首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus   总被引:5,自引:0,他引:5       下载免费PDF全文
Kaposi sarcoma-associated herpes virus (KSHV) contains a gene that has functional and sequence homology to the apoptotic Bcl-2 family of proteins [Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J. & Chang, Y. (1997) Nat. Med. 3, 293-298]. The viral Bcl-2 protein promotes survival of infected cells and may contribute to the development of Kaposi sarcoma tumors [Boshoff, C. & Chang, Y. (2001) Annu. Rev. Med. 52, 453-470]. Here we describe the solution structure of the viral Bcl-2 homolog from KSHV. Comparison of the KSHV Bcl-2 structure to that of Bcl-2 and Bcl-x(L) shows that although the overall fold is the same, there are key differences in the lengths of the helices and loops. Binding studies on peptides derived from the Bcl-2 homology region 3 of proapoptotic family members indicate that the specificity of the viral protein is very different from what was previously observed for Bcl-x(L) and Bcl-2, suggesting that the viral protein has evolved to have a different mechanism of action than the host proteins.  相似文献   

2.
J Itoh  C de la Motte  S Strong  A Levine    C Fiocchi 《Gut》2001,49(1):35-41
BACKGROUND: Activated T cells are more susceptible to apoptosis than resting T cells. As intestinal T cells normally exhibit a higher state of activation, increased apoptosis may be necessary to maintain immune homeostasis in the specialised microenvironment of the mucosa. On the other hand, in Crohn's disease (CD) mucosal T cells are resistant to apoptosis, suggesting abnormal regulation of cell death mechanisms. AIMS: To investigate differences in expression of anti- and proapoptotic Bcl-2 family proteins, key regulators of apoptosis, between circulating and mucosal T cells, and possible alterations in CD. PATIENTS AND METHODS: Lamina propria T cells (LPT) were isolated from 10 control, seven CD, and eight ulcerative colitis (UC) patients, and peripheral blood T cells (PBT) from healthy volunteers. Purified T cells were stained intracellularly for Bcl-2, Bcl-x(L), and Bax, and mean fluorescence intensity measured by flow cytometry. RESULTS: Compared with PBT, the expression level of Bcl-2 and Bax, but not Bcl-x(L), was significantly greater in LPT, resulting in lower Bcl-x(L)/Bax ratios. In PBT, Bax expression was highly and significantly correlated with both Bcl-2 and Bcl-x(L), but correlation with Bcl-2 was absent in LPT. Bax expression in CD, but not UC, LPT was significantly lower than in control LPT, resulting in a significantly higher Bcl-x(L)/Bax ratio. The significant correlation of Bcl-x(L) to Bax was preserved in CD, but not UC, LPT. CONCLUSIONS: Regulation of Bcl-2 family protein expression differs between circulating and mucosal T cells, probably underlying diverse survival potentials. In CD LPT, a low Bax expression and a high Bcl-x(L)/Bax ratio favour resistance to apoptosis and may contribute to the chronicity of inflammation.  相似文献   

3.
Numerous viruses have evolved sophisticated countermeasures to hijack the early programmed cell death of host cells in response to infection, including the use of proteins homologous in sequence or structure to Bcl-2. Orf virus, a member of the parapoxviridae, encodes for the Bcl-2 homolog ORFV125, a potent inhibitor of Bcl-2-mediated apoptosis in the host. ORFV125 acts by directly engaging host proapoptotic Bcl-2 proteins including Bak and Bax as well as the BH3-only proteins Hrk and Puma. Here, we determined the crystal structures of ORFV125 bound to the BH3 motif of proapoptotic proteins Puma and Hrk. The structures reveal that ORFV125 engages proapoptotic BH3 motif peptides using the canonical ligand binding groove. An Arg located in the structurally equivalent BH1 region of ORFV125 forms an ionic interaction with the conserved Asp in the BH3 motif in a manner that mimics the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. These findings provide a structural basis for Orf virus-mediated inhibition of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins to mimic key interactions from endogenous host signalling pathways.  相似文献   

4.
Apoptosis in activated T cells in vivo requires the proapoptotic Bcl-2 family member Bim. We show here that, despite its ability to bind LC8, a component of the microtubule dynein motor complex, most of the Bim in both healthy and apoptotic T cells is associated with mitochondria, not microtubules. In healthy resting T cells Bim is bound to the antiapoptotic proteins Bcl-2 and Bcl-x(L). In activated T cells, levels of Bcl-2 fall, and Bim is associated more with Bcl-x(L) and less with Bcl-2. Our results indicate that, in T cells, Bim function is regulated by interaction with Bcl-2 family members on mitochondria rather than by sequestration to the microtubules.  相似文献   

