首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
To learn the distribution of cells projecting to the thalamus, as opposed to the cerebellum, in the mechanosensory nuclei of the dorsal medulla of raccoons, we analyzed the retrograde transport of horseradish peroxidase from the ventrobasal complex of the thalamus and from the cerebellum. We found six nuclear regions projecting heavily to the thalamus with very small projections to the cerebellum: Bischoff's, central cuneate, central gracile, rostral cuneate, rostral gracile nuclei, and cell group z. Two regions showed heavy projections to the cerebellum with no projections to the thalamus: the lateral portion of the external cuneate nucleus and the compact portion of cell group x. Four regions showed more equivalent projections to both target regions: basal cuneate, medial portion of the external cuneate nucleus, medial tongue extension of the external cuneate nucleus, and reticular portion of cell group x. Three more ventral regions were labeled: lateral cervical nucleus from thalamic injections but not from cerebellar injections; central cervical nucleus from cerebellar injections, which crossed the midline, but not from thalamic injections; and lateral reticular nucleus from both target regions. In most medullary regions, most cells project to one target and very few project to the other; we suggest that the cells projecting to the minor target convey samples of the information going to the major target.  相似文献   

2.
Double retrograde axonal tracing experiments were carried out in order to reveal potential patterns of divergence in axonal projections from the two major sensory nuclei of the mouse brainstem trigeminal complex: the principal sensory and spinal trigeminal nuclei (oralis, interpolaris, and caudalis divisions). The tracers wheat germ agglutinin, N-[acetyl-3H] and horseradish peroxidase were used in paired injection strategies within portions of the cerebellum, superior colliculus, and thalamic ventrobasal complex and/or posterior group of adult ICR white mice. Trigeminal neurons with projections to tactile areas of the cerebellar cortex or underlying deep cerebellar nuclei were found scattered throughout the principal sensory nucleus and interpolaris division, and mainly in dorsal regions of the oralis division of the spinal trigeminal nucleus. Injections of either tracer which involved lateral portions of the rostral half of the superior colliculus labeled trigeminotectal neurons mainly in the contralateral interpolaris division, ventral half of the oralis division, and a ventral region of the principal sensory nucleus near the oralis border. Fewer trigeminotectal neurons were found scattered throughout the principal sensory nucleus and the magnocellular layer of the caudalis divisions, although an occasional labeled neuron wa also found in the marginal layer. Contralaterally projecting trigeminothalamic neurons were observed throughout the principal sensory nucleus, interpolaris division, and within the marginal and magnocellular layers of caudalis. Double-labeled neurons were observed only after paired injections of the tracers in the thalamus and ipsilateral superior colliculus, and they were found within the caudoventral portion of the principal sensory nucleus near the oralis border, throughout the interpolaris division, within the magnocellular layer of caudalis, and only a few double-labeled neurons were also found within the marginal layer. After such injections, 50% of the labeled tectum-projecting neurons in the principal sensory nucleus, 64% in the interpolaris division, and 57% in the caudalis division are branched neurons which have collateralized projections to both the superior colliculus and thalamus. These projections, which have not been described before, appear to arise from more than one class of projection neuron which is differentially distributed within different regions of the trigeminus.  相似文献   

3.
D. Somers  W.M. Panneton   《Brain research》1984,309(2):335-340
Fluorescent dyes were used to determine if neurons in the feline subnucleus interpolaris of the spinal trigeminal nucleus project to more than one target via axon collaterals. Either Fast Blue or True Blue was injected into the ventrobasal thalamus while Nuclear Yellow later was deposited into either the principal trigeminal nucleus or the cerebellum. In general, numerous neurons in the subnucleus interpolaris were labeled by a single dye after these injections, but only a few were labeled with two dyes, and the latter only after the combination of injections were into the thalamus and the principal nucleus on the opposite side. These data suggest that independent populations of neurons in the subnucleus interpolaris project to these targets.  相似文献   

