首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Neuroimaging research has traditionally explored fear and anxiety in response to discrete threat cues (e.g., during fear conditioning). However, anxiety is a sustained aversive state that can persist in the absence of discrete threats. Little is known about mechanisms that maintain anxiety states over a prolonged period. Here, we used a robust translational paradigm (threat of shock) to induce sustained anxiety. Recent translational work has implicated an amygdala–prefrontal cortex (PFC) circuit in the maintenance of anxiety in rodents. To explore the functional homologues of this circuitry in humans, we used a novel paradigm to examine the impact of sustained anticipatory anxiety on amygdala–PFC intrinsic connectivity.

Methods

Task-independent fMRI data were collected in healthy participants during long-duration periods of shock anticipation and safety. We examined intrinsic functional connectivity.

Results

Our study involved 20 healthy participants. During sustained anxiety, amygdala activity was positively coupled with dorsomedial PFC (DMPFC) activity. High trait anxiety was associated with increased amygdala–DMPFC coupling. In addition, induced anxiety was associated with positive coupling between regions involved in defensive responding, and decreased coupling between regions involved in emotional control and the default mode network.

Limitations

Inferences regarding anxious pathology should be made with caution because this study was conducted in healthy participants.

Conclusion

Findings suggest that anticipatory anxiety increases intrinsic amygdala–DMPFC coupling and that the DMPFC may serve as a functional homologue for the rodent prefrontal regions by sustaining anxiety. Future research may use this defensive neural context to identify bio-markers of risk for anxious pathology and target these circuits for therapeutic intervention.  相似文献   

2.
3.

Background

Anhedonia has long been recognized as a key feature of major depressive disorders, but little is known about the association between hedonic symptoms and neurobiological processes in depressed patients. We investigated whether amygdala mood-congruent responses to emotional stimuli in depressed patients are correlated with anhedonic symptoms at automatic levels of processing.

Methods

We measured amygdala responsiveness to subliminally presented sad and happy facial expressions in depressed patients and matched healthy controls using functional magnetic resonance imaging. Amygdala responsiveness was compared between patients and healthy controls within a 2 (group) × 2 (emotion) design. In addition, we correlated patients’ amygdala responsiveness to sad and happy facial stimuli with self-report questionnaire measures of anhedonia.

Results

We included 35 patients and 35 controls in our study. As in previous studies, we observed a strong emotion × group interaction in the bilateral amygdala: depressed patients showed greater amygdala responses to sad than happy faces, whereas healthy controls responded more strongly to happy than sad faces. The lack of automatic right amygdala responsiveness to happy faces in depressed patients was associated with higher physical anhedonia scores.

Limitations

Almost all depressed patients were taking antidepressant medications.

Conclusion

We replicated our previous finding of depressed patients showing automatic amygdala mood-congruent biases in terms of enhanced reactivity to negative emotional stimuli and reduced activity to positive emotional stimuli. The altered amygdala processing of positive stimuli in patients was associated with anhedonia scores. The results indicate that reduced amygdala responsiveness to positive stimuli may contribute to an-hedonic symptoms due to reduced/inappropriate salience attribution to positive information at very early processing levels.  相似文献   

4.

Background

Converging neuroimaging research suggests altered emotion neurocircuitry in individuals with posttraumatic stress disorder (PTSD). Emotion activation studies in these individuals have shown hyperactivation in emotion-related regions, including the amygdala and insula, and hypoactivation in emotion-regulation regions, including the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). However, few studies have examined patterns of connectivity at rest in individuals with PTSD, a potentially powerful method for illuminating brain network structure.

Methods

Using the amygdala as a seed region, we measured resting-state brain connectivity using 3 T functional magnetic resonance imaging in returning male veterans with PTSD and combat controls without PTSD.

Results

Fifteen veterans with PTSD and 14 combat controls enrolled in our study. Compared with controls, veterans with PTSD showed greater positive connectivity between the amygdala and insula, reduced positive connectivity between the amygdala and hippocampus, and reduced anticorrelation between the amygdala and dorsal ACC and rostral ACC.

Limitations

Only male veterans with combat exposure were tested, thus our findings cannot be generalized to women or to individuals with non–combat related PTSD.