5.
Apoptosis is a powerful defense mechanism used by multicellular organisms to counteract viral infection. In response to premature host cell suicide, viruses have evolved numerous countermeasures to ensure cell viability to optimize their replication by encoding proteins homologous in structure and function to cellular pro-survival Bcl-2 proteins. Epstein–Barr virus (EBV), a member of the Gammaherpesviridae, encodes the Bcl-2 homolog BHRF1, a potent inhibitor of Bcl-2-mediated apoptosis. BHRF1 acts by directly targeting Bid and Puma, two proapoptotic proteins of the Bcl-2 family. Here, we determined the crystal structures of BHRF1 bound to peptides spanning the Bcl-2 binding motifs (Bcl-2 homology 3 motif, BH3) of Bid and Puma. BHRF1 engages BH3 peptides using the canonical ligand-binding groove of its Bcl-2 fold and maintains a salt bridge between an Arg residue with a conserved Asp residue in the BH3 motif mimicking the canonical ionic interaction seen in host Bcl-2:BH3 motif complexes. Furthermore, both Bid and Puma utilize a fifth binding pocket in the canonical ligand binding groove of BHRF1 to provide an additional hydrophobic interaction distinct from the interactions previously seen with Bak and Bim. These findings provide a structural basis for EBV-mediated suppression of host cell apoptosis and reveal the flexibility of virus encoded Bcl-2 proteins in mimicking key interactions from the endogenous host signaling pathways.  相似文献   

6.
The BH3-mimetic ABT-737 and an orally bioavailable compound of the same class, navitoclax (ABT-263), have shown promising antitumor efficacy in preclinical and early clinical studies. Although both drugs avidly bind Bcl-2, Bcl-x(L), and Bcl-w in vitro, we find that Bcl-2 is the critical target in vivo, suggesting that patients with tumors overexpressing Bcl-2 will probably benefit. In human non-Hodgkin lymphomas, high expression of Bcl-2 but not Bcl-x(L) predicted sensitivity to ABT-263. Moreover, we show that increasing Bcl-2 sensitized normal and transformed lymphoid cells to ABT-737 by elevating proapoptotic Bim. In striking contrast, increasing Bcl-x(L) or Bcl-w conferred robust resistance to ABT-737, despite also increasing Bim. Cell-based protein redistribution assays unexpectedly revealed that ABT-737 disrupts Bcl-2/Bim complexes more readily than Bcl-x(L)/Bim or Bcl-w/Bim complexes. These results have profound implications for how BH3-mimetics induce apoptosis and how the use of these compounds can be optimized for treating lymphoid malignancies.  相似文献   

7.
8.
The Bcl-2 family of proteins regulates apoptosis, the cell death program triggered by activation of certain proteases (caspases). An attractive model for how Bcl-2 and its closest relatives prevent caspase activation is that they bind to and inactivate an adaptor protein required for procaspase processing. That model has been supported by reports that mammalian prosurvival Bcl-2 relatives bind the adaptor Apaf-1, which activates procaspase-9. However, the in vivo association studies reported here with both overexpressed and endogenous Apaf-1 challenge this notion. Apaf-1 could be immunoprecipitated together with procaspase-9, and the Apaf-1 caspase-recruitment domain was necessary and sufficient for their interaction. Apaf-1 did not bind, however, to any of the six known mammalian prosurvival family members (Bcl-2, Bcl-x(L), Bcl-w, A1, Mcl-1, or Boo), or their viral homologs adenovirus E1B 19K and Epstein-Barr virus BHRF-1. Endogenous Apaf-1 also failed to coimmunoprecipitate with endogenous Bcl-2 or Bcl-x(L), or with two proapoptotic relatives (Bax and Bim). Moreover, apoptotic stimuli did not induce Apaf-1 to bind to these family members. Thus, the prosurvival Bcl-2 homologs do not appear to act by sequestering Apaf-1 and probably instead constrain its activity indirectly.  相似文献   