4.
The present experiments compared the projections to the inferior olive of the cat from the gracile, cuneate and spinal trigeminal nuclei. A differential labeling strategy was used for these comparisons. It was found that all three somatic sensory nuclei project to portions of all three major divisions of the contralateral inferior olive. The spinal trigeminal n. may also project less densely to the ipsilateral medial accessory olive. Projections to the dorsal accessory nucleus (DAO) and the medially-adjacent ventral lamella of the principal nucleus are roughly somatotopically organized. Although there is considerable overlap between the projection zones, the gracile n. projects predominantly to lateral DAO, the cuneate n. projects predominantly to medial DAO, and the spinal trigeminal nucleus pars caudalis projects predominantly to the most medial portions of DAO and the ventral lamella of principal olive. Projections to the medial accessory olive, on the other hand, are not as highly organized. Instead, they overlap extensively within a small egg-shaped area in the middle of the caudal half of the nucleus. Whereas all portions of the gracile and cuneate nuclei project to the inferior olive, only the pars caudalis of the spinal trigeminal nucleus appears to do so. These results were compared with the three available olivocerebellar maps as well as with the available behavioral and electrophysiological evidence on cerebellar somatotopic organization. This comparison indicated that the inputs to the cerebellum from the three second-order somatosensory nuclei via the inferior olive appear to be generally consistent with cerebellar somatotopic organization. This consistency is apparent not only with respect to the longitudinally-organized, vermal and paravermal differences in the anterior lobe, but also with respect to the transversely-organized specific somatotopy of the intermediate zone of the anterior lobe and the paramedian lobule.  相似文献   

5.
In raccoons and other mammals, a pathway for kinesthetic sensation (from muscles, fascia, tendons, and joints) reaches the anterodorsal cap of the ventrobasal thalamus and the anteriormost part of the somatic sensory cerebral cortex. To find the medullary component of this kinesthetic pathway in raccoons, small injections of horseradish peroxidase were made in the thalamus under guidance of simultaneous electrophysiological recording from kinesthetic projections. As determined by retrograde labeling following these injections, kinesthetic thalamic subregions receive projections as follows: caudomedial from cells in the external cuneate nucleus and its medial tongue, rostromedial from cells in basal cuneate nucleus, and rostrolateral from cells in cell group z and the reticular division of cell group x. Electrophysiological recording showed kinesthetic representations in each of these medullary regions. Labeled cells were also observed in the infratrigeminal subnucleus of the lateral reticular nucleus. Cats have kinesthetic projections to the thalamus from the basal cuneate and cell group z; raccoons (and monkeys) have these plus projections from the external cuneate and cell group x. This suggests that the kinesthetic projection system in raccoons and monkeys is expanded in correlation with their more dextrous use of the hand.  相似文献   

6.
The distribution of acidic fibroblast growth factor (aFGF) mRNA-expressing neurons was studied throughout the adult mouse central nervous system (CNS) with in situ hybridization histochemistry using a radiolabelled synthetic oligodeoxynucleotide probe complementary to the mRNA of human aFGF. We report here a widespread distribution of aFGF mRNA in several defined functional systems of the adult mouse brain, whereby the highest levels of aFGF mRNA were found in large somatomotor neurons in the nuclei of the oculomotor, trochlear, abducens, and hypoglossal nerves; in the motoneurons of the ventral spinal cord and the special visceromotor neurons in the motor nucleus of the trigeminal nerve; and in the facial and ambigaus nuclei. Labelled perikarya were also detected in all central structures of the auditory pathway including the level of the inferior colliculus, i.e., the lateral and medial superior nuclei; the trapezoid, cochlear, and lateral lemniscal nuclei; and parts of the anterior colliculus. Furthermore, many aFGF-positive cell bodies were found in the vestibular system and other structures projecting to the cerebellum, in the deep cerebellar nuclei, in somatosensory structures of the medulla (i.e., in the gracile, cuneate, and external cuneate nuclei), as well as in the spinal nucleus of the trigeminal nerve. The findings that aFGF mRNA is expressed in all components of several well-defined systems (i.e., in sensory structures) as Well as in central neurons that process sensory information and, finally, in some efferent projections point towards a concept of aFGF expression primarily within certain neuronal circuitries. © 1995 Wiley-Liss, Inc.  相似文献   

