首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presynaptic terminal depolarization modulates the efficacy of transmitter release. Residual Ca2+ remaining after presynaptic depolarization is thought to play a critical role in facilitation of transmitter release, but its downstream mechanism remains unclear. By making simultaneous pre- and postsynaptic recordings at the rodent calyx of Held synapse, we have investigated mechanisms involved in the facilitation and depression of postsynaptic currents induced by presynaptic depolarization. In voltage-clamp experiments, cancellation of the Ca2+-dependent presynaptic Ca2+ current ( I pCa) facilitation revealed that this mechanism can account for 50% of postsynaptic current facilitation, irrespective of intraterminal EGTA concentrations. Intraterminal EGTA, loaded at 10 m m , failed to block postsynaptic current facilitation, but additional BAPTA at 1 m m abolished it. Potassium-induced sustained depolarization of non-dialysed presynaptic terminals caused a facilitation of postsynaptic currents, superimposed on a depression, with the latter resulting from reductions in presynaptic action potential amplitude and number of releasable vesicles. We conclude that presynaptic depolarization bidirectionally modulates transmitter release, and that the residual Ca2+ mechanism for synaptic facilitation operates in the immediate vicinity of voltage-gated Ca2+ channels in the nerve terminal.  相似文献   

2.
Intrapontine microinjections of serotonin in acutely decerebrated cats resulted in the bilateral augmentation of the postural muscle tone of the hindlimbs. Optimal injection sites were located in the dorsomedial part of the rostral pontine reticular formation corresponding to the nucleus reticularis ponds oralis (NRPo). In this study, attempts were made to elucidate the cellular basis for the serotoninergically induced augmentation of postural muscle tone by recording the electromyographic (EMG) activity of hindlimb extensor muscles, the monosynaptic reflex responses evoked by electrical stimulation of group Ia muscle afferent fibres and the membrane potentials of hindlimb alpha-motoneurons (MNs). Serotonin injections resulted not only in the augmentation of the EMG activity of gastrocnemius soleus muscles, but also in the restoration of EMG suppression, which was induced by previous injection of carbachol into the NRPo. Extensor and flexor monosynaptic reflex responses were facilitated by serotonin injections into the NRPo. Such reflex facilitation was not induced by serotonin injections into the mesencephalic or the medullary reticular formation. Intrapontine serotonin injections resulted in membrane depolarization of extensor and flexor MNs with decreases in input resistance and rheobase. Spontaneous depolarizing synaptic potentials (EPSPs) increased in both frequency and amplitude. Peak voltage of Ia monosynaptic EPSPs also increased. Serotonin injections which followed carbachol injections resulted in membrane depolarization of MNs along with an increase in the frequency of spontaneous EPSPs and a decrease in carbachol-induced inhibitory postsynaptic potentials. Following pontine carbachol injections, antidromic and orthodromic responses in MNs were suppressed. Discharges of MNs evoked by intracellular current injections were also suppressed, but were restored following serotonin injections. These results indicate that postsynaptic excitation, presynaptic facilitation and disinhibition (withdrawal of postsynaptic inhibition) simultaneously act on the hindlimb MNs during serotonin-induced postural augmentation and restoration.  相似文献   

3.
K Morita  R A North 《Neuroscience》1985,14(2):661-672
Intracellular recordings were made from neurones in myenteric ganglia of the guinea-pig ileum in vitro. Synaptic potentials were evoked by electrically stimulating presynaptic fibres as they entered the ganglion, using a small focal electrode. Slow synaptic depolarizations (excitatory postsynaptic potentials) were evoked in most myenteric neurones of both types. A single stimulus was more likely to evoke a slow excitatory postsynaptic potential in cells with nicotinic synaptic input (S cells; 50%) than in cells with long-lasting after-hyperpolarizations following the soma action potential (AH cells; 20%). Two pulses often evoked a slow excitatory postsynaptic potential in AH cells when one pulse was ineffective. The optimally effective time between the pulses was about 100 ms. Ten pulses resulted in slow excitatory postsynaptic potentials even when delivered at frequencies as low as 0.5 Hz. For the same frequency of presynaptic stimulation, the duration of the slow excitatory postsynaptic potential was greater in AH cells than in S cells and the amplitude of the slow excitatory postsynaptic potential was slightly greater in S than AH cells. Spontaneous depolarizations were observed which had time-courses and amplitudes similar to the evoked slow excitatory postsynaptic potential. They were not blocked by tetrodotoxin or atropine. The calcium-dependent after-hyperpolarization which follows one or more action potentials in AH cells was reduced or even abolished during the slow excitatory postsynaptic potential. Presynaptic nerve stimulation at intensities lower than those required to cause a slow excitatory postsynaptic potential caused a reduction in the calcium dependent after-hyperpolarization. It is concluded that the slow excitatory postsynaptic potential is generated by an intracellular intermediate process which is sensitive to the intracellular calcium concentration. The results suggest that the postsynaptic action of the synaptic transmitter is to interfere with the intracellular process which couples the entry of calcium to the increase in potassium conductance.  相似文献   

