首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two monoclonal antibodies (IX-IF9-D8 and IX-5H9-CI) produced to a membrane enriched fraction of Leishmania mexicana amazonensis promastigotes have been demonstrated to be specific for the promastigote (insect) form and not the amastigote (mammalian host) form of the parasite. The antigens recognized by these monoclonal antibodies are not found on amastigotes isolated from infected animals or on amastigotes isolated from a macrophage cell line J774 infected initially with promastigotes. The antigens are not re-expressed by amastigotes cultured at 34°C; however, amastigotes cultured at 24°C that have begun transformation into promastigotes do express these antigens. The level of expression of these antigens in cultures of amastigotes undergoing transformation into promastigotes, increases with time from 16 to 36 h and appears to correlate with the percentage of promastigotes. Two protein molecules with apparent molecular weights of 40 000 and 92 000 have been identified by radioimmune precipitation as associated with L. mexicana promastigote stage specific determinants.  相似文献   

2.
Mutations within the polyamine biosynthetic pathway of Leishmania donovani, the etiological agent of visceral leishmaniasis, confer polyamine auxotrophy to the insect vector or promastigote form of the parasite. However, whether the infectious or amastigote form of the parasite requires an intact polyamine pathway has remained an open question. To address this issue, conditionally lethal Δodc mutants lacking ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, were created by double targeted gene replacement within a virulent strain of L. donovani. ODC-deficient promastigotes and axenic amastigotes were auxotrophic for polyamines and capable of robust growth only when exogenous putrescine was supplied in the culture medium, confirming that polyamine biosynthesis is an essential nutritional pathway for L. donovani promastigotes. To assess whether the Δodc lesion also affected the ability of amastigotes to sustain a robust infection, macrophage and mouse infectivity experiments were performed. Parasite loads in murine macrophages infected with each of two independent Δodc knockout lines were decreased ~80% compared to their wild-type counterpart. Furthermore, α-difluoromethylornithine, a suicide inhibitor of ODC, inhibited growth of wild-type L. donovani amastigotes and effectively cured macrophages of parasites, thereby preventing host cell destruction. Strikingly, however, parasitemias of both Δodc null mutants were reduced by 6 and 3 orders of magnitude, respectively, in livers and spleens of BALB/c mice. The compromised infectivity phenotypes of the Δodc knockouts in both macrophages and mice were rescued by episomal complementation of the genetic lesion. These genetic and pharmacological studies strongly implicate ODC as an essential cellular determinant that is necessary for the viability and growth of both L. donovani promastigotes and amastigotes and intimate that pharmacological inhibition of ODC is a promising therapeutic paradigm for the treatment of visceral and perhaps other forms of leishmaniasis.  相似文献   

3.
4.
The promastigote form of the unicellular parasite, Leishmania donovani, must differentiate into the amastigote form to establish an infection in a mammalian host. Identification of genes whose expression changes during differentiation could help reveal mechanisms of Leishmania gene regulation and identify targets for controlling the diseases caused by this human pathogen. Two genomic clones were isolated, P9 that is more highly expressed in promastigotes than in axenic amastigotes and A14 that is preferentially expressed in axenic amastigotes. Analysis of the DNA sequences revealed open reading frames that would encode 55.5 kDa and 100 kDa proteins, respectively, with no homology to known proteins. The mRNA level for these genes during 24 h time courses of parasite differentiation in culture was compared to two genes known to be differentially expressed, c-lpk2 and mkk. Changes in RNA level occurred within 2 h for each gene and continued in advance of morphological changes. The expression levels of these four genes in axenic amastigotes correlated with results from animal-derived parasites.  相似文献   

