首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The blood-stage development of malaria parasites is initiated by the invasion of merozoites into susceptible erythrocytes. Specific receptor-ligand interactions must occur for the merozoites to first attach to and then invade erythrocytes. Because the invasion process is essential for the parasite's survival and the merozoite adhesion molecules are exposed on the merozoite surface during invasion, these adhesion molecules are candidates for antibody-dependent malaria vaccines. The Duffy binding protein of Plasmodium vivax belongs to a family of erythrocyte-binding proteins that contain functionally conserved cysteine-rich regions. The amino cysteine-rich regions of these homologous erythrocyte-binding proteins were recently identified for P. vivax, Plasmodium knowlesi, and Plasmodium falciparum as the principal erythrocyte-binding domains (C. Chitnis and L. H. Miller, J. Exp. Med. 180:497-506, 1994, and B. K. L. Sim, C. E. Chitnis, K. Wasniowska, T. J. Hadley, and L. H. Miller, Science 264:1941-1944, 1994). We report that amino acids in this critical ligand domain of the P. vivax Duffy binding protein are hypervariable, but this variability is limited. Hypervariability of the erythrocyte-binding domain suggests that this domain is the target of an effective immune response, but conservation of amino acid substitutions indicates that functional constraints limit this variation. In addition, the amino cysteine-rich region and part of the hydrophilic region immediately following it were the site of repeated homologous recombinations as represented by tandem repeat sequence polymorphisms. Similar polymorphisms have been identified in the same region of the homologous genes of P. falciparum and P. knowlesi, suggesting that there is a common mechanism of recombination or gene conversion that occurs in these Plasmodium genes.  相似文献   

2.
Invasion of Plasmodium falciparum merozoites into host erythrocyte involves a series of highly specific and sequential interaction between merozoite and host erythrocyte surface protein. The key step in the invasion process is the formation of a tight protein–protein interaction between host and parasite called as moving junction. A number of parasite proteins secreted from two organelles, microneme and rhoptry, play a role in initial interaction and junction formation between merozoite with host red blood cells (RBCs) during the invasion process. In the present study, we investigated the role of different domains of a P. falciparum rhoptry neck protein PfRON2. Immunofluorescence assay revealed close association of PfAMA1 and PfRON2 in the merozoites during the invasion process. PfRON2 domains were expressed on COS-7 cell surface, and their interaction was analysed with host RBCs and PfAMA1 protein by rosetting assays. The rosetting assays suggest that the C-terminal cysteine-rich domain of PfRON2 plays a role in binding with host erythrocyte. The C-terminal as well as the central cysteine-rich domain of PfRON2 interact with PfAMA1; this binding can be inhibited by monoclonal antibody (mAb 4 G2) against PfAMA1, suggesting that the hydrophobic groove of PfAMA1 binds to PfRON2. These results suggest that PfRON2 plays a role in merozoite invasion and thus it can be an important vaccine candidate antigen.  相似文献   

3.
Vaccine development against the blood-stage malaria parasite is aimed at reducing the pathology of the disease. We constructed a recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa C-terminus of Plasmodium falciparum merozoite surface protein-1 (MSP-119) to evaluate its protective ability against merozoite invasion of red blood cells in vitro. A mutated version of MSP-119, previously shown to induce the production of inhibitory but not blocking antibodies, was cloned into a suitable shuttle plasmid and transformed into BCG Japan (designated rBCG016). A native version of the molecule was also cloned into BCG (rBCG026). Recombinant BCG expressing the mutated version of MSP-119 (rBCG016) elicited enhanced specific immune response against the epitope in BALB/c mice as compared to rBCG expressing the native version of the epitope (rBCG026). Sera from rBCG016-immunized mice contained significant levels of specific IgG, especially of the IgG2a subclass, against MSP-119 as determined by enzyme-linked immunosorbent assay. The sera was reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA) and inhibited merozoite invasion of erythrocytes in vitro. Furthermore, lymphocytes from rBCG016-immunized mice demonstrated higher proliferative response against the MSP-119 antigen as compared to those of rBCG026- and BCG-immunized animals. rBCG expressing the mutated version of MSP-119 of P. falciparum induced enhanced humoral and cellular responses against the parasites paving the way for the rational use of rBCG as a blood-stage malaria vaccine candidate.  相似文献   