9.
Constitutive nuclear factor kappaB (NF-kappaB) activity protects quiescent mature immune cells from spontaneous apoptosis. Here, we examined whether NF-kappaB exerts its antiapoptotic function in these cells through the control of Bcl-2 family proteins. Specific pharmacologic inhibitors of NF-kappaB were used to achieve total NF-kappaB inactivation in quiescent human blood lymphocytes, granulocytes, and monocytes. NF-kappaB inhibition induced drastic lymphocyte and granulocyte apoptosis, but only moderate monocyte apoptosis. T- and B-cell apoptosis was slow and associated with a gradual down-regulation of the prosurvival Bcl-2 family proteins Bcl-x(L) and Bcl-2, respectively. By contrast, granulocyte apoptosis was fast and accompanied by a rapid cellular accumulation of Bcl-x(S), the proapoptotic Bcl-x isoform that is generated from alternative splicing of the bcl-x pre-mRNA. Finally, antisense bcl-x(L) and bcl-2 knockdown in T and B cells, respectively, and induction of Bcl-x(S) expression in granulocytes through antisense oligonucleotide-mediated redirection of bcl-x pre-mRNA splicing were sufficient to induce significant apoptosis in these cells. Taken together, these results reveal that basal NF-kappaB activity preserves homeostasis of quiescent mature lymphocytes and granulocytes through regulation of distinct members of the Bcl-2 family. This study sheds light on the constitutive mechanisms by which NF-kappaB maintains defense integrity.  相似文献   

10.
Bcl-x(L), a member of the Bcl-2 family, inhibits many pathways of apoptosis when overexpressed in the cell cytosol. We examined the capacity of Bcl-x(L) fusion proteins to bind cells from the outside and block apoptosis. Full-length Bcl-x(L) protein at micromolar concentrations did not affect apoptosis when added to cell media. To increase uptake by cells, Bcl-x(L) was fused to the receptor-binding domain of diphtheria toxin (DTR). The Bcl-x(L)-DTR fusion protein blocked apoptosis induced by staurosporine, gamma-irradiation, and poliovirus in a variety of cell types when added to media. The potency of inhibition of poliovirus-induced apoptosis by Bcl-x(L)-DTR was greater than that of strong caspase inhibitors. Brefeldin A, an inhibitor of vesicular traffic between the endoplasmic reticulum and Golgi apparatus, prevented the Bcl-x(L)-DTR blockade of apoptosis induced by staurosporine, suggesting that Bcl-x(L)-DTR must be endocytosed and reach intracellular compartments for activity. Many diseases are caused by overexpression or underexpression of Bcl-x(L) homologues. Extracellular delivery of Bcl-2 family member proteins may have a wide range of uses in promoting or preventing cell death.  相似文献   

11.
A change of mitochondrial membrane permeability is essential for apoptosis, leading to translocation of apoptogenic cytochrome c and apoptosis-inducing factor into the cytoplasm. We recently showed that the Bcl-2 family of proteins regulate cytochrome c release and the mitochondrial membrane potential (Deltapsi) by directly modulating the activity of the voltage-dependent anion channel (VDAC) through binding. Here we investigated the biochemical role of the conserved N-terminal homology domain (BH4) of Bcl-x(L), which has been shown to be essential for inhibition of apoptosis, with respect to the regulation of mitochondrial membrane permeability and found that BH4 was required for Bcl-x(L) to prevent cytochrome c release and Deltapsi loss. A study using VDAC liposomes revealed that Bcl-x(L), but not Bcl-x(L) lacking the BH4 domain, inhibited VDAC activity. Furthermore, BH4 oligopeptides of Bcl-2 and Bcl-x(L), but not mutant peptides, were able to inhibit both VDAC activity on liposomes even in the presence of Bax and apoptotic Deltapsi loss in isolated mitochondria. It was also shown that the BH4 domain, fused to the protein transduction domain of HIV TAT protein (TAT-BH4), efficiently prevented apoptotic cell death. These results indicate that the BH4 of Bcl-2/Bcl-x(L) is essential and sufficient for inhibiting VDAC activity, which in turn prevents apoptotic mitochondrial changes, and for preventing apoptotic cell death. Finally, the data suggest that the TAT-BH4 peptide is potentially useful as a therapeutic agent for diseases caused by accelerated apoptosis.  相似文献   

12.
Cytokines have been implicated in the process of pancreatic beta-cell destruction that leads to type 1 diabetes. This study investigates the beta-cell expression of pro- and antiapoptotic proteins from the Bcl-2 family and their variation during cytokine-mediated apoptosis. Exposure of rat beta-cells to the combination of IL-1beta plus interferon-gamma causes a time-dependent increase in apoptotic cells starting after 3 d (<10% on d 3 and 28 +/- 2% on d 7). This effect was preceded by a marked down-regulation of two antiapoptotic proteins, Bcl-2 and Bax-omega (respectively reduced by 60% and 80% after 3 d), whereas no changes occurred in the expression of Bcl-x(L) and the proapoptotic protein Bax-alpha. No apoptosis or down-regulation of Bcl-2 and Bax-omega proteins was observed with individual cytokines or in the presence of N-methyl-L-arginine, an inhibitor of nitric oxide synthase. The lowered Bcl-2 protein content was associated with a decrease in Bcl-2 mRNA, which was initiated after 24 h of exposure. In MIN6 cells, the cytokine-induced suppression of Bcl-2- and Bax-omega, and apoptosis, occurred within 24 h. Primary rat beta-cells exhibited a higher expression of Bax-omega than MIN6 cells or than other rat cell types. These data suggest that suppression of the antiapoptotic proteins Bcl-2 and Bax-omega mediates cytokine-induced apoptosis of beta-cells. The beta-cell-specific expression of Bax-omega makes this protein a possible effector in the protection of this cell type against apoptosis.  相似文献   