Conclusion

These results demonstrate that studies of functional connectivity during resting state can discern aberrant patterns of coupling within emotion circuits and suggest a possible brain basis for emotion-processing and emotion-regulation deficits in individuals with PTSD.  相似文献   

5.

Background

Obsessive–compulsive disorder (OCD) is a common, heritable neuropsychiatric disorder, hypothetically underpinned by dysfunction of brain cortical–striatal–thalamic–cortical (CSTC) circuits; however, the extent of brain functional abnormalities in individuals with OCD is unclear, and the genetic basis of this disorder is poorly understood. We determined the whole brain functional connectivity patterns in patients with OCD and their healthy first-degree relatives.

Methods

We used resting-state fMRI to measure functional connectivity strength in patients with OCD, their healthy first-degree relatives and healthy controls. Whole brain functional networks were constructed by measuring the temporal correlations of all brain voxel pairs and further analyzed using a graph theory approach.

Results

We enrolled 39 patients with OCD, 20 healthy first-degree relatives and 39 healthy controls in our study. Compared with healthy controls, patients with OCD showed increased functional connectivity primarily within the CSTC circuits and decreased functional connectivity in the occipital cortex, temporal cortex and cerebellum. Moreover, patients with OCD and their first-degree relatives exhibited overlapping increased functional connectivity strength in the bilateral caudate nucleus, left orbitofrontal cortex (OFC) and left middle temporal gyrus.

Limitations

Potential confounding factors, such as medication use, heterogeneity in symptom clusters and comorbid disorders, may have impacted our findings.

Conclusion

Our preliminary results suggest that patients with OCD have abnormal resting-state functional connectivity that is not limited to CSTC circuits and involves abnormalities in additional large-scale brain systems, especially the limbic system. Moreover, resting-state functional connectivity strength abnormalities in the left OFC, bilateral caudate nucleus and left middle temporal gyrus may be neuroimaging endophenotypes for OCD.  相似文献   

6.

Background

We sought to investigate the altered brain responses to emotional stimuli in patients with schizophrenia.

Methods

We analyzed data from 14 patients with schizophrenia and 14 healthy controls who performed an emotional face matching task. We evaluated brain activity and connectivity in the amygdala and cortical regions during the initial (first 21 seconds of each stimulation block) and sustained (last 21 seconds) stages of an emotional processing task, and we determined changes in amygdala activity across the emotional processing task.

Results

The patients with schizophrenia showed similar amygdala activation to the controls during the initial stage of processing, but their activation decreased during the sustained stage. The controls showed increasing amygdala activity across the emotional blocks, whereas activity progressively decreased in the schizophrenia group. The patients with schizophrenia showed increased cortical activity and interconnectivity in the medial frontal and inferior parietal cortex in the initial stage of emotional processing. There was increased activity in the superior temporal cortex and greater connectivity with the inferior parietal cortex in the sustained stage. Performance accuracy was lower in the schizophrenia group in the first part of the block, while their reaction time was longer in the latter part of the block.

Limitations

It was not possible to specify the moment at which the switch in amygdala response occurred.

Conclusion

Our findings suggest that patients with schizophrenia have an initial automatic emotional response but that they need to switch to a compensatory cognitive strategy to solve the task.  相似文献   

7.

Background

Autism spectrum disorders (ASD) are associated with severe impairments in social functioning. Because faces provide nonverbal cues that support social interactions, many studies of ASD have examined neural structures that process faces, including the amygdala, ventromedial prefrontal cortex and superior and middle temporal gyri. However, increases or decreases in activation are often contingent on the cognitive task. Specifically, the cognitive domain of attention influences group differences in brain activation. We investigated brain function abnormalities in participants with ASD using a task that monitored attention bias to emotional faces.

Methods

Twenty-four participants (12 with ASD, 12 controls) completed a functional magnetic resonance imaging study while performing an attention cuing task with emotional (happy, sad, angry) and neutral faces.