5.
Leishmania (L.) infantum (syn. Leishmania chagasi) is a dimorphic protozoan parasite that lives in promastigote and amastigote form in its sandfly vector and mammalian hosts, respectively. Here, we describe an in vitro culture system for the generation of a pure population of L. infantum axenic amastigotes after only 4 days incubation in culture medium supplemented with fetal calf serum, human urine, l-glutamine, and HEPES at 37oC (pH 5.5). Ultrastrutural analysis and infection assays in two macrophage populations (Kupffer cells (KUP) and peritoneal macrophages (PM)) infected with axenic amastigotes demonstrated that they maintained morphological and biochemical (A2 expression) features and a similar infection pattern to tissue-derived L. infantum amastigotes. The susceptibility of the macrophage lines to axenic or tissue-derived amastigotes and promastigotes was investigated. We found a completely different susceptibility profile for KUP and PM. Liver macrophages, both KUP and immigrant macrophages, are intimately involved in the response to L. infantum infection; this difference in susceptibility is probably related to their capacity to eliminate these parasites. Our in vitro system was thus able to generate axenic amastigotes that resemble tissue-derived amastigotes both in morphology and infectivity pattern; this will help in further investigation of the biological characteristics of the host–parasite relationship as well as the process of pathogenesis.  相似文献   

6.
7.
Acridine orange and ethidium bromide and a combination of fluorescent and transmitted light microscopy used in conjunction with the qualitative nitroblue tetrazolium assay for superoxide anion (O2-) release demonstrated dramatic differences in the binding of and respiratory burst (RB) activity elicited by promastigotes and amastigotes of Leishmania donovani in resident peritoneal macrophages (M phi) from C57BL/10ScSn mice. When amastigotes were incubated with M phi for 30 min the number of parasites per 100 M phi was 2-4-fold higher, a higher proportion of M phi became infected and the mean number of parasites per infected M phi was higher than in promastigote infections. RB activity was higher for promastigotes than amastigotes both in terms of the percentage of infected M phi containing formazan positive parasites and the percentage of individual formazan positive parasites. In an attempt to explain the differential response to promastigotes and amastigotes, RB activity was examined for sodium azide-treated, glutaraldehyde-fixed and heat-killed parasites and for various transformation intermediates between amastigotes and promastigotes. Binding and RB activity were also examined in conjunction with competitive binding assays designed to determine the specific receptors involved in ligand binding of both forms of the parasite to the M phi. The results indicate that, while amastigotes may possess an azide-sensitive mechanism which either competes for O2- produced or causes localized inactivation of RB activity, this cannot account for the full magnitude of the difference between the two forms of the parasite. The transformation and competitive binding studies suggest that the more likely explanation lies in both qualitative and quantitative differences in the distribution of surface ligands involved in binding the parasite to the M phi plasma membrane and that the well characterized mannose/fucose receptor may be important in promastigote, but not amastigote, binding and RB activity.  相似文献   

8.
Resolution of leishmaniasis is associated with host immunological responsiveness to parasite antigens. In clinical disease, leishmania are found as amastigotes contained with macrophages. We investigated the possibility that Leishmania antigens are expressed on the infected macrophage surface by reacting infected macrophages with antibody to Leishmania. In vitro-infected human monocyte-derived macrophages were labelled with antibody to amastigotes when examined with immunofluorescent or immunoelectron microscopic techniques. Infected macrophages were poorly labelled by antibody to promastigotes (insect forms of Leishmania). Certain antisera that reacted with the surface membranes of amastigotes did not label the infected macrophage surface. These results indicate that human macrophages infected in vitro express Leishmania amastigote antigen(s) on their surface membranes, that such antigen(s) may not be present in large quantities in promastigotes, and that certain antigen(s) on the amastigote surface are not expressed on the surface membranes of infected macrophages.  相似文献   

9.
In the search for a leishmaniasis vaccine, extensive studies have been carried out with promastigote (insect stage) molecules. Information in this regard on amastigote (mammalian host stage) molecules is limited. To investigate host immune responses to Leishmania amastigote antigens, we purified three stage-specific antigens (A2, P4, and P8) from in vitro-cultivated amastigotes of Leishmania pifanoi by using immunoaffinity chromatography. We found that with Corynebacterium parvum as an adjuvant, three intraperitoneal injections of 5 micrograms of P4 or P8 antigen provided partial to complete protection of BALB/c mice challenged with 10(5) to 10(7) L. pifanoi promastigotes. These immunized mice developed significantly smaller or no lesions and exhibited a 39- to 1.6 x 10(5)-fold reduction of lesion parasite burden after 15 to 20 weeks of infection. In addition, P8 immunization resulted in complete protection against L. amazonensis infection of CBA/J mice and partial protection of BALB/c mice, suggesting that this antigen provided cross-species protection of mice with different H-2 haplotypes. At different stages during infection, vaccinated mice exhibited profound proliferative responses to parasite antigens and increased levels of gamma interferon production, suggesting that a Th1 cell-mediated immune response is associated with the resistance in these mice. Taken together, the data in this report indicate the vaccine potential of amastigote-derived antigens.  相似文献   

