首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Natural transformation is one mechanism of horizontal gene transfer (HGT) in Vibrio cholerae, the causative agent of cholera. Recently, it was found that V. cholerae isolates from the Haiti outbreak were poorly transformed by this mechanism. Here, we show that an integrating conjugative element (ICE)-encoded DNase, which we name IdeA, is necessary and sufficient for inhibiting natural transformation of Haiti outbreak strains. We demonstrate that IdeA inhibits this mechanism of HGT in cis via DNA endonuclease activity that is localized to the periplasm. Furthermore, we show that natural transformation between cholera strains in a relevant environmental context is inhibited by IdeA. The ICE encoding IdeA is globally distributed. Therefore, we analyzed the prevalence and role for this ICE in limiting natural transformation of isolates from Bangladesh collected between 2001 and 2011. We found that IdeA+ ICEs were nearly ubiquitous in isolates from 2001 to 2005; however, their prevalence decreased to ∼40% from 2006 to 2011. Thus, IdeA+ ICEs may have limited the role of natural transformation in V. cholerae. However, the rise in prevalence of strains lacking IdeA may now increase the role of this conserved mechanism of HGT in the evolution of this pathogen.The causative agent of the diarrheal disease cholera, Vibrio cholerae, is annually responsible for 3.5 million infections worldwide (1). This facultative pathogen naturally resides in temperate aquatic environments and causes disease when ingested in contaminated food or water. A critical nutrient for Vibrio species in the aquatic environment is the chitinous exoskeleton of crustacean zooplankton (24). Chitin is an insoluble polysaccharide composed of β-1,4-linked GlcNAc. In addition to serving as a carbon and nitrogen source, chitin also induces a physiological state in V. cholerae known as natural competence (5). In this state, bacteria can take up DNA from the extracellular environment and integrate this DNA into their chromosomes by homologous recombination. This cumulative process of DNA uptake and integration is known as natural transformation and is one mechanism for horizontal gene transfer (HGT) in V. cholerae. HGT by natural transformation is used by pathogenic microbes to evolve in the face of clinical intervention and immune pressure. Indeed, in V. cholerae, this mechanism of HGT is hypothesized to have generated an antigenic variant, the O139 outbreak strain, through homologous recombination and replacement of the locus responsible for O-antigen biosynthesis (69).Another mechanism of HGT in V. cholerae is integrating conjugative elements (ICEs) of the SXT/R391 family. These elements can range from ∼80 to 110 Kb in size and contain all of the genes required for conjugative transfer into naive hosts (10, 11); they integrate in a site-specific manner into the 5′ end of the highly conserved prfC (peptide-chain-release factor C) gene (1012). The first natural transfer of an ICE into V. cholerae likely occurred between 1980 and 1985 (10, 13) and, by the 1990s, virtually all clinical isolates of V. cholerae contained an ICE (13). These elements confer resistance to multiple antibiotics, and it is likely that widespread use of antibiotics has rapidly selected for strains containing ICEs. There are at least 10 genetically distinct ICEs circulating in the V. cholerae population (11). These ICEs share a core set of genes, but have varied gene content at distinct sites. The most common ICE in V. cholerae is VchInd5, which is present in ∼77% of currently sequenced clinical isolates (10, 11). It is hypothesized that the current (seventh) pandemic of cholera originated in the Bay of Bengal, and strains have spread globally from this region in three overlapping waves of transmission (13, 14). Strains containing VchInd5 are globally distributed, indicating that the original transfer of VchInd5 into V. cholerae may have occurred in this region.In 2010, cholera spread to Haiti, a region that previously lacked this disease (15, 16). Phylogenetic and Bayesian analyses indicate that all strains in Haiti share a common ancestor, which was introduced into the region at the outset of the epidemic (16, 17). Consistent with this finding, strains from Haiti ubiquitously harbor a VchInd5 ICE. Throughout the epidemic, strains have acquired mutations that are likely generated intrinsically, and there is no evidence of horizontal gene transfer among these isolates (16). Consistent with this finding, strains from the Haiti outbreak were found to be poorly transformed by chitin-induced natural competence (16).In this study, we identify and characterize an ICE-encoded DNase present on VchInd5 that inhibits HGT by natural transformation in V. cholerae. We also assess the role and prevalence of this DNase in limiting transformation among clinical isolates from Haiti and Bangladesh.  相似文献   

3.
