance and predispose individuals to MERS morbidity and mortality, which is consistent with current clinical observations. We speculate that the preferential spatial localization of DPP4 in alveolar regions may explain why MERS is characterized by lower respiratory tract disease.Middle East respiratory syndrome (MERS) was recognized as a significant illness on the Saudi Arabian peninsula in mid-2012, and the causative agent was rapidly identified as a novel coronavirus (CoV)—MERS-CoV.1 Since its emergence, the World Health Organization has been notified of 1542 laboratory-confirmed cases of MERS-CoV infection in >2 dozen countries, resulting in at least 544 related deaths (http://www.who.int/emergencies/mers-cov/en; last accessed September 12, 2015). Available data indicate that men are more commonly infected than women, with a median age of 47 years.2, 3, 4 Although human-to-human or zoonotic spread of MERS has not reached epidemic or pandemic levels, its potential to spread among individuals was found in health care settings in the Middle East5 and by the recent outbreak in South Korea caused by a single infected individual.6Most fatal MERS cases have occurred in individuals 60 years or older, frequently associated with significant comorbidities, such as obesity, renal or cardiac disease, diabetes, lung disease, or immunocompromise.7 Severely affected individuals have manifested significant respiratory symptoms, including cough, fever, dyspnea, and chest pain.2, 3, 4 Many seriously ill patients have progressed to respiratory failure and required ventilatory support. These patients exhibited dense airspace and interstitial lesions on chest radiography and computed tomography.1, 3, 8 In addition to the pulmonary manifestations, other reported problems in seriously ill patients include hyperkalemia, disseminated intravascular coagulopathy, pericardial effusion, central nervous system manifestations,9 and multiorgan failure.2, 3, 4 To date, a lack of autopsy pathology data from patients who have died of MERS has hindered understanding of disease pathogenesis.Epidemiologic studies have established that MERS is zoonotic in origin, with evidence of a closely related virus in dromedary camels on the Arabian peninsula and throughout Africa.10, 11, 12 Spread from camels to humans is documented,13 as well as person-to-person spread among health care workers in hospital settings.5 Unlike the ‘super spreader’ cases described with SARS-CoV,14, 15 the spread of MERS-CoV from person-to-person is inefficient, but this could change with virus evolution.16, 17 MERS-CoV has also been detected in individuals with mild, influenza-like illnesses, those with a dengue-like illness, and those without obvious disease signs or symptoms,18, 19, 20, 21 suggesting that there may be a larger disease burden than currently recognized.Shortly after MERS-CoV was discovered, its cellular receptor, dipeptidyl peptidase 4 (DPP4, CD26), was identified.22 The structural residues comprising the receptor-binding domain have been defined by co-crystallization of the MERS-CoV spike glycoprotein and DPP4.23 DPP4 is a single-pass type II transmembrane glycoprotein with a short N-terminal cytoplasmic tail. The native protein is a homodimer. DPP4 cleaves X-proline dipeptides from N-terminus of polypeptides and in doing so may functionally modify many substrates, including growth factors, neuropeptides, cytokines, chemokines, and vasoactive peptides.24DPP4 is expressed in many tissues and cell types, including kidney, intestine, liver, thymocytes, and several cells of hematopoietic lineage.24 DPP4 expression is increased on activation of T, B, and natural killer cells and is considered a marker of functional activation.24 DPP4 is also shed from the surface of many cell types and is present in soluble forms in plasma.25 Although there are limited reports describing aspects of DPP4 expression in animal and human tissues and cell types,25, 26, 27 there has been no comprehensive survey of its cellular expression in the human respiratory tract. We localize DPP4 expression in normal and diseased human respiratory tissues to identify the pulmonary cell types that may be susceptible to MERS-CoV infection and thereby obtain insight into MERS pathogenesis.  相似文献   

20.