4.
Malaria merozoite surface and apical organellar molecules facilitate invasion into the host erythrocyte. The underlying molecular mechanisms of invasion are poorly understood, and there are few data to delineate roles for individual merozoite proteins. Apical membrane antigen-1 (AMA-1) is a conserved apicomplexan protein present in the apical organelle complex and at times on the surface of Plasmodium and Toxoplasma zoites. AMA-1 domains 1/2 are conserved between Plasmodium and Toxoplasma and have similarity to the defined ligand domains of MAEBL, an erythrocyte-binding protein identified from Plasmodium yoelii. We expressed selected portions of the AMA-1 extracellular domain on the surface of COS-7 cells to assay for erythrocyte-binding activity. The P. yoelii AMA-1 domains 1/2 mediated adhesion to mouse and rat erythrocytes, but not to human erythrocytes. Adhesion to rodent erythrocytes was sensitive to trypsin and chymotrypsin, but not to neuraminidase. Other parts of the AMA-1 ectodomain, including the full-length extracellular domain, mediated significantly less erythrocyte adhesion activity than the contiguous domains 1/2. The results support the role of AMA-1 as an adhesion molecule during merozoite invasion of erythrocytes and identify highly conserved domains 1/2 as the principal ligand of the Plasmodium AMA-1 and possibly the Toxoplasma AMA-1. Identification of the AMA-1 ligand domains involved in interaction between the parasite and host cell should help target the development of new therapies to block growth of the blood-stage malaria parasites.  相似文献   

5.
Apical membrane antigen 1 (AMA1) is expressed on the surfaces of Plasmodium falciparum merozoites and is thought to play an important role in the invasion of erythrocytes by malaria parasites. To select for peptides that mimic conformational B-cell epitopes on AMA1, we screened a phage display library of >10(8) individual peptides for peptides bound by a monoclonal anti-AMA1 antibody, 4G2dc1, known to inhibit P. falciparum invasion of erythrocytes. The most reactive peptides, J1, J3, and J7, elicited antibody responses in rabbits that recognized the peptide immunogen and both recombinant and parasite AMA1. Human antibodies in plasma samples from individuals exposed to chronic malaria reacted with J1 and J7 peptides and were isolated using immobilized peptide immunoadsorbents. Both rabbit and human antibodies specific for J1 and J7 peptides were able to inhibit the invasion of erythrocytes by P. falciparum merozoites. This is the first example of phage-derived peptides that mimic an important epitope of a blood-stage malaria vaccine candidate, inducing and isolating functional protective antibodies. Our data support the use of J1 and J7 peptide mimics as in vitro correlates of protective immunity in future AMA1 vaccine trials.  相似文献   

6.
Blood-stage malaria vaccines that target single Plasmodium falciparum antigens involved in erythrocyte invasion have not induced optimal protection in field trials. Blood-stage malaria vaccine development has faced two major hurdles, antigenic polymorphisms and molecular redundancy, which have led to an inability to demonstrate potent, strain-transcending, invasion-inhibitory antibodies. Vaccines that target multiple invasion-related parasite proteins may inhibit erythrocyte invasion more efficiently. Our approach is to develop a receptor-blocking blood-stage vaccine against P. falciparum that targets the erythrocyte binding domains of multiple parasite adhesins, blocking their interaction with their receptors and thus inhibiting erythrocyte invasion. However, with numerous invasion ligands, the challenge is to identify combinations that elicit potent strain-transcending invasion inhibition. We evaluated the invasion-inhibitory activities of 20 different triple combinations of antibodies mixed in vitro against a diverse set of six key merozoite ligands, including the novel ligands P. falciparum apical asparagine-rich protein (PfAARP), EBA-175 (PfF2), P. falciparum reticulocyte binding-like homologous protein 1 (PfRH1), PfRH2, PfRH4, and Plasmodium thrombospondin apical merozoite protein (PTRAMP), which are localized in different apical organelles and are translocated to the merozoite surface at different time points during invasion. They bind erythrocytes with different specificities and are thus involved in distinct invasion pathways. The antibody combination of EBA-175 (PfF2), PfRH2, and PfAARP produced the most efficacious strain-transcending inhibition of erythrocyte invasion against diverse P. falciparum clones. This potent antigen combination was selected for coimmunization as a mixture that induced balanced antibody responses against each antigen and inhibited erythrocyte invasion efficiently. We have thus demonstrated a novel two-step screening approach to identify a potent antigen combination that elicits strong strain-transcending invasion inhibition, supporting its development as a receptor-blocking malaria vaccine.  相似文献   