The type VI secretion system (T6SS) is a lethal weapon used by many bacteria to kill eukaryotic predators or prokaryotic competitors. Killing by the T6SS results from repetitive delivery of toxic effectors. Despite their importance in dictating bacterial fitness, systematic prediction of T6SS effectors remains challenging due to high effector diversity and the absence of a conserved signature sequence. Here, we report a class of T6SS effector chaperone (TEC) proteins that are required for effector delivery through binding to VgrG and effector proteins. The TEC proteins share a highly conserved domain (DUF4123) and are genetically encoded upstream of their cognate effector genes. Using the conserved TEC domain sequence, we identified a large family of TEC genes coupled to putative T6SS effectors in Gram-negative bacteria. We validated this approach by verifying a predicted effector TseC in Aeromonas hydrophila. We show that TseC is a T6SS-secreted antibacterial effector and that the downstream gene tsiC encodes the cognate immunity protein. Further, we demonstrate that TseC secretion requires its cognate TEC protein and an associated VgrG protein. Distinct from previous effector-dependent bioinformatic analyses, our approach using the conserved TEC domain will facilitate the discovery and functional characterization of new T6SS effectors in Gram-negative bacteria.Protein secretion systems play a pivotal role in bacterial interspecies interaction and virulence (1, 2). Of the known secretion systems in Gram-negative bacteria, the type VI secretion system (T6SS) enables bacteria to compete with both eukaryotic and prokaryotic species through delivery of toxic effectors (24). The T6SS is a multicomponent nanomachine analogous to the contractile bacteriophage tail (5). First characterized in Vibrio cholerae (6) and Pseudomonas aeruginosa (7), the T6SS has now been identified in ∼25% of Gram-negative bacteria, including many important pathogens (2, 8), and has been implicated as a critical factor in niche competition (911).The T6SS structure is composed of an Hcp inner tube, a VipAB outer sheath that wraps around the Hcp tube, a tip complex consisting of VgrG and PAAR proteins, and a membrane-bound baseplate (2, 4, 12). Sheath contraction drives the inner Hcp tube and the tip proteins, VgrG and PAAR, outward into the environment and neighboring cells (13, 14). The contracted sheath is then dissembled by an ATPase ClpV and recycled for another T6SS assembly and contraction event (12, 15, 16). Two essential T6SS baseplate components, VasF and VasK, are homologous to the DotU and IcmF proteins of the type IV secretion system (T4SS) in Legionella pneumophila (17).Bacteria often possess multiple copies of VgrG and PAAR genes that form the tip of T6SS, and deletion of VgrG and PAAR genes abolishes T6SS secretion (14). Some VgrG and PAAR proteins carry functional extension domains and thus act as secreted T6SS effectors, as exemplified by the VgrG1 actin cross-linking domain (6), VgrG3 lysozyme domain in V. cholerae (18, 19), and the nuclease domain of the PAAR protein RhsA in Dickeya dadantii (20). Known T6SS effectors can target a number of essential cellular components, including the actin and membrane of eukaryotic cells (18, 21, 22) and the cell wall, membrane, and DNA of bacterial cells (3, 1820, 23, 24). Each antibacterial effector coexists with an antagonistic immunity protein that confers protection during T6SS-mediated attacks between sister cells (3, 18, 24). Interestingly, T6SS-mediated lethal attacks induce the generation of reactive oxygen species in the prey cells (25), similar to cells treated with antibiotics (26, 27).For non-VgrG/PAAR–related effectors, their translocation requires either binding to the inner tube Hcp proteins as chaperones or binding to the tip VgrG proteins (2, 14, 28). T6SS-dependent effectors can be experimentally identified by comparing the secretomes of WT and T6SS mutants (3, 2931) and by screening for T6SS-encoded immunity proteins (18). Because known effectors lack a common secretion signal, bioinformatic identification of T6SS effectors is challenging. A heuristic approach based on the physical properties of effectors has