Results

In response to emotional faces, those in the ASD group showed greater right amygdala activation than those in the control group. A preliminary psychophysiological connectivity analysis showed that ASD participants had stronger positive right amygdala and ventromedial prefrontal cortex coupling and weaker positive right amygdala and temporal lobe coupling than controls. There were no group differences in the behavioural measure of attention bias to the emotional faces.

Limitations

The small sample size may have affected our ability to detect additional group differences.

Conclusion

When attention bias to emotional faces was equivalent between ASD and control groups, ASD was associated with greater amygdala activation. Preliminary analyses showed that ASD participants had stronger connectivity between the amygdala ventromedial prefrontal cortex (a network implicated in emotional modulation) and weaker connectivity between the amygdala and temporal lobe (a pathway involved in the identification of facial expressions, although areas of group differences were generally in a more anterior region of the temporal lobe than what is typically reported for emotional face processing). These alterations in connectivity are consistent with emotion and face processing disturbances in ASD.  相似文献   

8.

Background

Altered memory processes are thought to be a key mechanism in the etiology of anxiety disorders, but little is known about the neural correlates of fear learning and memory biases in patients with social phobia. The present study therefore examined whether patients with social phobia exhibit different patterns of neural activation when confronted with recently acquired emotional stimuli.

Methods

Patients with social phobia and a group of healthy controls learned to associate pseudonames with pictures of persons displaying either a fearful or a neutral expression. The next day, participants read the pseudonames in the magnetic resonance imaging scanner. Afterwards, 2 memory tests were carried out.

Results

We enrolled 21 patients and 21 controls in our study. There were no group differences for learning performance, and results of the memory tests were mixed. On a neural level, patients showed weaker amygdala activation than controls for the contrast of names previously associated with fearful versus neutral faces. Social phobia severity was negatively related to amygdala activation. Moreover, a detailed psychophysiological interaction analysis revealed an inverse correlation between disorder severity and frontolimbic connectivity for the emotional > neutral pseudonames contrast.

Limitations

Our sample included only women.

Conclusion

Our results support the theory of a disturbed corticolimbic interplay, even for recently learned emotional stimuli. We discuss the findings with regard to the vigilance–avoidance theory and contrast them to results indicating an oversensitive limbic system in patients with social phobia.  相似文献   

9.

Background

We investigated the differential effects of serotonergic and noradrenergic antidepressants on brain activation in patients with major depressive disorder during a Stroop task. We predicted that pretreatment hyperactivity in the rostral anterior cingulate cortex would predict better treatment outcomes.

Methods

In total, 20 patients underwent naturalistic open-label clinical treatment with citalopram (n = 12) or reboxetine (n = 8). We performed functional magnetic resonance imaging at baseline and after 6 weeks of treatment.

Results

There were no significant group differences in clinical characteristics, treatment outcomes or baseline fMRI activations. The group by time interaction revealed significant voxels in the right amygdala–hippocampus complex (p < 0.05, family-wise error corrected by use of the bilateral amygdala and hippocampus mask image as a small volume), indicating a posttreatment blood oxygen level–dependent signal decrease in the citalopram group. Pretreatment hyperactivity in the rostral anterior cingulate cortex was not related to symptom improvement.

Limitations

Our study was a nonrandomized clinical trial.

Conclusion

These results indicate that serotonergic and noradrenergic antidepressants have a differential effect on brain activity, especially in the amygdala and hippocampus.  相似文献   

10.

Background

The aim of the present study was to investigate the association of fMRI blood oxygen–level dependent (BOLD) reactivity with the level of epigenetic methylation of SLC6A4 in blood DNA from a sample of healthy participants and patients with major depressive disorder (MDD).

Methods

We investigated patients with MDD and healthy controls using fMRI and an emotional attention-shifting task. We assessed site-specific DNA methylation of a previously characterized SLC6A4 region in peripheral blood DNA using pyrosequencing.

Results

Our study involved 25 patients with MDD and 35 healthy controls. Activation in the anterior insula elicited by negative emotional content was significantly positively associated with the degree of SLC6A4 methylation. Significantly negative associations were observed between activation in the posterior insula and the degree of SLC6A4 methylation when judging the geometry of pictures after seeing negative in contrast to positive emotional stimuli. Healthy controls with a high degree of SLC6A4 methylation depicted significantly more activity elicited by positive stimuli in limbic regions and more activity elicited by negative stimuli in limbic as well as cognitive control regions than those with a low degree of SLC6A4 methylation.