7.
Zhang D  Pan W 《Infection and immunity》2005,73(10):6530-6536
Because invasion of erythrocytes by Plasmodium falciparum merozoites involves multiple receptor-ligand interactions, it may be necessary to develop a multivalent malaria vaccine that is comprised of distinct parasite ligands. PfAMA-1, PfMSP1, and PfEBA-175 are merozoite proteins that play important roles in invasion. We have constructed a PfCP-2.9 chimeric protein consisting of PfAMA-1 and PfMSP1 and tested it for immunogenicity in animal models and humans. The F2 subdomain of PfEBA-175 (PfEBA-175II F2) was identified as the binding domain for glycophorin A on erythrocytes. In this study, we used the codon frequencies of the yeast Pichia pastoris to redesign and synthesize a gene encoding the F2 domain. We found that the codon-optimized gene was expressed at a high level in P. pastoris as a soluble protein with a yield of about 300 mg/liter. The expressed protein was able to bind normal erythrocytes but not those treated with neuraminidase or trypsin. Moreover, the protein was recognized by the sera of malaria patients and was highly immunogenic in mice, rabbits, and rhesus monkeys. Immunoglobulin G isolated from both immunized rabbits and monkeys inhibited in vitro parasite growth. Immunization of animals with a combination of PfEBA-175II F2 and PfCP-2.9 did not result in antigen (Ag) competition in animals. Moreover, antibodies to both PfEBA-175II F2 and PfCP-2.9, isolated from rabbits immunized with both constructs, inhibited parasite growth in vitro. The combination of high yield, functional folding, antibody inhibition, and lack of Ag competition provides support for inclusion of these merozoite proteins in a combination vaccine against infection with blood-stage parasites.  相似文献   

8.
Molecules that play a role in Plasmodium merozoite invasion of host red blood cells represent attractive targets for blood-stage vaccine development against malaria. In Plasmodium vivax, merozoite invasion of reticulocytes is mediated by the Duffy binding protein (DBP), which interacts with its cognate receptor, the Duffy antigen receptor for chemokines, on the surface of reticulocytes. The DBP ligand domain, known as region II (DBPII), contains the critical residues for receptor recognition, making it a prime target for vaccine development against blood-stage vivax malaria. In natural infections, DBP is weakly immunogenic and DBPII allelic variation is associated with strain-specific immunity, which may compromise vaccine efficacy. In a previous study, a synthetic vaccine termed DEKnull that lacked an immunodominant variant epitope in DBPII induced functional antibodies to shared neutralizing epitopes on the native Sal1 allele. Anti-DEKnull antibody titers were lower than anti-Sal1 titers but produced more consistent, strain-transcending anti-DBPII inhibitory responses. In this study, we further characterized the immunogenicity of DEKnull, finding that immunization with recombinant DEKnull produced an immune response comparable to that obtained with native recombinant DBP alleles. Further investigation of DEKnull is necessary to enhance its immunogenicity and broaden its specificity.  相似文献   

9.
Rhoptry proteins of Plasmodium falciparum merozoites, of 140, 130, and 110 kDa, identified by co-precipitation with Mab.1B9, bind selectively to mouse erythrocytes and reticulocytes. The properties of binding are shown to correlate with invasion of P. falciparum into mouse erythrocytes. Invasion of two strains of P. falciparum 7G8 and FCR-3, into mouse erythrocytes was examined, and was found to differ significantly. The 7G8 strain invades mouse erythrocytes at a rate of 40-60% compared to invasion into human erythrocytes, whereas FCR-3 invades at a rate of 5-15%. Both strains of P. falciparum preferentially invade reticulocytes in the in vitro invasion assay. This correlated with an increase in the amount of rhoptry protein of the 7G8 strain bound to mouse erythrocytes, compared to the FCR-3 strain and an increased binding to reticulocytes compared to mature erythrocytes. Binding of the rhoptry proteins and merozoite invasion into the erythrocyte is blocked in erythrocytes treated with trypsin and chymotrypsin but not in neuraminidase-treated erythrocytes, suggesting that the putative receptor site is exposed and accessible on the erythrocyte surface. Rabbit antiserum against gp3, the major glycophorin of mouse erythrocytes, blocks binding of the rhoptry proteins to erythrocytes and reduces merozoite invasion into mouse erythrocytes by 50%. Binding of rhoptry proteins to mouse reticulocytes was not blocked by alpha gp3 indicating a receptor difference between reticulocytes and erythrocytes. Mab.1B9 reduces merozoite invasion but does not decrease binding of the rhoptry proteins to the mouse erythrocyte. The mouse erythrocyte serves as a useful model to study the receptor-ligand interaction of rhoptry proteins and host surface proteins and to define the role of the rhoptry proteins during the invasion process.  相似文献   