13.
Downregulation of apoptosis has been proposed as a mechanism of clonal expansion in low-grade B cell neoplasms. We have previously described an unusual case of CD5+ B cell lymphoma characterized by cycles of leukemic phase alternating with spontaneous remission. In the present study, we examined the involvement of apoptosis-related proteins in the progression of this cyclic lymphoma ex vivo. During the leukemic phases, the clonal cells were activated blasts expressing elevated levels of wild-type (wt) p53, Bcl-2, Bcl-x(L), and Bax, while Bak expression increased during the decline of lymphocytosis. Bax heterodimerized with Bcl-2 but not with Bcl-x(L). The anti-apoptotic Bcl-2/Bax heterodimers peaked during early leukemic phases and declined during regression. The elevation in Bcl-2, Bcl-x(L) and Bax expression during early leukemic phases seems to result from cell activation since a similar increase was induced by activating the remission phase leukemic cells in culture. The data suggest that wt p53, Bcl-x(L), and Bcl-2/Bax heterodimers support the accumulation of activated leukemic cells during the leukemic phases, while Bax and Bak may be involved in their decline during regression.  相似文献   

14.
15.
Hrk is a newly described proapoptotic member of the Bcl-2 family that is mainly expressed in hematopoietic tissues and cultured neurons. In this study we have examined the expression and activity of Hrk in hematopoietic progenitors. To address these issues, we used 3 growth factor-dependent murine hematopoietic cell lines, HCD-57, FDCP-Mix, and FL5.12. The expression of Hrk was undetectable in cells cultured with growth factors, but it was rapidly up-regulated on growth factor withdrawal. In contrast, the expression of Bcl-x(L) decreased and that of proapoptotic Bax, Bad, and Bak was unchanged or down-regulated after removal of growth factors. This pattern of expression correlated with the induction of apoptosis. Hrk was also up-regulated in human cell lines and in bone marrow-derived CD34(+) cells cultured in the absence of growth factors. In addition, the levels of Hrk were up-regulated after treatment with the chemotherapeutic drug etoposide. Expression of prosurvival Bcl-x(L) or Bcl-2 proteins blocked the induction of Hrk. Hrk was induced in FDCP-Mix cells treated with ionomicin in the presence of IL-3, suggesting that cytosolic calcium may regulate the expression of this proapoptotic protein. Furthermore, ectopic expression of Hrk induced cell death of hematopoietic progenitors in the presence of IL-3. Thus, Hrk is specifically and rapidly induced in hematopoietic progenitors after growth factor deprivation or treatment with chemotherapeutic drugs, and this may be sufficient to induce apoptosis in these cells. (Blood. 2000;95:2742-2747)  相似文献   

16.
Members of the Bcl-2 family of proteins regulate apoptosis, with some of their physiological effects mediated by their modulation of endoplasmic reticulum (ER) Ca(2+) homeostasis. Antiapoptotic Bcl-x(L) binds to the inositol trisphosphate receptor (InsP(3)R) Ca(2+) release channel to enhance Ca(2+)- and InsP(3)-dependent regulation of channel gating, resulting in reduced ER [Ca(2+)], increased oscillations of cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), and apoptosis resistance. However, it is controversial which InsP(3)R isoforms mediate these effects and whether reduced ER [Ca(2+)] or enhanced [Ca(2+)](i) signaling is most relevant for apoptosis protection. DT40 cell lines engineered to express each of the three mammalian InsP(3)R isoforms individually displayed enhanced apoptosis sensitivity compared with cells lacking InsP(3)R. In contrast, coexpression of each isoform with Bcl-x(L) conferred enhanced apoptosis resistance. In single-channel recordings of channel gating in native ER membranes, Bcl-x(L) increased the apparent sensitivity of all three InsP(3)R isoforms to subsaturating levels of InsP(3). Expression of Bcl-x(L) reduced ER [Ca(2+)] in type 3 but not type 1 or 2 InsP(3)R-expressing cells. In contrast, Bcl-x(L) enhanced spontaneous [Ca(2+)](i) signaling in all three InsP(3)R isoform-expressing cell lines. These results demonstrate a redundancy among InsP(3)R isoforms in their ability to sensitize cells to apoptotic insults and to interact with Bcl-x(L) to modulate their activities that result in enhanced apoptosis resistance. Furthermore, these data suggest that modulation of ER [Ca(2+)] is not a specific requirement for ER-dependent antiapoptotic effects of Bcl-x(L). Rather, apoptosis protection is conferred by enhanced spontaneous [Ca(2+)](i) signaling by Bcl-x(L) interaction with all isoforms of the InsP(3)R.  相似文献   