7.
In our traditional view of the avian somatosensory system, input from the beak and head reaches the telencephalon via a disynaptic pathway, involving projections from the principal sensory nucleus (PrV) directly to nucleus basorostralis (previously called nucleus basalis), whereas input from the rest of the body follows a trisynatic pathway similar to that in mammals, involving projections from the dorsal column nuclei to the thalamus, and thence to somatosensory wulst. However, the role of the nuclei of the descending trigeminal tract (nTTD) in this scenario is unclear, partly because their ascending projections have been examined in only one species, the mallard duck. Here we examine the ascending projections of the nTTD in the zebra finch, using in vivo injections of biotinylated dextran amine and verification of projections by means of retrograde transport of the beta subunit of cholera toxin. The results show a high degree of interconnectivity within the nTTD, and that these nuclei project to PrV. We also find a projection from nTTD to the contralateral thalamic nucleus uvaeformis, a multi‐sensory nucleus connected to the song system. Furthermore, our finding of a projection from nTTD to the contralateral somatosensory thalamic nucleus dorsalis intermedius ventralis anterior (DIVA) is consistent with the well‐known projection in mammals from nTTD to the ventrobasal thalamus, suggesting that the ascending trigeminal pathways in birds and mammals are more similar than previously thought.  相似文献   

8.
This study was undertaken to identify the trigeminal nuclear regions connected to the hypoglossal (XII) and facial (VII) motor nuclei in rats. Anterogradely transported tracers (biotinylated dextran amine, biocytin) were injected into the various subdivisions of the sensory trigeminal complex, and labeled fibers and terminals were searched for in the XII and VII. In a second series of experiments, injections of retrogradely transported tracers (biotinylated dextran amine, gold-horseradish peroxidase complex, fluoro-red, fluoro-green) were made into the XII and the VII, and labeled cells were searched for in the principal sensory trigeminal nucleus, and in the pars oralis, interpolaris, and caudalis of the spinal trigeminal nucleus. Trigeminohypoglossal projections were distributed throughout the ventral and dorsal region of the XII. Neurons projecting to the XII were found in all subdivisions of the sensory trigeminal complex with the greatest concentration in the dorsal part of each spinal subnucleus and exclusively in the dorsal part of the principal nucleus. Trigeminofacial projections reached all subdivisions of the VII, with a gradual decreasing density from lateral to medial cell groups. They mainly originated from the ventral part of the principal nucleus. In the spinal nucleus, most of the neurons projecting to the VII were in the dorsal part of the nucleus, but some were also found in its central and ventral parts. By using retrograde double labeling after injections of different tracers in the XII and VII on the same side, we examined whether neurons in the trigeminal complex project to both motor nuclei. These experiments demonstrate that in the spinal trigeminal nucleus, neurons located in the pars caudalis and pars interpolaris project by axon collaterals to XII and VII. J. Comp. Neurol. 415:91–104, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

9.
Lesions of the rat barrelfield cortex drastically alter the discrete representations of the somatosensory periphery in the central nervous system. We have found that lesions placed in the parietal cortex, after the formation of barrels (postnatal day 5), can irreversibly abolish vibrissae- and extremity-related patterns of cytochrome oxidase activity in the principal sensory nucleus of the trigeminal nerve and in the dorsal column nuclei. Furthermore, abnormal patterns of enzymatic activity occur in the remaining primary somatosensory cortex and the ventrobasal nucleus of the thalamus. We conclude that cortical barrels are essential in maintenance of periphery-related discrete morphological organization in the rodent somatosensory system.  相似文献   

10.
Using the horseradish peroxidase technique on the North American opossum, we were able to locate the neurons within the dorsal column and lateral cuneate nuclei which innervate the cerebellum and thalamus as well as those within the dorsal column nuclei which project spinalward. The medial and lateral cuneate nuclei supply axons to the anterior lobe, the paramedian lobule and the pyramis of the cerebellum and the lateral nucleus provides an additional projection to the uvula. The cerebellar projections from these nuclei arise from neurons located rostral to the obex. The thalamic projections from the gracile and medial cuneate nuclei originate from neurons throughout their rostral to caudal extent, although most of them are located just rostral to the obex. Neurons within the lateral cuneate nucleus which innervate the thalamus are found at intermediate rostrocaudal levels where most of them approximate the medial cuneate nucleus. The medial cuneate also projects to at least lumbar levels of the spinal cord in the opossum and neurons giving rise to such connections are found at the level of the obex and caudal to it. Neurons within the dorsal part of the dorsal column nuclei were labelled only after thalamic injections. Our results in the opossum are compared with those obtained in several placental mammals.  相似文献   