10.
Megasomes are large lysosomes found in the amastigote stage of Leishmania species belonging to the mexicana complex. The biogenesis of megasomes was investigated by transmission electron microscopy during the transformation of promastigotes into the amastigote form of L. amazonensis maintained in axenic cultures. Mainly small vacuoles with low electron density were found in the promastigote and early intermediate forms. Morphometrical analysis showed an increase in the volume density of these structures during the transformation process. Cysteine proteinase was localized in this structure by immunocytochemical assay. Membrane-bounded structures filled with electron-dense material were also found in significant amounts from the 2nd day on. These structures were relatively abundant, both in axenic and lesion-derived amastigotes, but not in stable long-term axenic amastigote culture. A three-dimensional reconstruction of lesion-derived amastigotes and axenic amastigotes of L. amazonensis demonstrated that megasomes comprise almost 5% of the total cell volume. In addition, the development of other organelles was examined during the transformation process. Received: 18 May 2000 / Accepted: 31 August 2000  相似文献   

11.
Inability to culture the disease-producing amastigote form of Leishmania has greatly hampered its study. We have biochemically characterized an axenically cultured amastigote-like form of Leishmania pifanoi. This form closely resembles amastigotes in proteinase, ribonuclease, adenine deaminase and peroxidase activity. It also exhibits comparable rates of growth, transformation, synthesis of DNA, RNA and protein, and metabolism of glucose and linoleic acid. It is distinct from promastigotes in these characteristics. The expression of the genes for beta-tubulin and the P100/11E reductase is developmentally regulated in this axenic form as in amastigotes. These results, combined with previous demonstrations of amastigote morphology and antigenicity in the culture form, confirm that Leishmania amastigotes have been successfully propagated in axenic media. This strain should serve as an excellent model for the study of amastigote biochemistry, pharmacology and immunology, and the molecular genetics of the transformation between amastigote and promastigote forms.  相似文献   

12.
This work describes a simple method to yield large amounts of Leishmania amastigote-like forms in axenic cultures using promastigotes as the starting population. The method described induced extracellular amastigote transformation of Leishmania amazonensis (97%), Leishmania braziliensis (98%) and Leishmania chagasi (90%). The rounded parasites obtained in axenic cultures were morphologically similar, even at the ultrastructural level, to intracellular amastigotes. Moreover, the axenic amastigotes remained viable as measured by their ability to revert back to promastigotes and to infect BALB/c mice. L. amazonensis and L. braziliensis promastigotes and axenic amastigotes differed in terms of their Western blot profiles. A 46 kDa protein was recognized by specific antibodies only in axenic and lesion-derived L. amazonensis amastigotes and not in promastigotes.  相似文献   

13.
Glycoconjugates have been shown to play important roles in Leishmania development. However, the ability to study these molecules and other processes would benefit greatly from improved methods for genetic manipulation and analysis of the amastigote stage. This is especially challenging for L. donovani, the agent of the most severe form of leishmaniasis, which can rapidly lose virulence during in vitro culture. Here we report on a clonal subline of an L. donovani 1S2D (LdBob or LdB), which differentiates readily from promastigotes to amastigotes in axenic culture, and maintains this ability during extended parasite cultivation in vitro. This derivative can be plated and transfected efficiently while grown as promastigotes or amastigotes. Importantly, LdB maintains the ability to differentiate while undergoing genetic alterations required for creation of gene knockouts and complemented lines. Like virulent L. donovani, LdB exhibits down-regulation of lipophosphoglycan (LPG) synthesis and up-regulation of A2 protein synthesis in amastigotes. We showed that knockouts of LPG2, encoding a Golgi GDP-mannose transporter, eliminated phosphoglycan synthesis in LdB axenic amastigotes. These and other data suggest that LdB axenic amastigotes will be generally useful as a differentiation model in studies of gene expression, virulence, glycoconjugate function and drug susceptibility in L. donovani.  相似文献   