10.
One of the solutions for reducing the global mortality and morbidity due to malaria is multivalent vaccines comprising antigens of several life cycle stages of the malarial parasite. Hence, there is a need for supplementing the current set of malaria vaccine candidate antigens. Here, we aimed to characterize glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (GAMA) encoded by the PF08_0008 gene in Plasmodium falciparum. Antibodies were raised against recombinant GAMA synthesized by using a wheat germ cell-free system. Immunoelectron microscopy demonstrated for the first time that GAMA is a microneme protein of the merozoite. Erythrocyte binding assays revealed that GAMA possesses an erythrocyte binding epitope in the C-terminal region and it binds a nonsialylated protein receptor on human erythrocytes. Growth inhibition assays revealed that anti-GAMA antibodies can inhibit P. falciparum invasion in a dose-dependent manner and GAMA plays a role in the sialic acid (SA)-independent invasion pathway. Anti-GAMA antibodies in combination with anti-erythrocyte binding antigen 175 exhibited a significantly higher level of invasion inhibition, supporting the rationale that targeting of both SA-dependent and SA-independent ligands/pathways is better than targeting either of them alone. Human sera collected from areas of malaria endemicity in Mali and Thailand recognized GAMA. Since GAMA in P. falciparum is refractory to gene knockout attempts, it is essential to parasite invasion. Overall, our study indicates that GAMA is a novel blood-stage vaccine candidate antigen.  相似文献   

11.
A gene encoding a 352 amino acid protein with a putative signal sequence, transmembrane domain and thrombospondin structural homology repeat was identified in the genome of the human malaria parasite, Plasmodium falciparum and the rodent malaria parasite, Plasmodium berghei. The protein localises in the apical organelles of P. falciparum and P. berghei merozoites within intraerythrocytic schizonts and has, therefore, been termed the Plasmodium thrombospondin-related apical merozoite protein (PTRAMP). PTRAMP co-localises with the Apical Merozoite Antigen-1 (AMA-1) in developing micronemes and subsequently relocates onto the merozoite surface. Although the gene appears to be specific to the Plasmodium genus, orthologues are present in the genomes of all malaria parasite species examined suggesting a conserved function in host-cell invasion. PTRAMP, therefore, has all the features to merit further evaluation as a malaria vaccine candidate.  相似文献   

12.
Invasion of erythrocytes by malaria merozoites requires the formation of a junction of attachment between erythrocyte and merozoite membranes. The attachment junction initially forms at the apical region of the merozoite. It then moves around to the posterior of the merozoite as invasion proceeds. A monoclonal antibody against a 60-kDa merozoite protein (termed MCP-1 for merozoite capping protein 1) of Plasmodium falciparum reacts in an immunofluorescence pattern resembling the moving junction. By two-color immunofluorescence, MCP-1 was located at the attachment site formed between the merozoite apical region and erythrocyte. During invasion, MCP-1 separated and migrated around merozoites at the orifice of the parasitophorous vacuole. In newly-invaded erythrocytes, MCP-1 persisted at the pole of the young parasite nearest the erythrocyte membrane, suggesting its anterior-to-posterior movement. MCP-1 exhibited no variability in molecular mass among the FCR-3, Camp and 7G8 strains of P. falciparum, and the epitope was invariant in the P. falciparum strains studied. We conclude that MCP-1 may participate in merozoite invasion of erythrocytes by facilitating attachment or movement of the junction along the parasite cytoskeletal network.  相似文献   