4.
1. Pulsatile application of serotonin (5-HT) leads to facilitation of excitatory postsynaptic potentials (EPSPs) in crayfish "opener" neuromuscular preparations. The facilitation resulting from a single application of serotonin shows two phases: an early, rapidly decaying phase, and a less intense, long-lasting phase of 1- to 2-h duration. A previous study implicated the phosphatidylinositol system as an essential component in serotonin-induced facilitation, especially the early phase. The present study was conducted to determine the roles of the adenylate cyclase and phosphatidylinositol systems in both phases of serotonin-induced facilitation. 2. Relatively brief applications of agents known to affect the intracellular concentration of cAMP (forskolin, 1 microM; and IBMX, 100 microM) cause an increase in EPSP amplitude, which persists for 1-2 h. 3. The duration of the less intense, long-lasting phase of serotonin-induced facilitation is prolonged in the presence of 1 microM IBMX. This concentration of IBMX does not affect EPSP amplitude by itself. A membrane-permeant analog of cAMP (applied in concentrations less than or equal to 1 mM) is also not effective in altering EPSP amplitude. However, when dibutyryl cAMP is applied in the presence of 1 microM IBMX, EPSP amplitude is increased (60-80%). 4. Localized presynaptic injection of the "Walsh Inhibitor" (PKI), which inhibits cAMP-activated protein kinase, blocks the less intense, long-lasting phase of serotonin-induced facilitation at synapses near the site of injection. Normal facilitation develops at synapses within the same preparation remote from the site of injection. Distribution of the injected inhibitor within the axon can be visualized by tagging PKI with a fluorescent marker.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of postsynaptic firing activity on excitatory postsynaptic potentials (EPSPs) were studied in the motor cortex of anaesthetized cats. Postsynaptic firing was induced by 1-5 nA cathodal current pulses via the recording intracellular microelectrode, while EPSPs were elicited by thalamic, callosal, pyramidal tract and somatosensory stimuli. In 102 cells, EPSP-spike stimulus pairs were applied with 0.2-1/sec frequency and 10-100 msec interstimulus intervals. In 42 neurones, reversible facilitation of paired EPSPs appeared lasting from 4 to 47 min. The synaptic facilitation in most cases was accompanied by membrane depolarization and an increase in input resistance. The effectiveness of current induced action potentials upon test EPSPs provided evidence for the postsynaptic localization of plastic changes occurring in conditioning experiments.  相似文献   

6.
1. Synapsin I was injected into a vertebrate presynaptic axon to analyze its action on quantal synaptic transmission. Two microelectrodes were used for simultaneous intracellular recording from pairs of identified neurons in the goldfish brain. The postsynaptic electrode was placed in a cranial relay neuron (CRN) within 100 microns of its synapse with the Mauthner neuron. The presynaptic electrode impaled the Mauthner axon (M-axon) 50-200 microns from the first electrode. 2. Spontaneous miniature excitatory postsynaptic potentials (mEPSPs) and evoked postsynaptic potentials (EPSPs) were recorded at steady states before and after synapsin I was microinjected into the presynaptic M-axon. Responses were digitized and subsequently analyzed by computer for quantal parameters. 3. In 12 experiments, injection of synapsin I resulted in a reduction in transmission. The decrease in EPSP amplitude began approximately 30 s after the injection, reached a plateau within 10 min, and appeared to be reversible and dose dependent. 4. Injection of synapsin I decreased quantal content (m), with no effect on postsynaptic receptor sensitivity or on amount of transmitter per quantum. Further analysis based on the simplest binomial model for quantal release revealed that synapsin I consistently reduced the number of quantal units available for release (n) although the probability of release (p) was either unchanged or slightly increased. Injected synapsin I may thus bind to presynaptic vesicles and prevent transmitter quanta from entering a pool subject to evoked release.  相似文献   