Limitations

It is impossible to measure methylation directly in the brain and thus we assessed peripheral methylation of SLC6A4. Since the association was cross-sectional, no conclusion about cause and effect can be drawn.

Conclusion

Our study provides further support to the hypothesis that particular DNA methylation states that are associated with brain function during emotion processing are detectable in the periphery.  相似文献   

11.

Background

Abnormalities in the anterior interhemispheric connections provided by the corpus callosum (CC) have long been implicated in major depressive disorder (MDD). The purpose of this study was to investigate interhemispheric connectivity in medication-naive patients with MDD by measuring fractional anisotropy in the CC with diffusion tensor imaging (DTI) techniques.

Methods

We obtained DTI scans from medication-naive patients with MDD and from matched healthy controls. Fractional anisotropy values were compared using semiautomatic region of interest methods to localize the regional CC differences between these 2 groups.

Results

We enrolled 27 patients and 27 controls in our study. Fractional anisotropy values were significantly lower in the anterior genu of the CC in the MDD group than in the control group (p = 0.009, corrected); results were not significantly different in any other CC subregions.

Limitations

As patients with MDD were already experiencing acute episodes, future studies of individuals at risk for MDD are warranted to elucidate the interhemispheric connectivity abnormalities associated with the predisposition to MDD.

Conclusion

The findings demonstrate abnormalities in the structural integrity of the anterior genu of the CC in medication-naive individuals with MDD, which may contribute to impairment of interhemispheric connectivity in patients with this disorder.  相似文献   

12.
13.

Background

Functional brain imaging studies have demonstrated amygdala and insula hyper-reactivity to probes of social threat in participants with generalized social anxiety disorder (gSAD). The amygdala and insula are known to serve broad functions in emotional processing, including integration of affective information. However, few studies have examined brain responses in socially anxious participants during general emotional processing. We examined brain response to emotionally evocative images in patients with gSAD and matched healthy controls.

Methods

Eleven patients with gSAD who were not taking psychotropic medications and did not have psychiatric comorbidities and 11 matched healthy controls underwent functional magnetic resonance imaging while viewing blocks of emotionally salient (positive, negative, neutral) pictures.

Results

Participants with gSAD exhibited enhanced bilateral amygdala and insula reactivity to negative (v. neutral) images compared with healthy controls who did not exhibit enhanced reactivity. Within the gSAD group, the extent of amygdala activation was correlated with social anxiety severity, whereas the extent of insula activation was correlated with trait anxiety.

Limitations

The small sample size may have limited our ability to detect group differences in other relevant brain regions and in behavioural measures.

Conclusion

In addition to prior findings of probes of social information processing, our findings suggest that the amygdala and insula responses are hyper-reactive to general emotional images with negative emotional content and that these brain regions may play divergent roles in their representation of different phenotypes.  相似文献   

14.

Background

Although the amygdala is thought to be a crucial brain region for negative affect, neuroimaging studies do not always show enhanced amygdala response to aversive stimuli in patients with anxiety disorders. Serotonin (5-HT)–related genotypes may contribute to interindividual variability in amygdala responsiveness. The short (s) allele of the 5-HT transporter linked polymorphic region (5-HTTLPR) and the T variant of the G-703T polymorphism in the tryptophan hydroxylase-2 (TPH2) gene have previously been associated with amygdala hyperresponsivity to negative faces in healthy controls. We investigated the influence of these polymorphisms on amygdala responsiveness to angry faces in patients with social anxiety disorder (SAD) compared with healthy controls.

Methods

We used positron emission tomography with oxygen 15-labelled water to assess regional cerebral blood flow in 34 patients with SAD and 18 controls who viewed photographs of angry and neutral faces presented in counterbalanced order. We genotyped all participants with respect to the 5-HTTLPR and TPH2 polymorphisms.

Results

Patients with SAD and controls had increased left amygdala activation in response to angry compared with neutral faces. Genotype but not diagnosis explained a significant portion of the variance in amygdala responsiveness, the response being more pronounced in carriers of s and/or T alleles.