13.
Merozoite surface protein 8 (MSP8) has shown promise as a vaccine candidate in the Plasmodium yoelii rodent malaria model and has a proposed role in merozoite invasion of erythrocytes. However, the temporal expression and localisation of MSP8 are unusual for a merozoite antigen. Moreover, in Plasmodium falciparum the MSP8 gene could be disrupted with no apparent effect on invitro growth. To address the invivo function of full-length MSP8, we truncated MSP8 in the rodent parasite Plasmodium berghei. PbDeltaMSP8 disruptant parasites displayed a normal blood-stage growth rate but no increase in reticulocyte preference, a phenomenon observed in P. yoelii MSP8 vaccinated mice. Expression levels of erythrocyte surface antigens were similar in P. berghei wild-type and PbDeltaMSP8-infected erythrocytes, suggesting that a parasitophorous vacuole function for MSP8 does not involve global trafficking of such antigens. These data demonstrate that a full-length membrane-associated form of PbMSP8 is not essential for blood-stage growth.  相似文献   

14.
Electron microscopy was used to study the fate of Plasmodium falciparum ring-infected erythrocyte surface antigen after merozoite invasion by using postembedding immunolabeling. The antigen was localized to small dense granules located centrally or laterally in free merozoites. In newly invaded erythrocytes, labeling was found in pockets of the parasitophorous vacuole space or in aggregates closely associated with the parasitophorous vacuole. These patterns indicate that ring-infected erythrocyte surface antigen is contained in merozoite dense granules that are released after merozoite invasion and not via apical rhoptry ducts at the time of merozoite attachment.  相似文献   

15.
Plasmodium falciparum-related malaria represents a serious worldwide public health problem due to its high mortality rates. P. falciparum expresses rhoptry neck protein 4 (PfRON4) in merozoite and sporozoite rhoptries, it participates in tight junction-TJ formation via the AMA-1/RON complex and is refractory to complete genetic deletion. Despite this, which PfRON4 key regions interact with host cells remain unknown; such information would be useful for combating falciparum malaria. Thirty-two RON4 conserved region-derived peptides were chemically synthesised for determining and characterising PfRON4 regions having high host cell binding affinity (high activity binding peptides or HABPs). Receptor-ligand interaction/binding assays determined their specific binding capability, the nature of their receptors and their ability to inhibit in vitro parasite invasion. Peptides 42477, 42479, 42480, 42505 and 42513 had greater than 2% erythrocyte binding activity, whilst peptides 42477 and 42480 specifically bound to HepG2 membrane, both of them having micromolar and submicromolar range dissociation constants (Kd). Cell-peptide interaction was sensitive to treating erythrocytes with trypsin and/or chymotrypsin and HepG2 with heparinase I and chondroitinase ABC, suggesting protein-type (erythrocyte) and heparin and/or chondroitin sulphate proteoglycan receptors (HepG2) for PfRON4. Erythrocyte invasion inhibition assays confirmed HABPs’ importance during merozoite invasion. PfRON4 800–819 (42477) and 860–879 (42480) regions specifically interacted with host cells, thereby supporting their inclusion in a subunit-based, multi-antigen, multistage anti-malarial vaccine.  相似文献   

16.
Plasmodium falciparum utilizes multiple ligand-receptor interactions for invasion. The invasion ligand EBA-175 is being developed as a major blood-stage vaccine candidate. EBA-175 mediates parasite invasion of host erythrocytes in a sialic acid-dependent manner through its binding to the erythrocyte receptor glycophorin A. In this study, we addressed the ability of naturally acquired human antibodies against the EBA-175 RII erythrocyte-binding domain to inhibit parasite invasion of ex vivo isolates, in relationship to the sialic acid dependence of these parasites. We have determined the presence of antibodies to the EBA-175 RII domain by enzyme-linked immunosorbent assay (ELISA) in individuals from areas of Senegal where malaria is endemic with high and low transmission. Using affinity-purified human antibodies to the EBA-175 RII domain from pooled patient plasma, we have measured the invasion pathway as well as the invasion inhibition of clinical isolates from Senegalese patients in ex vivo assays. Our results suggest that naturally acquired anti-EBA-175 RII antibodies significantly inhibit invasion of Senegalese parasites and that these responses can be significantly enhanced through limiting other ligand-receptor interactions. However, the extent of this functional inhibition by EBA-175 antibodies is not associated with the sialic acid dependence of the parasite strain, suggesting that erythrocyte invasion pathway usage by parasite strains is not driven by antibodies targeting the EBA-175/glycophorin A interaction. This work has implications for vaccine design based on the RII domain of EBA-175 in the context of alternative invasion pathways.  相似文献   