7.
Tetanic stimulation (100 Hz), which can induce long-term potentiation in synaptic connections in the hippocampal CA1 region, causes γ-aminobutyric acid (GABA)A receptor-mediated long-lasting depolarization of postsynaptic neurons. However, it is not clear how this stimulation modulates neuronal activity propagation. We studied tetanic burst-induced neuronal responses in the hippocampal CA1 region by using optical-recording methods employing a voltage-sensitive dye and focused on GABAA receptor-mediated modulation. We observed that burst stimulation induced long-lasting depolarization and progressive decrease in individual excitatory postsynaptic potentials (EPSPs). Both these effects were suppressed by picrotoxin, a GABAA receptor antagonist. Under whole-cell voltage-clamp conditions, we observed a long-lasting inhibitory current (IPSC) and a prominent progressive decrease in the amplitude of the excitatory postsynaptic current (EPSC). Further, picrotoxin inhibited the IPSC and the progressive decrease in EPSC. The optically recorded long-lasting depolarization and progressive decrease of EPSPs were strongly dependent on the distance between the recording electrode and the stimulation site. Optical recordings performed across a wide swatch of CA1 revealed that the decrease in activity propagation was followed by facilitation of propagation after recovery and that this facilitation also depended on GABAA receptors. Intense activation of GABAA receptors is a key factor shaping the spatiotemporal patterns of high-frequency stimulation-induced responses in the CA1 region.  相似文献   

8.
The nucleus accumbens (NAc) of the ventral striatum is involved in attention, motivation, movement, learning, reward, and addiction. GABAergic medium spiny projection neurons that make up approximately 90% of the neuronal population are commonly driven by convergent bursts of afferent excitation. We monitored spiny projection neurons in mouse striatal slices while applying stimulus trains to mimic bursts of excitation. A stimulus train evoked a simple, short-lived postsynaptic response from CA1 hippocampal pyramidal neurons, but the train evoked a complex series of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) from the NAc spiny projection neurons. As is commonly seen with projection neurons, the EPSC amplitudes initially displayed facilitation followed by depression, and that pattern was sensitive to the extracellular calcium concentration. In addition, there were two other novel observations. The spiny projection neurons responded to the stimulus train with a prolonged depolarization that was accompanied by a posttrain increase of spontaneous glutamatergic synaptic activity. Blocking AMPA/kainate glutamate receptors strongly inhibited the evoked EPSP/EPSCs, the posttrain spontaneous synaptic activity, and the prolonged depolarization. A potassium channel inhibitor increased and extended the prolonged postsynaptic depolarization, causing a long-lasting depolarized plateau potential. Our results indicate that burst-like activity along ventral striatal afferents is extended in time by additional spontaneous glutamate release that is integrated by the postsynaptic spiny projection neurons into a prolonged depolarization. The results suggest that the posttrain quantal glutamate release helps to blend and maintain multiple afferent inputs. That convergent excitation is further integrated by the postsynaptic neuron into a prolonged depolarization that may contribute to the depolarized "up state" observed in vivo.  相似文献   

9.
The relationship between the long-lasting enhancement of synaptic transmission produced by a phorbol ester and the release of endogenous excitatory amino acids has been investigated in the CA1 hippocampal region of the anaesthetized rat. Using the push-pull technique, the concentration of glutamate and aspartate was assayed in the perfusate by high-pressure liquid chromatography. Application of phorbol 12-13 diacetate produced a long lasting enhancement of the field excitatory postsynaptic potential (EPSP) (over 2 h). This was associated with a brief (10 min) significant increase in the release of glutamate and aspartate. However, subsequently the levels of the amino acids in the perfusate were not different from the pre-drug (control) levels although the field EPSP was still enhanced. It is concluded that the long-lasting enhancement produced by phorbol ester is not due to a persistent increase in the release of excitatory amino acids.  相似文献   