Granulomatous inflammation is characteristic of many autoimmune and infectious diseases. The lymphatic drainage of these inflammatory sites remains poorly understood, despite an expanding understanding of lymphatic role in inflammation and disease. Here, we show that the lymph vessel growth factor Vegf-c is up-regulated in Bacillus Calmette-Guerin– and Mycobacterium tuberculosis–induced granulomas, and that infection results in lymph vessel sprouting and increased lymphatic area in granulomatous tissue. The observed lymphangiogenesis during infection was reduced by inhibition of vascular endothelial growth factor receptor 3. By using a model of chronic granulomatous infection, we also show that lymphatic remodeling of tissue persists despite resolution of acute infection and a 10- to 100-fold reduction in the number of bacteria and tissue-infiltrating leukocytes. Inhibition of vascular endothelial growth factor receptor 3 decreased the growth of new vessels, but also reduced the proliferation of antigen-specific T cells. Together, our data show that granuloma–up-regulated factors increase granuloma access to secondary lymph organs by lymphangiogenesis, and that this process facilitates the generation of systemic T-cell responses to granuloma-contained antigens.The lymphatic system is made of a network of tissue-resident lymphatic endothelial vessels that drain extracellular fluid to the lymph nodes and back into blood circulation, a process that is critical in maintaining body fluid balance. Lymphatics also play a critical role in transporting dendritic cells (DCs) of the immune system, which may contain bacterial, viral, or fungal peptides, to T- and B-cell areas in the lymph nodes. Afferent lymph vessels express high levels of chemokines CCL19/21, which bind to CCR7 on activated DCs and induce their migration across lymphatic endothelial cells toward lymph nodes.1, 2, 3 Soluble antigen alone can also flow through the lymph to the lymph nodes, where it can be acquired by lymph node–resident DCs and presented to T and B cells.4, 5 Through these processes, adaptive immunity and clonal expansion of lymphocytes are initiated during infection.Although the role and requirement of lymphatics during steady-state conditions are well studied, the mechanisms and consequences of lymphangiogenesis during inflammation are far less so by comparison. Lymphangiogenesis is induced during neonatal development, as well as postdevelopment (inflammation, infection, and tumor growth) by vascular endothelial growth factor (VEGF)-C and VEGF-D binding to vessel-expressed VEGF receptor 3 (VEGFR3).6, 7, 8, 9 CD11b+ monocytes have been identified as an important initiators of lymphangiogenesis because they produce VEGF-C and VEGF-D after proinflammatory stimuli10, 11, 12 and can integrate into pre-existing lymph vessels and transdifferentiate into lymphatic endothelial-like cells.13 Recent evidence shows an unappreciated role for lymphatics and lymphangiogenesis beyond transportation of antigen-presenting cells and peptides to the lymph nodes. These functions include direct modulation of DC and T-cell activation or tolerance,14, 15, 16, 17 the presentation of antigens,18, 19 and egress of T cells from lymph nodes.20, 21 The growing appreciation of diversity in lymphatic function ensures the importance of understanding lymphangiogenesis during infection and inflammation.Granulomatous immune responses are associated with many infectious and autoimmune diseases. The granuloma itself is a macrophage-dominated collection of leukocytes that forms with defined spatial and organizational arrangement, and these sites are important in the protection and pathology during granulomatous diseases.22, 23, 24, 25 During infectious disease, granulomas contain the immune response-inducing antigens, and so engagement between the peripheral immune organs and these antigens is required. Lymphatic vessels are important because they are routes that soluble and DC-carried antigens use to reach the lymph nodes from granulomatous tissue. The relationship between the granulomas and lymphoid vessels, especially in the context of lymphangiogenesis, is not yet understood. Here, we used two different mycobacterial models of granulomatous inflammation to investigate this relationship. This first involves high-dose infection with the Bacillus Calmette-Guerin (BCG) strain of mycobacterium, which induces acute granulomatous inflammation in the liver 3 weeks after infection. Resolution of inflammation after 3 weeks results in reduced, but persistent, BCG-containing granulomas in the chronic stages of infection. Granulomatous inflammation of the liver is a characteristic pathology of diseases including histoplasmosis26, 27, 28 and schistosomiasis,29, 30, 31 and many tuberculosis patients also have tubercle granulomas in their livers.32, 33, 34 We also used a mouse model involving aerosol infection in the lung with Mycobacterium tuberculosis (MTB). This model is distinct from systemic BCG infection because acute granulomatous inflammation does not resolve, and mice eventually succumb to disease resulting from increasing granuloma and bacterial burden. Understanding the relationship between granulomatous inflammation and lymphangiogenesis will undoubtedly involve an understanding of the infectious context given that granulomas can occur in different organs and the fact that lymphatic form and function are adapted to the anatomy of the tissue.Here, using both models, we show that granulomatous inflammation induces lymphangiogenesis and that the biology of this process has a regulatory role in the proliferation of mycobacterial-specific T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号