been used to identify a superfamily of peptidoglycan-degrading effectors in bacteria (32). A recent study identified a common N-terminal motif in a number of T6SS effectors (31). However, this motif does not exist in the T6SS effector TseL in V. cholerae (18).In this study, we report that VC1417, the gene upstream of tseL, encodes a protein with a highly conserved domain, DUF4123. We show that VC1417 is required for TseL delivery and interacts with VgrG1 (VC1416) and TseL. Because of the genetic linkage of VC1417 and TseL and its importance for TseL secretion, we postulated that genes encoding the conserved DUF4123 domain proteins are generally located upstream of genes encoding putative T6SS effectors. Using the conserved domain sequence, we bioinformatically predicted a large family of effector proteins with diverse functions in Gram-negative bacteria. We validated our prediction by the identification and characterization of a new secreted effector TseC and its antagonistic immunity protein TsiC in Aeromonas hydrophila SSU. Our results demonstrate a new effective approach to identify T6SS effectors with highly divergent sequences.  相似文献   

4.
Extracellular fibers called chaperone-usher pathway pili are critical virulence factors in a wide range of Gram-negative pathogenic bacteria that facilitate binding and invasion into host tissues and mediate biofilm formation. Chaperone-usher pathway ushers, which catalyze pilus assembly, contain five functional domains: a 24-stranded transmembrane β-barrel translocation domain (TD), a β-sandwich plug domain (PLUG), an N-terminal periplasmic domain, and two C-terminal periplasmic domains (CTD1 and 2). Pore gating occurs by a mechanism whereby the PLUG resides stably within the TD pore when the usher is inactive and then upon activation is translocated into the periplasmic space, where it functions in pilus assembly. Using antibiotic sensitivity and electrophysiology experiments, a single salt bridge was shown to function in maintaining the PLUG in the TD channel of the P pilus usher PapC, and a loop between the 12th and 13th beta strands of the TD (β12–13 loop) was found to facilitate pore opening. Mutation of the β12–13 loop resulted in a closed PapC pore, which was unable to efficiently mediate pilus assembly. Deletion of the PapH terminator/anchor resulted in increased OM permeability, suggesting a role for the proper anchoring of pili in retaining OM integrity. Further, we introduced cysteine residues in the PLUG and N-terminal periplasmic domains that resulted in a FimD usher with a greater propensity to exist in an open conformation, resulting in increased OM permeability but no loss in type 1 pilus assembly. These studies provide insights into the molecular basis of usher pore gating and its roles in pilus biogenesis and OM permeability.The β-barrel membrane proteins of Gram-negative bacteria participate in a variety of outer membrane (OM) functions, including physiological maintenance, protein folding, transport, and organelle assembly (15). Some OM pore proteins are involved in protein secretion and assembly of virulence-associated surface-exposed appendages required for adherence to host surfaces (3, 5, 6). One such class of proteins is the ushers of the chaperone-usher pathway (CUP) found in various phyla of bacteria ranging from Proteobacteria to Cyanobacteria to Deinococcus-Thermus (7). Ushers are gated OM channels that function as molecular machines that convert subunit binding and folding energy into work to assemble highly stable macromolecular CUP fibers and facilitate their extrusion to the bacterial surface in Gram-negative bacteria. In uropathogenic Escherichia coli (UPEC), type 1 pili are critical in causing bladder infection (8), whereas P pili are important in pyelonephritis (9, 10). Type 1 and P pili are encoded by the fim and pap operons, respectively, and have been extensively used as model systems to elucidate the structural basis of chaperone-usher pilus assembly. We used both the type 1 and P pilus ushers in this study to elucidate fundamental insights into the gating mechanism of OM ushers.P pilus assembly requires the function of a dedicated chaperone (PapD) (11, 12) and the usher (PapC) (3, 13). The P pilus comprises a flexible-tip fibrillum made up of minor pilins with the two-domain adhesin PapG at the distal end where it can recognize Galα1–4Gal disaccharide-containing glycolipids found in the human kidney (14, 15). The P pilus tip is joined to a right-handed, helical pilus rod made up of PapA pilins (16, 17) and is anchored in the OM via the terminator/anchoring subunit PapH (18). Type 1 pili are composed of FimA subunits making up the pilus rod joined to the tip fibrillum, which contains the FimH tip adhesin joined to FimG and adapted to the FimA rod by FimF. FimC and FimD are the chaperone and usher, respectively.CUP pilus subunits are incomplete Ig-like folds missing their C-terminal β-strand. Through a process called donor strand complementation, the chaperone transiently completes the Ig fold of a subunit in the periplasm to form a binary complex, which facilitates the subunit’s proper folding and stability and results in a subunit primed for assembly into a pilus fiber (1921). Chaperone-subunit complexes are targeted to the OM usher, which catalyzes donor strand exchange (DSE), whereby the chaperone is displaced and the Ig fold of the polymerizing subunit is completed by its neighbor via an N-terminal extension in an ATP-independent manner (19, 22). The usher has five domains: an N-terminal periplasmic domain (NTD), a transmembrane β-barrel domain (TD), a β-sandwich plug domain (PLUG), and two periplasmic, β-sandwich C-terminal domains (CTD1 and 2) (3, 5). During the initiation of pilus assembly, a chaperone-adhesin is initially targeted to the usher NTD and then transferred from the NTD to the CTDs via catalytic dissociation by CTD2 (23).X-ray crystal structures of the PapC and FimD ushers showed that the apo PapC and FimD pores are kidney-shaped β-barrels of 24 strands, the largest number of strands identified for a single OM polypeptide (3, 5, 24). The inner dimensions of the apo ushers are large enough to allow transport of folded protein domains (25 Å × 45 Å diameter) (3). Thus, a precise usher gating mechanism is needed to facilitate the extrusion of polymerized pilus fibers across the OM while maintaining OM integrity. In the apo usher, in the absence of a polymerizing and/or anchored pilus, the β-sandwich PLUG occupies the inactive pore. The PLUG seems to be kept stable in the pore via its interactions with residues of the β-barrel interior wall as well as the β5–6-hairpin loop and an α-helix of the TD that caps the β5–6-hairpin loop (3, 25). In the active form, as seen in the FimDCH structure, the FimD pore rearranges to a nearly circular pore of 32 Å diameter (5, 24) and the PLUG is relocated to the periplasm, where it forms a high-affinity, stable interaction with the NTD (23). The NTD/PLUG complex serves to further recruit chaperone-subunit complexes for repeated rounds of DSE pilus assembly (23).We delineated the channel activities of the usher by focusing on two different ushers, the PapC usher of the P pilus system and the FimD usher of the type 1 pilus system. Using erythromycin (Erm) sensitivity assays, we identified a salt bridge interaction between R305 of the PLUG and E467 of the TD α-helix that functions to stabilize the PLUG in the PapC pore. Electrophysiology studies confirmed the destabilization of the PLUG in the R305A mutant. Pore gating and assembly functions of the usher were further decoupled by a pair of cysteine mutants, one in each of the NTD and PLUG domains of the FimD usher, which resulted in an open pore as assessed by Erm sensitivity in the absence of subunits while retaining pilus assembly function when the chaperone and subunits were coexpressed. We also discovered that a periplasmic loop between usher barrel β-strands 12 and 13 facilitates the removal of the PLUG, which is necessary for usher-catalyzed pilus biogenesis. Further, we demonstrated that proper anchoring of the mature pilus is necessary to retain the OM integrity. These results emphasize the importance of the coordinated, regulated expression and assembly of CUP pili. Collectively, these results demonstrate the cooperative roles that the usher plays in regulating pilus biogenesis and OM permeability.  相似文献   

5.