17.
18.
The purpose of this study was to determine whether anti-apoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L), proteins that confer resistance to apoptotic death from some stimuli, block apoptotic cell death in RAW264.7 cells upon treatment with Trichomonas vaginalis. In this study, the expression level of Bcl-2 was unchanged throughout the course of apoptotic cell death, and overexpressed Bcl-2 did not prevent release of cytochrome c, the significant change of the membrane potential, activation of caspases, and PARP cleavage in T. vaginalis-treated RAW264.7 cells. On the other hand, Bcl-x(L)expression was decreased after T. vaginalis treatment accompanied with Bax activation. Furthermore, we showed that release of mitochondrial cytochrome c, cleavage of caspase-9 and PARP during apoptosis in T. vaginalis-treated RAW264.7 cells were considerably diminished by transfection with overexpressed Bcl-x(L), and overexpressed Bcl-x(L)could inhibit T. vaginalis-induced apoptosis in RAW264.7 cells. In addition, interestingly, pre-treatment with caspase inhibitors, Boc-D-FMK and Z-DEVD-FMK, significantly abolished T. vaginalis-induced down-regulation of Bcl-x(L), suggesting that caspase-3 may play a pivotal role in the process of apoptosis as well as the down-regulation of Bcl-x(L)by T. vaginalis. Therefore, these results suggest that T. vaginalis-induced apoptosis in RAW264.7 cells can occur via a Bcl-x(L)-dependent apoptotic mechanism.  相似文献   

19.
Dependence on Bcl-2 proteins is a common feature of cancer cells and provides a therapeutic opportunity. ABT-737 is an antagonist of antiapoptotic Bcl-2 proteins and therefore is a good predictor of Bcl-x(L)/Bcl-2 dependence. Surprisingly, analysis of Mcl-1-dependent multiple myeloma cell lines revealed codependence on Bcl-2/Bcl-x(L) in half the cells tested. Codependence is not predicted by the expression level of antiapoptotic proteins, rather through interactions with Bim. Consistent with these findings, acquired resistance to ABT-737 results in loss of codependence through redistribution of Bim to Mcl-1. Overall, these results suggest that complex interactions, and not simply expression patterns of Bcl-2 proteins, need to be investigated to understand Bcl-2 dependence and how to better use agents, such as ABT-737.  相似文献   

20.
Multiple myeloma (MM) is a plasma cell malignancy that occurs mainly in bone marrow. As MM cells proliferate slowly, it would seem essential to find means of preventing their growth and accumulation inside bone marrow. The present study used an antisense strategy to elucidate the respective roles of Bcl-2, Bcl-x(L), and Mcl-1 proteins in myeloma cell survival. Each antisense oligonucleotide (ASO; Bcl-2, Bcl-x(L), or Mcl-1 ASO) introduced into human myeloma cell lines by electroporation induced a marked reduction in the level of the corresponding protein. Mcl-1 ASO triggers an important decrease of viability in all myeloma cell lines tested and in 2 primary myeloma cells, whereas neither Bcl-2 nor Bcl-x(L) ASO affected the viability of myeloma cells. The decrease of cell viability induced by Mcl-1 ASO treatment was associated with an induction of apoptosis that occurred through the disruption of mitochondrial membrane potential Delta Psi m and the activation of executioner caspase-3. Furthermore, we have shown that interleukin 6 cannot prevent the Mcl-1 ASO-induced apoptosis. Finally, although Bcl-2 ASO treatment alone has no effect, it can sensitize myeloma cell lines to dexamethasone (Dex), whereas Bcl-x(L) ASO in combination with Dex still had no effect. As MM remains an incurable disease despite intensive chemotherapy, these results suggest that Mcl-1 antisense strategy rather than Bcl-2 antisense strategy could be of considerable importance in the treatment of MM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号