17.
The delineation of putatively protective and immunogenic epitopes in vaccine candidate proteins constitutes a major research effort towards the development of an effective malaria vaccine. By virtue of its role in the formation of the immune clusters of merozoites, its location on the surface of merozoites, and its highly conserved nature both at the nucleotide sequence level and the amino acid sequence level, the antigen which contains repeats of acidic and basic residues (ABRA) of the human malaria parasite Plasmodium falciparum represents such an antigen. Based upon the predicted amino acid sequence of ABRA, we synthesized eight peptides, with six of these (AB-1 to AB-6) ranging from 12 to 18 residues covering the most hydrophilic regions of the protein, and two more peptides (AB-7 and AB-8) representing its repetitive sequences. We found that all eight constructs bound an appreciable amount of antibody in sera from a large proportion of P. falciparum malaria patients; two of these peptides (AB-1 and AB-3) also elicited a strong proliferation response in peripheral blood mononuclear cells from all 11 human subjects recovering from malaria. When used as carrier-free immunogens, six peptides induced a strong, boostable, immunoglobulin G-type antibody response in rabbits, indicating the presence of both B-cell determinants and T-helper-cell epitopes in these six constructs. These antibodies specifically cross-reacted with the parasite protein(s) in an immunoblot and in an immunofluorescence assay. In another immunoblot, rabbit antipeptide sera also recognized recombinant fragments of ABRA expressed in bacteria. More significantly, rabbit antibodies against two constructs (AB-1 and AB-5) inhibited the merozoite reinvasion of human erythrocytes in vitro up to ~90%. These results favor further studies so as to determine possible inclusion of these two constructs in a multicomponent subunit vaccine against asexual blood stages of P. falciparum.  相似文献   

18.
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains.  相似文献   

19.
Plasmodium falciparum causes malaria disease during the asexual blood stages of infection when merozoites invade erythrocytes and replicate. Merozoite surface proteins (MSPs) are proposed to play a role in the initial binding of merozoites to erythrocytes, but precise roles remain undefined. Based on electron microscopy studies of invading Plasmodium merozoites, it is proposed that the majority of MSPs are cleaved and shed from the surface during invasion, perhaps to release receptor-ligand interactions. In this study, we demonstrate that there is not universal cleavage of MSPs during invasion. Instead, there is sequential and coordinated cleavage and shedding of proteins, indicating a diversity of roles for surface proteins during and after invasion. While MSP1 and peripheral surface proteins such as MSP3, MSP7, serine repeat antigen 4 (SERA4), and SERA5 are cleaved and shed at the tight junction between the invading merozoite and erythrocyte, the glycosylphosphatidylinositol (GPI)-anchored proteins MSP2 and MSP4 are carried into the erythrocyte without detectable processing. Following invasion, MSP2 rapidly degrades within 10 min, whereas MSP4 is maintained for hours. This suggests that while some proteins that are shed upon invasion may have roles in initial contact steps, others function during invasion and are then rapidly degraded, whereas others are internalized for roles during intraerythrocytic development. Interestingly, anti-MSP2 antibodies did not inhibit invasion and instead were carried into erythrocytes and maintained for approximately 20 h without inhibiting parasite development. These findings provide new insights into the mechanisms of invasion and knowledge to advance the development of new drugs and vaccines against malaria.  相似文献   

20.
The protozoan pathogen responsible for the most severe form of human malaria, Plasmodium falciparum, replicates asexually in erythrocytes within a membrane-bound parasitophorous vacuole (PV). Following each round of intracellular growth, the PV membrane (PVM) and host cell membrane rupture to release infectious merozoites in a protease-dependent process called egress. Previous work has shown that, just prior to egress, an essential, subtilisin-like parasite protease called PfSUB1 is discharged into the PV lumen, where it directly cleaves a number of important merozoite surface and PV proteins. These include the essential merozoite surface protein complex MSP1/6/7 and members of a family of papain-like putative proteases called SERA (serine-rich antigen) that are implicated in egress. To determine whether PfSUB1 has additional, previously unrecognized substrates, we have performed a bioinformatic and proteomic analysis of the entire late asexual blood stage proteome of the parasite. Our results demonstrate that PfSUB1 is responsible for the proteolytic processing of a range of merozoite, PV, and PVM proteins, including the rhoptry protein RAP1 (rhoptry-associated protein 1) and the merozoite surface protein MSRP2 (MSP7-related protein-2). Our findings imply multiple roles for PfSUB1 in the parasite life cycle, further supporting the case for considering the protease as a potential new antimalarial drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号