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host–pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.Rickettsiae are responsible for some of the most devastating human infections (14). It has been forecasted that temperature increases attributable to global climate change will lead to more widespread distribution of rickettsioses (5). These tick-borne diseases are caused by obligately intracellular bacteria of the genus Rickettsia, including Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF) in the United States and Latin America (2, 3), and Rickettsia conorii, the causative agent of Mediterranean spotted fever endemic to southern Europe, North Africa, and India (6). A high infectivity and severe illness after inhalation make some rickettsiae (including Rickettsia prowazekii, R. rickettsii, Rickettsia typhi, and R. conorii) bioterrorism threats (7). Although the majority of rickettsial infections can be controlled by appropriate broad-spectrum antibiotic therapy if diagnosed early, up to 20% of misdiagnosed or untreated (1, 3) and 5% of treated RMSF cases (8) result in a fatal outcome caused by acute disseminated vascular endothelial infection and damage (9). Fatality rates as high as 32% have been reported in hospitalized patients diagnosed with Mediterranean spotted fever (10). In addition, strains of R. prowazekii resistant to tetracycline and chloramphenicol have been developed in laboratories (11). Disseminated endothelial infection and endothelial barrier disruption with increased microvascular permeability are the central features of SFG rickettsioses (1, 2, 9). The molecular mechanisms involved in rickettsial infection remain incompletely elucidated (9, 12). A comprehensive understanding of rickettsial pathogenesis and the development of novel mechanism-based treatment are urgently needed.Living organisms use intricate signaling networks for sensing and responding to changes in the external environment. cAMP, a ubiquitous second messenger, is an important molecular switch that translates environmental signals into regulatory effects in cells (13). As such, a number of microbial pathogens have evolved a set of diverse virulence-enhancing strategies that exploit the cAMP-signaling pathways of their hosts (14). The intracellular functions of cAMP are predominantly mediated by the classic cAMP receptor, protein kinase A (PKA), and the more recently discovered exchange protein directly activated by cAMP (Epac) (15). Thus, far, two isoforms, Epac1 and Epac2, have been identified in humans (16, 17). Epac proteins function by responding to increased intracellular cAMP levels and activating the Ras superfamily small GTPases Ras-proximate 1 and 2 (Rap1 and Rap2). Accumulating evidence demonstrates that the cAMP/Epac1 signaling axis plays key regulatory roles in controlling various cellular functions in endothelial cells in vitro, including cell adhesion (1821), exocytosis (22), tissue plasminogen activator expression (23), suppressor of cytokine signaling 3 (SOCS-3) induction (2427), microtubule dynamics (28, 29), cell–cell junctions, and permeability and barrier functions (3037). Considering the critical importance of endothelial cells in rickettsioses, we examined the functional roles of Epac1 in rickettsial pathogenesis in vivo, taking advantage of the recently generated Epac1 knockout mouse (38) and Epac-specific inhibitors (39, 40) generated from our laboratory. Our studies demonstrate that Epac1 plays a key role in rickettsial infection and represents a therapeutic target for fatal rickettsioses.  相似文献   

6.
7.
8.
9.
10.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

11.
12.
13.
14.