11.
The projections to lobulus simplex and Crus I of the cerebellum from various brainstem nuclei have been examined in adult rats by using the retrograde fluorescent double labeling technique. True blue was injected into the lobulus simplex on one side and nuclear yellow on the other and the brainstem was examined for labeled neurons. The lateral reticular nucleus, pontine tegmental reticular nucleus, and nucleus praepositus hypoglossi were similar to the equivalent nuclei in other species but all contained double- as well as single-labeled neurons and it was concluded that these nuclei have neurons whose axons branch to both sides of the cerebellum. More neurons in the rostral part of the lateral reticular nucleus were bilaterally projecting than in the caudal and the significance of this in relation to its afferents is considered. The individual neurons in the pontine nuclei, inferior olivary nucleus, and cuneate nuclei only appear to project to one side and the recent evidence for axonal branching of pontine neurons in the cat is discussed.  相似文献   

12.
The fluorescent dyes True Blue, Fast Blue, Nuclear Yellow and SITS were used to examine the connections of the rat brainstem sensory trigeminal nuclear complex (nV). Particular attention was paid to the following questions: do individual trigeminal neurons project to multiple targets via axon collaterals; and do primary afferent inputs to the various regions of nV arise from individual cells? Pairs of injections, using contrasting dyes, were made into the following target area combinations: ventrobasal thalamus-ipsilateral superior colliculus, cerebellum-contralateral thalamus, nucleus principalis of nV-contralateral thalamus, and nucleus principalis of nV-subnucleus caudalis of spinal nV. In general, numerous neurons throughout all subdivisions of nV and within the trigeminal ganglion were labeled by a single dye following the injections. In addition, many cells in a similar distribution were found to be doubly-labeled following such injection combination. These data demonstrate the existence of significant subpopulations of first- and second-order neurons that project to multiple targets via divergent axonal ramifications throughout the rat sensory trigeminal system.  相似文献   

13.
P Luo 《Brain research》1992,578(1-2):342-346
Thalamus projecting neurons and their recurrent axonal collaterals were observed in the dorsomedial part of the trigeminal principal sensory nucleus (Vpdm) and the caudolateral part of supratrigeminal nucleus (Vsup CL) after injection of horseradish peroxidase (HRP) into the contralateral ventrobasal complex of the thalamus (VBm) by using the HRP retrogradely tracing-Golgi-like staining method. About 7% (8/120) parent axons of the labeled cells gave rise to recurrent axon collaterals. However, no retrogradely labeled cells were observed in the VBm after injection of HRP into the Vpdm and Vsup CL. In an electron microscopic study, the terminals of recurrent axon collaterals made synapses with the dendrites of the thalamus projecting neurons or non-labeled neurons in the neuropil of the Vpdm and Vsup CL. It is suggested that the recurrent axon collaterals might play a role of negative feedback in transmission of the proprioceptive message from the jaw-closing muscle spindles to the thalamus.  相似文献   

14.
The primary goals of this study were to: 1) examine the distribution of neurons within the dorsal raphe (DR) nucleus that project to cortical and subcortical sites along the trigeminal somatosensory pathway in rat; 2) determine the extent to which different regions within this ascending sensory system receive collateral projections from the same DR neuron; and 3) identify the putative transmitters contained within these DR projection neurons. Long-Evans hooded rats received pressure injections of various combinations of retrograde fluorescent tracers; into the whisker-related regions of the primary somatosensory cortex (barrel field cortex [BC]), ventral posterior medial thalamus (VPM), and principal nucleus of the trigeminal complex (PrV). The distribution of retrogradely labeled neurons within the DR was examined by fluorescence microscopy. The major finding was that cortically projecting neurons were located within the midline regions of the rostral portion of the DR, whereas cells projecting to subcortical trigeminal somatosensory structures were distributed bilaterally in the lateral wing regions of the DR as well as in the midline portions of the nucleus. Single neurons that send axon collaterals to multiple cortical and subcortical trigeminal somatosensory targets were observed in the dorsomedian and ventromedian regions of the DR. DR neurons that projected to cortical and subcortical sites contained serotonin but not tyrosine hydroxylase, the marker enzyme for catecholamine transmitters. Taken together, these findings provide further evidence of neurochemical specificity and functional anatomical organization within the DR efferent projection system.  相似文献   