Limitations

Our analyses were limited owing to the small sample and the fact that we were unable to match participants on genotype before enrolment. In addition, other imaging techniques not used in our study may have revealed additional effects of emotional stimuli.

Conclusion

Amygdala responsiveness to angry faces was more strongly related to serotonergic polymorphisms than to diagnosis of SAD. Emotion activation studies comparing amygdala excitability in patient and control groups could benefit from taking variation in 5-HT–related genes into account.  相似文献   

15.

Background

Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives.

Methods

This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC).

Results

We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding.

Limitations

The results we obtained using monetary stimuli might not generalize to other forms of reward.

Conclusion

Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral–frontal brain circuitry in recovered patients suggests an elevated degree of self-regulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom–up and top–down processes may be a trait marker of the disorder.  相似文献   

16.

Background

Major depressive disorder (MDD) is associated with difficulty disengaging attention from emotionally negative information. Few studies have investigated whether euthymic individuals with a history of depression (remitted MDD [rMDD]) show similar deficits, and little is known about concomitant neurophysiological features of such deficits. To fill these gaps, we investigated cognitive control over emotional stimuli in participants with rMDD and controls without history of depression or psychopathology.

Methods

We collected 128-channel event-related potentials (ERPs) while participants performed a cued emotional conflict task. During the task, a cue instructed the participant to respond to the actual or opposite valence of an upcoming happy or sad face.

Results

We enrolled 15 individuals with rMDD and 18 controls in our study. Event-related potentials showed no group differences in response to the cues, highlighting preserved preparatory processes when anticipating an emotional conflict. However, relative to the control group, the rMDD group responded more slowly and showed reduced N450 amplitudes on trials that required disengaging from negative faces (pressing “happy” in response to a sad face).

Limitations

The sample size was small, and the null finding in the cue-locked N2 analyses may be owing to low power.

Conclusion

Our results suggest a selective deficit in cognitive control over sad stimuli in individuals with rMDD. Additional studies will be required to pinpoint whether the current findings stem from impairments in response conflict, conflict monitoring and/or attentional disengagement in response to sad stimuli. Moreover, future studies are warranted to evaluate whether decreased cognitive control in response to negative information might increase the risk for future depressive episodes.  相似文献   

17.

Background

The “default network” consists of a number of brain regions that exhibit correlated low-frequency activity at rest and that have been suggested to be involved in the processing of self-relevant stimuli. Activity in many of these areas has also been shown to be altered in individuals with posttraumatic stress disorder (PTSD). We hypothesized that the posterior cingulate cortex (PCC)/precuneus, part of the default network, would exhibit altered connectivity at rest with other areas of the default network and regions associated with PTSD.

Methods

Seventeen medicated and unmedicated female patients with chronic posttraumatic stress disorder (PTSD) related to early-life trauma and 15 healthy female controls underwent a 5.5-minute functional magnetic resonance imaging scan with their eyes closed. We assessed areas of the brain whose activity positively and negatively correlated with that of the PCC/precuneus in both groups.

Results

At rest, spontaneous low-frequency activity in the PCC/precuneus was more strongly correlated with activity in other areas of the default network in healthy controls than in patients with PTSD. Direct comparison of the 2 groups showed that PCC/ precuneus connectivity was also greater in healthy controls than in patients with PTSD in a number of areas previously associated with PTSD, including the right amygdala and the hippocampus/parahippocampal gyrus.

Limitations

Because our PTSD sample comprised only women with chronic early-life trauma exposure, our results may not be generalizeable to male patients, to a population with single trauma exposure or to those who were adults when the trauma occurred. In addition, our sample included patients taking medication and it is not yet clear how altered connectivity is affected by medication.

Conclusion

Spontaneous activity in the default network during rest, as measured using PCC correlations, is altered in patients with PTSD. The potential effects of psychotropic medications on default network connectivity in the present sample remain unknown. In this patient population, the observed alterations may be associated with the disturbances in self-referential processing often observed in patients with chronic PTSD related to early-life trauma.  相似文献   

18.