Across animal taxa, seminal proteins are important regulators of female reproductive physiology and behavior. However, little is understood about the physiological or molecular mechanisms by which seminal proteins effect these changes. To investigate this topic, we studied the increase in Drosophila melanogaster ovulation behavior induced by mating. Ovulation requires octopamine (OA) signaling from the central nervous system to coordinate an egg’s release from the ovary and its passage into the oviduct. The seminal protein ovulin increases ovulation rates after mating. We tested whether ovulin acts through OA to increase ovulation behavior. Increasing OA neuronal excitability compensated for a lack of ovulin received during mating. Moreover, we identified a mating-dependent relaxation of oviduct musculature, for which ovulin is a necessary and sufficient male contribution. We report further that oviduct muscle relaxation can be induced by activating OA neurons, requires normal metabolic production of OA, and reflects ovulin’s increasing of OA neuronal signaling. Finally, we showed that as a result of ovulin exposure, there is subsequent growth of OA synaptic sites at the oviduct, demonstrating that seminal proteins can contribute to synaptic plasticity. Together, these results demonstrate that ovulin increases ovulation through OA neuronal signaling and, by extension, that seminal proteins can alter reproductive physiology by modulating known female pathways regulating reproduction.Throughout internally fertilizing animals, seminal proteins play important roles in regulating female fertility by altering female physiology and, in some cases, behavior after mating (reviewed in refs. 13). Despite this, little is understood about the physiological mechanisms by which seminal proteins induce postmating changes and how their actions are linked with known networks regulating female reproductive physiology.In Drosophila melanogaster, the suite of seminal proteins has been identified, as have many seminal protein-dependent postmating responses, including changes in egg production and laying, remating behavior, locomotion, feeding, and in ovulation rate (reviewed in refs. 2 and 3). For example, the Drosophila seminal protein ovulin elevates ovulation rate to maximal levels during the 24 h following mating (4, 5), and the seminal protein sex peptide (SP) suppresses female mating receptivity and increases egg-laying behavior for several days after mating (610). However, although a receptor for SP has been identified (11), along with elements of the neural circuit in which it is required (1214), SP’s mechanism of action has not yet been linked to regulatory networks known to control postmating behaviors. Thus, a crucial question remains: how do male-derived seminal proteins interact with regulatory networks in females to trigger postmating responses?We addressed this question by examining the stimulation of Drosophila ovulation by the seminal protein ovulin. In insects, ovulation, defined here as the release of an egg from the ovary to the uterus, is among the best understood reproductive processes in terms of its physiology and neurogenetics (1527). In D. melanogaster, ovulation requires input from neurons in the abdominal ganglia that release the catecholaminergic neuromodulators octopamine (OA) and tyramine (17, 18, 28). Drosophila ovulation also requires an OA receptor, OA receptor in mushroom bodies (OAMB) (19, 20). Moreover, it has been proposed that OA may integrate extrinsic factors to regulate ovulation rates (17). Noradrenaline, the vertebrate structural and functional equivalent to OA (29, 30), is important for mammalian ovulation, and its dysregulation has been associated with ovulation disorders (3138). In this paper we investigate the role of neurons that release OA and tyramine in ovulin’s action. For simplicity, we refer to these neurons as “OA neurons” to reflect the well-established role of OA in ovulation behavior (1620, 22).We investigated how action of the seminal protein ovulin relates to the conserved canonical neuromodulatory pathway that regulates ovulation physiology (3941). We found that ovulin increases ovulation and egg laying through OA neuronal signaling. We also found that ovulin relaxes oviduct muscle tonus, a postmating process that is also mediated by OA neuronal signaling. Finally, subsequent to these effects we detected an ovulin-dependent increase in synaptic sites between OA motor neurons and oviduct muscle, suggesting that ovulin’s stimulation of OA neurons could have increased their synaptic activity. These results suggest that ovulin affects ovulation by manipulating the gain of a neuromodulatory pathway regulating ovulation physiology.  相似文献   

15.
16.
17.