15.
The distribution of cholecystokinin octapeptide immunoreactive fibers and puncta in the adult rat thalamus was studied using immunocytochemical methods. Small to moderate numbers of immunoreactive fibers were present in the lateral habenular nucleus, ventral lateral geniculate nucleus, zona incerta, parataenial, mediodorsal, medioventral, and submedial nuclei, the rhomboid, paracentral, central lateral and parafascicular nuclei, and in the medial geniculate and dorsal lateral geniculate nuclei. Moderate to large numbers of cholecystokinin (CCK)-positive fibers were present in the paraventricular nuclei, the reticular nucleus, the anteroventral, anteromedial, and central medial nuclei, and in the rostral extension of the internal medullary lamina between the parataential and anteroventral nuclei. Dense concentrations of immunoreactive fibers were also found in a principal sensory relay nucleus, the ventroposterolateral nucleus (VPL), of the ventrobasal complex. The number of CCK-positive fibers in VPL showed a marked unilateral decrease in rats which had received lesions of the contralateral gracile and cuneate nuclei. The results of this study demonstrate that CCK-immunoreactive fibers and puncta are widely distributed in the rat thalamus, and that the source of these fibers in VPL is probably the dorsal column nuclei.  相似文献   

16.
The existence of a cerebellar projection from the dorsal column nuclei (gracile and cuneate nuclei, DCN) has been proposed on electrophysiological grounds but questioned when studied with neuroanatomical techniques. The retrograde transport of horseradish peroxidase (HRP) has been used for the present study and provides anatomical evidence of a DCN-cerebellar pathway. In adult cats, 1 to 6 mul of 30% HRP were injected in pars intermedia of the anterior lobe (lobules IV-V), in paramedial lobule and in vermis of the anterior (lobules IV-V) and of the posterior lobe (lobule VII). After survival of 24 to 48 hours, all animals were perfused with a double aldehyde mixture and serial 40 mu sections through the medulla oblongata were incubated for visualization of HRP. In all cases, medullary nuclei known to project to the injected cortical regions of the cerebellum contained HRP-positive neurons mainly ipsilateral to the injection (e.g., external cuneate nucleus) or mainly contralateral to it (e.g., inferior olivary complex). Following ipsilateral injections in either the paramedian lobule or the pars intermedia, HRP-positive neurons in the cuneate nucleus were concentrated in its rostral portion where multipolar cells with radiating dendrites predominate. In contrast, none of the clusters region, in the caudal part of the cuneate nucleus, displayed HRP-positive granules. In cases in which the anterior vermis was injected a few labelled cells were present in the rostral part of the gracile nucleus but not in the clusters region of this nucleus. No labelling of DCN neurons was evident after posterior vermis injection. To compare the distribution of cells contributing to the DCN-cerebellar pathway with that of thalamic relay cells in the DCN, 0.5 to 3 mul of 30% HRP were injected in the nucleus ventralis posterolateralis of the thalamus in another series of cats. Contralateral to the thalamic injection, labelled cells were concentrated in the clusters region of the gracile and cuneate but rostrally in these nuclei they were scattered among unlabelled neurons. The preferential location in the DCN of cells which project to the cerebellum and of cells which project to the thalamus stresses the heterogeneous organization of these nuclei along the rostrocaudal axis. Further, the results indicate that regions of the DCN which have been distinguished on the basis of cytoarchitectonics (Kuypers and Tuerk, '64) and of afferents (Rustioni, '73, '74) differ also in their efferent projections.  相似文献   

17.
Central projections of the Arnold's nerve (the auricular branch of the vagus nerve; ABV) of the cat were examined by the transganglionic HRP method. After applying HRP to the central cut end of the ABV, HRP-labeled neuronal somata were seen in the superior ganglion of the vagus nerve. Main terminal labeling was seen ipsilaterally in the solitary nucleus, in the lateral portions of the ventral division of the principal sensory trigeminal nucleus, in the marginal regions of the interpolar subnucleus of the spinal trigeminal nucleus, in the marginal and magnocellular zones of the caudal subnucleus of the spinal trigeminal nucleus, in the ventrolateral portions of the cuneate nucleus, and in the dorsal horn of the C1–C3 cord segments. In the solitary nucleus, labeled terminals were seen in the interstitial, dorsal, dorsolateral and commissural subnuclei; some of these terminals may be connected monosynaptically with solitary nucleus neurons which send their axons to the somatomotor and/or visceromotor centers in the brainstem and spinal cord.  相似文献   