Background

Growing evidence suggests that small ubiquitin-like modifier (SUMO) conjugation plays a key role in brain plasticity by modulating activity-dependent synaptic transmission. However, these observations are based largely on cell culture experiments. We hypothesized that episodic and fear memories would be affected by silencing SUMO1–3 expression.

Methods

To investigate the role of SUMO conjugation in neuronal functioning in vivo, we generated a novel Sumo transgenic mouse model in which a Thy1 promoter drives expression of 3 distinct microRNAs to silence Sumo1–3 expression, specifically in neurons. Wild-type and Sumo1–3 knockdown mice were subjected to a battery of behavioural tests to elucidate whether Sumoylation is involved in episodic and emotional memory.

Results

Expression of Sumo1–3 microRNAs and the corresponding silencing of Sumo expression were particularly pronounced in hippocampal, amygdala and layer V cerebral cortex neurons. The Sumo knockdown mice displayed anxiety-like responses and were impaired in episodic memory processes, contextual and cued fear conditioning and fear-potentiated startle.

Limitations

Since expression of Sumo1–3 was silenced in this mouse model, we need to verify in future studies which of the SUMO paralogues play the pivotal role in episodic and emotional memory.

Conclusion

Our results indicate that a functional SUMO conjugation pathway is essential for emotionality and cognition. This novel Sumo knockdown mouse model and the technology used in generating this mutant may help to reveal novel mechanisms that underlie a variety of neuropsychiatric conditions associated with anxiety and impairment of episodic and emotional memory.  相似文献   

19.

Background

Visuospatial processing has been found to be mediated primarily by two cortical routes, one of which is unique to recognizing objects (occipital-temporal, ventral or “what” pathway) and the other to detecting the location of objects in space (parietal-occipital, dorsal or “where” pathway). Considering previous findings of relative advantage in people with autism in visuospatial processing, this functional MRI study examined the connectivity in the dorsal and ventral pathways in high-functioning children with autism.

Methods

Seventeen high-functioning children and adolescents with autism spectrum disorders (ASD) and 19 age-and-IQ-matched typically developing (TD) participants took part in this study. A simple visual task involving object recognition and location detection was used. In the MRI scanner, participants were shown grey scale pictures of objects (e.g., toys, household items, etc.) and were asked to identify the objects presented or to specify the location of objects relative to a cross at the center of the screen.

Results

Children with ASD, relative to TD children, displayed significantly greater activation in the left inferior parietal lobule (especially the angular gyrus) while detecting the location of objects. However, there were no group differences in brain activity during object recognition. There were also differences in functional connectivity, with the ASD participants showing decreased connectivity of the inferior temporal area with parietal and occipital areas during location detection.

Conclusions

The results of this study underscore previous findings of an increased reliance on visuospatial processing (increased parietal activation) for information processing in ASD individuals. In addition, such processing may be more local, focal, and detailed in ASD as evidenced from the weaker functional connectivity.

Electronic supplementary material

The online version of this article (doi:10.1186/1866-1955-6-37) contains supplementary material, which is available to authorized users.  相似文献   

20.

Objective

The aim of this study is to investigate abnormal findings of social brain network in Korean children with autism spectrum disorder (ASD) compared with typically developing children (TDC).

Methods

Functional magnetic resonance imaging (fMRI) was performed to examine brain activations during the processing of emotional faces (happy, fearful, and neutral) in 17 children with ASD, 24 TDC.

Results

When emotional face stimuli were given to children with ASD, various areas of the social brain relevant to social cognition showed reduced activation. Specifically, ASD children exhibited less activation in the right amygdala (AMY), right superior temporal sulcus (STS) and right inferior frontal gyrus (IFG) than TDC group when fearful faces were shown. Activation of left insular cortex and right IFG in response to happy faces was less in the ASD group. Similar findings were also found in left superior insular gyrus and right insula in case of neutral stimulation.

Conclusion

These findings suggest that children with ASD have different processing of social and emotional experience at the neural level. In other words, the deficit of social cognition in ASD could be explained by the deterioration of the capacity for visual analysis of emotional faces, the subsequent inner imitation through mirror neuron system (MNS), and the ability to transmit it to the limbic system and to process the transmitted emotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号