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras–GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras–GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras–GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12–induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras–GTP to stimulate Ras-induced senescence in nontransformed human cells.ASPP2, also known as 53BP2L, is a tumor suppressor whose expression is altered in human cancers (1). Importantly, targeting of the ASPP2 allele in two different mouse models reveals that ASPP2 heterozygous mice are prone to spontaneous and γ-irradiation–induced tumors, which rigorously demonstrates the role of ASPP2 as a tumor suppressor (2, 3). ASPP2 binds p53 via the C-terminal ankyrin-repeat and SH3 domain (46), is damage-inducible, and can enhance damage-induced apoptosis in part through a p53-mediated pathway (1, 2, 710). However, it remains unclear what biologic pathways and mechanisms mediate ASPP2 tumor suppressor function (1). Indeed, accumulating evidence demonstrates that ASPP2 also mediates nonapoptotic p53-independent pathways (1, 3, 1115).The induction of cellular senescence forms an important barrier to tumorigenesis in vivo (1621). It is well known that oncogenic Ras signaling induces senescence in normal nontransformed cells to prevent tumor initiation and maintain complex growth arrest pathways (16, 18, 2124). The level of oncogenic Ras activation influences its capacity to activate senescence; high levels of oncogenic H-RasV12 signaling leads to low grade tumors with senescence markers, which progress to invasive cancers upon senescence inactivation (25). Thus, tight control of Ras signaling is critical to ensure the proper biologic outcome in the correct cellular context (2628).The ASPP2 C terminus is important for promoting p53-dependent apoptosis (7). The ASPP2 N terminus may also suppress cell growth (1, 7, 2933). Alternative splicing can generate the ASPP2 N-terminal truncated protein BBP (also known as 53BP2S) that is less potent in suppressing cell growth (7, 34, 35). Although the ASPP2 C terminus mediates nuclear localization, full-length ASPP2 also localizes to the cytoplasm and plasma membrane to mediate extranuclear functions (7, 11, 12, 36). Structural studies of the ASPP2 N terminus reveal a β–Grasp ubiquitin-like fold as well as a potential Ras-binding (RB)/Ras-association (RA) domain (32). Moreover, ASPP2 can promote H-RasV12–induced senescence (13, 15). However, the molecular mechanism(s) of how ASPP2 directly promotes Ras signaling are complex and remain to be completely elucidated.Here, we explore the molecular mechanisms of how Ras-signaling is enhanced by ASPP2. We demonstrate that ASPP2: (i) binds Ras-GTP and stimulates Ras-induced ERK signaling via its N-terminal domain at the plasma membrane; (ii) enhances Ras-GTP loading and B-Raf/C-Raf dimerization and forms a ASPP2/Raf complex; (iii) stimulates Ras-induced C-Raf phosphorylation and activation; and (iv) potentiates H-RasV12–induced senescence in both primary human fibroblasts and neonatal human epidermal keratinocytes. These data provide mechanistic insight into ASPP2 function(s) and opens important avenues for investigation into its role as a tumor suppressor in human cancer.  相似文献   

18.
19.
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.Since Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (240) and potentially derived features of human psychology (4161), we know much less about the major forces shaping cognitive evolution (6271). With the notable exception of Bitterman’s landmark studies conducted several decades ago (63, 7274), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (7692). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48, 70, 89, 9398).To address these challenges we measured cognitive skills for self-control in 36 species of mammals and birds (Fig. 1 and Tables S1–S4) tested using the same experimental procedures, and evaluated the leading hypotheses for the neuroanatomical underpinnings and ecological drivers of variance in animal cognition. At the proximate level, both absolute (77, 99107) and relative brain size (108112) have been proposed as mechanisms supporting cognitive evolution. Evolutionary increases in brain size (both absolute and relative) and cortical reorganization are hallmarks of the human lineage and are believed to index commensurate changes in cognitive abilities (52, 105, 113115). Further, given the high metabolic costs of brain tissue (116121) and remarkable variance in brain size across species (108, 122), it is expected that the energetic costs of large brains are offset by the advantages of improved cognition. The cortical reorganization hypothesis suggests that selection for absolutely larger brains—and concomitant cortical reorganization—was the predominant mechanism supporting cognitive evolution (77, 91, 100106, 120). In contrast, the encephalization hypothesis argues that an increase in brain volume relative to body size was of primary importance (108, 110, 111, 123). Both of these hypotheses have received support through analyses aggregating data from published studies of primate cognition and reports of “intelligent” behavior in nature—both of which correlate with measures of brain size (76, 77, 84, 92, 110, 124).Open in a separate windowFig. 