18.
The primary goals of this study were to (1) examine the distribution of locus coeruleus (LC) neurons, which project to cortical and subcortical sites along the trigeminal somatosensory pathway in rats, and (2) determine the extent to which different regions within this ascending sensory system receive collateral projections from the same LC neuron. Long-Evans hooded rats received unilateral pressure injections of different combinations of retrograde fluorescent tracers into whisker-related regions of primary (SI) and secondary (SII) somatosensory cortices, the ventrobasal (VB) and posterior group (POm) nuclei of the thalamus, and the principalis nucleus of the trigeminal complex (PrV). Coronal sections (40–100 μm) through the LC were examined by fluorescence microscopy, and the distribution of retrogradely labeled cells was recorded. The major finding was that whisker-related regions of the cortex receive efferent projections from neurons concentrated in the caudal portion of the ipsilateral LC, whereas subcortical trigeminal somatosensory structures receive bilateral input from both LC nuclei. Despite the bilateral nature of the LC projection to subcortical sites, the majority of LC efferents to VB and POm thalamus originate in the ipsilateral LC nucleus, whereas projections to PrV originate primarily from the contralateral LC. An additional finding was that a relatively large proportion of LC cells, which project to a single somatosensory structure, also send axon collaterals to other relay sites along the same ascending somatosensory pathway. Taken together, these results suggest that the LC–noradrenergic system maintains a more selective relationship with functionally related efferent targets than has been previously appreciated. J. Comp. Neurol. 385:135–147, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
To assess the locations and densities of cells in the dorsal medulla giving rise to ipsilateral versus contralateral projections to the mechanosensory regions of cerebellar cortex in the anterior lobe and paramedian lobule, these cortical regions were injected unilaterally with horseradish peroxidase in each of 5 raccoons. To show injection sites and retrogradely labelled cells in the medulla, sections through the medulla and the cerebellum, in at least two different planes for each, were reacted with tetramethylbenzidine; alternate sections were reacted with cobalt-enhanced diaminobenzidine. Labelled were 60-80% of cells in the ipsilateral and 15-25% of cells in the contralateral external cuneate nuclei, as well as 25-50% of cells in the ipsilateral and the contralateral cell groups f and x near the descending vestibular nucleus. Substantial contralateral, as well as ipsilateral cerebellar projections from external cuneate nuclei and cell group x may be related to development of forelimb dexterity in raccoons, since these nuclei mediate forelimb muscular sensibility. The numerical complementarity of ipsilaterally versus contralaterally projecting cells suggests that they represent two separate populations.  相似文献   

20.
Limb specific connections of the cat magnocellular red nucleus   总被引:1,自引:0,他引:1  
Afferent and efferent connections of the limb specific divisions of the cat magnocellular red nucleus (RNm) were traced using the bidirectional transport of wheatgerm agglutinin-horseradish peroxidase complex (WGA-HRP). Injection sites within forelimb or hindlimb RNm regions were identified by microelectrode recording and confirmed by the position of labeled rubrospinal terminals. Additional injections into structures that project to, or receive input from, RNm confirmed the somatotopic organization of these pathways. The forelimb region of RNm receives input from the posteriolateral part of the anterior interpositus nucleus (NIA) and the intermediate part of the posterior interpositus nucleus (NIP). The hindlimb region of RNm receives input from anteriomedial NIA and medial NIP. Terminals of NIA cells densely fill all of RNm, but terminals of NIP cells form a half shell on the medial, ventral, and posterior borders of RNm without encroaching on RNm's lateral edge or central core. Forelimb and hindlimb RNm are reciprocally connected with the caudal cuneate and gracile nuclei respectively. There is little or no input to RNm from the medial or lateral cerebellar nuclei. Forelimb RNm, which also contains a face representation, projects to the lateral reticular nucleus, cell group f of the inferior vestibular nucleus, the facial nucleus, the main sensory nucleus of the trigeminal nerve, the caudal cuneate nucleus, the parvicellular reticular formation, and cervical segments of the spinal cord. A few fibers from forelimb RNm project directly to motor neurons in the lower cervical cord. Hindlimb RNm projects to only the lateral reticular nucleus, gracile nucleus, and lower spinal segments. Forelimb and hindlimb RNm project to different regions of the lateral reticular nucleus with some overlap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号