14.
LMPK, a mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana, is essential for the proliferation of the amastigote, the mammalian stage of the protozoan parasite. This has been demonstrated using deletion mutant promastigotes, the insect stage of the parasite: first, in vitro after differentiation to amastigotes, which subsequently lost their potential to proliferate; second, by infection of peritoneal macrophages, which were able to cope with the infection and cleared the parasites; third, by infection of BALB/c mice, which showed no lesion development. The lmpk deletion mutant promastigotes are a potential live vaccine because they infect macrophages, transform to amastigotes and deliver amastigote antigens to raise an immune response without causing the disease. In addition, inhibition of LMPK in a wild-type infection is likely to resolve the disease and as such, is an ideal target for drug development against leishmaniasis. Here we investigated the presence and copy number of lmpk homologues in Leishmania amazonensis, L. major, L. tropica, L. aethiopica, L. donovani, L. infantum, and L. braziliensis and discuss the results with regard to drug development and vaccination using kinase deletion mutants.  相似文献   

15.
The diagnosis of post-kala-azar dermal leishmaniasis (PKDL), a dermatosis that provides the only known reservoir for the parasite Leishmania donovani in India, remains a problem. Timely recognition and treatment of PKDL would contribute significantly to the control of kala-azar. We evaluated here the potential of the enzyme-linked immunosorbent assay (ELISA) as a diagnostic tool for PKDL. Antigen prepared from promastigotes and axenic amastigotes with parasite isolates that were derived from skin lesions of a PKDL patient gave sensitivities of 86.36 and 92%, respectively, in the 88 PKDL cases examined. The specificity of the ELISA test was examined by testing groups of patients with other skin disorders (leprosy and vitiligo) or coendemic infections (malaria and tuberculosis), as well as healthy controls from areas where this disease is endemic or is not endemic. A false-positive reaction was obtained in 14 of 144 (9.8%) of the controls with the promastigote antigen and in 14 of 145 (9.7%) of the controls with the amastigote antigen. Evaluation of the serodiagnostic potential of recombinant k39 by ELISA revealed a higher sensitivity (94.5%) and specificity (93.7%) compared to the other two antigens used. The data demonstrate that ELISA with crude or recombinant antigen k39 provides a relatively simple and less-invasive test for the reliable diagnosis of PKDL.  相似文献   

16.
Stage-specific variations in lectin binding to Leishmania donovani.   总被引:1,自引:3,他引:1  
Visceral leishmaniasis is caused by the dimorphic protozoan Leishmania donovani, which exists as an aflagellar amastigote within mammalian mononuclear phagocytes and as a flagellated extracellular promastigote in its sandfly vector. We have identified four plant lectins that bind to the L. donovani surface, and through these we have documented stage-specific differences in exposed surface carbohydrates. Concanavalin A bound to both promastigotes and amastigotes; binding was inhibited by mannose or alpha-methyl-mannoside, implying a mannose-containing residue on the surface of both parasite stages. Ricinus communis agglutinin, which binds to galactose-containing residues, also bound to both stages and was inhibited by lactose, implying a galactose-containing glycoconjugate on the parasite surface. Two other lectins, wheat germ agglutinin (WGA) and peanut agglutinin (PNA), exhibited stage specificity in their binding characteristics. Amastigotes bound WGA but not PNA. During the process of conversion from the amastigote to the promastigote stage, the WGA-binding glycoconjugate was lost, and a PNA-binding residue was newly displayed. WGA binding was inhibited by N-acetyl-D-glucosamine and was not altered by neuraminidase treatment, suggesting the presence of an exposed N-acetyl-D-glucosamine moiety on the amastigote surface. The PNA binding site is known to accommodate the oligosaccharide beta-D-galactose-(1----3)-N-acetyl-D-galactosamine; in our system, PNA may have identified an internal rather than a terminal galactose on the promastigote surface. Localized binding of WGA and PNA to the surface of intermediate phases of the parasite suggested inhomogeneous and changing surface characteristics during conversion from amastigote to promastigote stages. This evolution of L. donovani surface glycoconjugates may be important in the adaptation of the organism to its divergent mammalian host and arthropod vector environments.  相似文献   