10.
An investigation was made of the effect of presynaptic inhibition on paired-pulse facilitation (PPF) of group Ia afferent excitatory postsynaptic potentials (EPSPs). The main finding from this study was that PPF was enhanced during presynaptic inhibition of compound Ia EPSPs. This increase in PPF is identical to that seen at other synapses when the probability of transmitter release is decreased by lowering the extracellular calcium or raising the extracellular magnesium concentration, providing unequivocal evidence that presynaptic inhibition is associated with a decrease in the probability of transmitter release. Further, by analogy with the effects of reduced calcium influx on PPF at other synapses, the results support the idea that presynaptic inhibition is associated with reduced calcium influx into nerve terminals.  相似文献   

11.
The effects of the convulsant drug 4-Cl phenol on synaptic transmission were studied in the opener muscle of the crayfish walking leg. 4-Cl phenol was found to increase the amplitude of the excitatory postsynaptic potential without affecting the resting potential or input resistance of the muscle fiber. The drug did not change the frequency of spontaneous miniature postsynaptic potentials in K+-depolarized fibers. The postsynaptic voltage response to bath-applied glutamate (the excitatory transmitter compound) was decreased while the Cl(-) -conductance increase related to the action of bath-applied gamma-aminobutyric acid (the inhibitory transmitter) was not affected. In the light of previous results obtained on crayfish axons it is concluded that convulsant phenols induce an increase in the evoked release of transmitter by increasing the duration of the presynaptic depolarization through a block of voltage-dependent potassium channels.  相似文献   

12.
The nucleus tractus solitarii (NTS) is a key central link in control of multiple homeostatic reflexes. A number of studies have demonstrated that exogenous and endogenous nitric oxide (NO) within NTS regulates visceral function, but further understanding of the role of NO in the NTS is hampered by the lack of information about its intracellular actions. We studied effects of NO in acute rat brainstem slices. Aqueous NO solution (NO(aq)) potentiated electrically evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) in different neuronal subpopulations and, in some neurones, caused a depolarization. Similar effects were observed using the NO donor diethylamine NONOate (DEA/NO). The threshold NO concentration as determined using an NO electrochemical sensor was estimated as approximately 0.4 nm (EC(50) approximately 0.9 nm) for potentiating glutamatergic EPSPs but approximately 3 nm for monosynaptic GABAergic IPSPs. Bath application of the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) abolished NO(aq)- and DEA/NO-induced potentiation of evoked EPSPs, IPSPs and depolarization. All NO actions were mimicked by the non-NO-dependent guanylate cyclase activator Bay 41-2272. The effects of NO on EPSPs and IPSPs persisted in cells where postsynaptic sGC was blocked by ODQ and therefore were presynaptic, owing to a direct modulation of transmitter release combined with depolarization of presynaptic neurones. Therefore, while lower concentrations of NO may be important for fine tuning of glutamatergic transmission, higher concentrations are required to directly engage GABAergic inhibition. This differential sensitivity of excitatory and inhibitory connections to NO may be important for determining the specificity of the effects of this freely diffusible gaseous messenger.  相似文献   

13.
Tonic stimuli can elicit rhythmic responses. The neural circuit underlying Aplysia californica consummatory feeding was used to examine how a maintained stimulus elicits repetitive, rhythmic movements. The command-like cerebral-buccal interneuron 2 (CBI-2) is excited by tonic food stimuli but initiates rhythmic consummatory responses by exciting only protraction-phase neurons, which then excite retraction-phase neurons after a delay. CBI-2 is inhibited during retraction, generally preventing it from exciting protraction-phase neurons during retraction. We have found that depolarizing CBI-2 during retraction overcomes the inhibition and causes CBI-2 to fire, potentially leading CBI-2 to excite protraction-phase neurons during retraction. However, CBI-2 synaptic outputs to protraction-phase neurons were blocked during retraction, thereby preventing excitation during retraction. The block was caused by presynaptic inhibition of CBI-2 by a key buccal ganglion retraction-phase interneuron, B64, which also causes postsynaptic inhibition of protraction-phase neurons. Pre- and postsynaptic inhibition could be separated. First, only presynaptic inhibition affected facilitation of excitatory postsynaptic potentials (EPSPs) from CBI-2 to its followers. Second, a newly identified neuron, B54, produced postsynaptic inhibition similar to that of B64 but did not cause presynaptic inhibition. Third, in some target neurons B64 produced only presynaptic but not postsynaptic inhibition. Blocking CBI-2 transmitter release in the buccal ganglia during retraction functions to prevent CBI-2 from driving protraction-phase neurons during retraction and regulates the facilitation of the CBI-2 induced EPSPs in protraction-phase neurons.  相似文献   