1.A phylogeny of the species included in this study. Branch lengths are proportional to time except where long branches have been truncated by parallel diagonal lines (split between mammals and birds ∼292 Mya).With respect to selective pressures, both social and dietary complexities have been proposed as ultimate causes of cognitive evolution. The social intelligence hypothesis proposes that increased social complexity (frequently indexed by social group size) was the major selective pressure in primate cognitive evolution (6, 44, 48, 50, 87, 115, 120, 125141). This hypothesis is supported by studies showing a positive correlation between a species’ typical group size and the neocortex ratio (80, 81, 8587, 129, 142145), cognitive differences between closely related species with different group sizes (130, 137, 146, 147), and evidence for cognitive convergence between highly social species (26, 31, 148150). The foraging hypothesis posits that dietary complexity, indexed by field reports of dietary breadth and reliance on fruit (a spatiotemporally distributed resource), was the primary driver of primate cognitive evolution (151154). This hypothesis is supported by studies linking diet quality and brain size in primates (79, 81, 86, 142, 155), and experimental studies documenting species differences in cognition that relate to feeding ecology (94, 156166).Although each of these hypotheses has received empirical support, a comparison of the relative contributions of the different proximate and ultimate explanations requires (i) a cognitive dataset covering a large number of species tested using comparable experimental procedures; (ii) cognitive tasks that allow valid measurement across a range of species with differing morphology, perception, and temperament; (iii) a representative sample within each species to obtain accurate estimates of species-typical cognition; (iv) phylogenetic comparative methods appropriate for testing evolutionary hypotheses; and (v) unprecedented collaboration to collect these data from populations of animals around the world (70).Here, we present, to our knowledge, the first large-scale collaborative dataset and comparative analysis of this kind, focusing on the evolution of self-control. We chose to measure self-control—the ability to inhibit a prepotent but ultimately counterproductive behavior—because it is a crucial and well-studied component of executive function and is involved in diverse decision-making processes (167169). For example, animals require self-control when avoiding feeding or mating in view of a higher-ranking individual, sharing food with kin, or searching for food in a new area rather than a previously rewarding foraging site. In humans, self-control has been linked to health, economic, social, and academic achievement, and is known to be heritable (170172). In song sparrows, a study using one of the tasks reported here found a correlation between self-control and song repertoire size, a predictor of fitness in this species (173). In primates, performance on a series of nonsocial self-control control tasks was related to variability in social systems (174), illustrating the potential link between these skills and socioecology. Thus, tasks that quantify self-control are ideal for comparison across taxa given its robust behavioral correlates, heritable basis, and potential impact on reproductive success.In this study we tested subjects on two previously implemented self-control tasks. In the A-not-B task (27 species, n = 344), subjects were first familiarized with finding food in one location (container A) for three consecutive trials. In the test trial, subjects initially saw the food hidden in the same location (container A), but then moved to a new location (container B) before they were allowed to search (Movie S1). In the cylinder task (32 species, n = 439), subjects were first familiarized with finding a piece of food hidden inside an opaque cylinder. In the following 10 test trials, a transparent cylinder was substituted for the opaque cylinder. To successfully retrieve the food, subjects needed to inhibit the impulse to reach for the food directly (bumping into the cylinder) in favor of the detour response they had used during the familiarization phase (Movie S2).Thus, the test trials in both tasks required subjects to inhibit a prepotent motor response (searching in the previously rewarded location or reaching directly for the visible food), but the nature of the correct response varied between tasks. Specifically, in the A-not-B task subjects were required to inhibit the response that was previously successful (searching in location A) whereas in the cylinder task subjects were required to perform the same response as in familiarization trials (detour response), but in the context of novel task demands (visible food directly in front of the subject).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号