17.
18.
Leishmania infantum is a protozoan parasite that causes visceral leishmaniasis (VL). This infection triggers dendritic cell (DC) activation through the recognition of microbial products by Toll-like receptors (TLRs). Among the TLRs, TLR9 is required for DC activation by different Leishmania species. We demonstrated that TLR9 is upregulated in vitro and in vivo during infection. We show that C57BL/6 mice deficient in TLR9 expression (TLR9−/− mice) are more susceptible to infection and display higher parasite numbers in the spleen and liver. The increased susceptibility of TLR9−/− mice was due to the impaired recruitment of neutrophils to the infection foci associated with reduced levels of neutrophil chemoattractants released by DCs in the target organs. Moreover, both Th1 and Th17 cells were also committed in TLR9−/− mice. TLR9-dependent neutrophil recruitment is mediated via the MyD88 signaling pathway but is TIR domain-containing adapter-inducing interferon beta (TRIF) independent. Furthermore, L. infantum failed to activate both plasmacytoid and myeloid DCs from TLR9−/− mice, which presented reduced surface costimulatory molecule expression and chemokine release. Interestingly, neutrophil chemotaxis was affected both in vitro and in vivo when DCs were derived from TLR9−/− mice. Our results suggest that TLR9 plays a critical role in neutrophil recruitment during the protective response against L. infantum infection that could be associated with DC activation.  相似文献   

19.
During Leishmania major infection in mice, gamma interferon (IFN-gamma) plays an essential role in controlling parasite growth and disease progression. In studies designed to ascertain the role of IFN-gamma in Leishmania amazonensis infection, we were surprised to find that IFN-gamma could promote L. amazonensis amastigote replication in macrophages (Mphis), although it activated Mphis to kill promastigotes. The replication-promoting effect of IFN-gamma on amastigotes was independent of the source and genetic background of Mphis, was apparently not affected by surface opsonization of amastigotes, was not mediated by interleukin-10 or transforming growth factor beta, and was observed at different temperatures. Consistent with the different fates of promastigotes and amastigotes in IFN-gamma-stimulated Mphis, L. amazonensis-specific Th1 transfer helped recipient mice control L. amazonensis infection established by promastigotes but not L. amazonensis infection established by amastigotes. On the other hand, IFN-gamma could stimulate Mphis to limit amastigote replication when it was coupled with lipopolysaccharides but not when it was coupled with tumor necrosis factor alpha. Thus, IFN-gamma may play a bidirectional role at the level of parasite-Mphi interactions; when it is optimally coupled with other factors, it has a protective effect against infection, and in the absence of such synergy it promotes amastigote growth. These results reveal a quite unexpected aspect of the L. amazonensis parasite and have important implications for understanding the pathogenesis of the disease and for developing vaccines and immunotherapies.  相似文献   

20.
Glycosylated phosphatidylinositols (GPIs) are abundant cell surface molecules of the Leishmania. Amastigote-specific GPIs AmGPI-Y and AmGPI-Z, both ethanolamine (EtN)-containing glycolipids, were identified in Leishmania amazonensis. A paucity of GPI-anchored proteins in amastigotes of L. amazonensis made the kinetoplastid suitable for evaluating the importance of free (i.e. unconjugated to protein or polysaccharide) GPIs. A strain deficient in both AmGPI-Y and AmGPI-Z was produced by stable transfection of wild-type Leishmania with a GPI-phospholipase C gene. Phosphatidylinositol deficiency was not detected in the transfectants. GPI-deficient promastigotes infected murine macrophages in vitro and differentiated into amastigotes whose growth was arrested within the host cells. Cytostasis of amastigotes was also observed during axenic culture of GPI-deficient parasites. In a hamster model of leishmaniasis, GPI-deficient promastigotes produced smaller lesions with 20-fold fewer amastigotes than infections with control parasites. Together, these observations indicate that EtN-GPIs may be essential for amastigote viability, replication, and/or virulence. Implicit in these observations is the notion that drugs targeted against the GPI biosynthetic pathway might be of value in the management of human leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号