14.
Computer simulations and electrophysiological experiments have been performed to test the hypothesis on the existence of an ephaptic interaction in purely chemical synapses. According to this hypothesis, the excitatory postsynaptic current would depolarize the presynaptic release site and further increase transmitter release, thus creating an intrasynaptic positive feedback. For synapses with the ephaptic feedback, computer simulations predicted non-linear amplitude-voltage relations and voltage dependence of paired-pulse facilitation. The deviation from linearity depended on the strength of the feedback determined by the value of the synaptic cleft resistance. The simulations showed that, in the presence of the intrasynaptic feedback, recruitment of imperfectly clamped synapses and synapses with linear amplitude-voltage relations tended to reduce the non-linearity and voltage dependence of paired-pulse facilitation. Therefore, the simulations predicted that the intrasynaptic feedback would particularly affect small excitatory postsynaptic currents induced by activation of electrotonically close synapses with long synaptic clefts. In electrophysiological experiments performed on hippocampal slices, the whole-cell configuration of the patch-clamp technique was used to record excitatory postsynaptic currents evoked in CA3 pyramidal cells by activation of large mossy fibre synapses. In accordance with the simulation results, minimal excitatory postsynaptic currents exhibited "supralinear" amplitude-voltage relations at hyperpolarized membrane potentials, decreases in the failure rate and voltage-dependent paired-pulse facilitation. Composite excitatory postsynaptic currents evoked by activation of a large amount of presynaptic fibres typically bear linear amplitude-voltage relationships and voltage-independent paired-pulse facilitation. These data are consistent with the hypothesis on a strong ephaptic feedback in large mossy fibre synapses. The feedback would provide a mechanism whereby signals from large synapses would be amplified. The ephaptic feedback would be more effective on synapses activated in isolation or together with electrotonically remote inputs. During synchronous activation of a large number of neighbouring inputs, suppression of the positive intrasynaptic feedback would prevent abnormal boosting of potent signals.  相似文献   

15.
1. The chemical synapses between mechanoreceptor neurons and first-order interneurons in the lateral giant (LG) neuron escape circuit of the crayfish have plastic properties, some of which are believed to be the basis for behavioral habituation and sensitization. In this investigation pharmacological experiments were conducted to assess the role of cholinergic synaptic transmission in this pathway. 2. Arterial perfusion of the cholinergic agonist carbachol produced increased activity of many abdominal nerve cord units, including an identified first-order interneuron (interneuron A) in the LG circuit. A general increase in activity of interneurons in this circuit in the presence of certain cholinergic agonists was inferred from an increase in the frequency of occurrence of spontaneous excitatory postsynaptic potentials (EPSPs) recorded in the LG. 3. Cholinergic antagonists reduced the amplitude of spontaneous and evoked sensory neuron-to-interneuron A EPSPs and decreased the disynaptic (via 1st-order interneurons) component of evoked EPSPs in the LG. These effects indicate that postsynaptic cholinergic receptors are utilized in mechanosensory synaptic transmission to the first-order interneurons of this circuit. The relative potencies of the blockers tested (mecamylamine > picrotoxin > curare > atropine) suggest that the receptors on the interneurons belong to a previously characterized class of crustacean cholinergic receptors that resemble the ganglionic nicotinic subtype of vertebrates. 4. Nicotinic agonists (carbachol, tetramethylammonium hydroxide, 1,1-dimethyl-4-phenyl-piperazium iodide) produced depolarizing (decreased input resistance) responses on the LG neuron itself. These responses persisted during blockade of chemical transmission by cobalt. The presence of cholinergic receptors on the LG, a cell in which all known inputs mediating sensory excitation are electrical, is discussed. 5. Application of muscarinic agonists (pilocarpine, oxotremorine) resulted in a long-lasting reduction of the evoked sensory neuron-to-interneuron A EPSP and the disynaptic component of the evoked EPSP in the LG. No effects on the membrane potential or input resistance of the interneurons were detected. It is proposed that presynaptic receptors with a muscarinic profile are present on mechanosensory neurons and that these receptors mediate a reduction of transmitter release.  相似文献   

16.
Application of the acetylcholinesterase inhibitor physostigmine to conventional hippocampal slices caused a significant reduction of field excitatory postsynaptic potentials (EPSPs) elicited by single pulse stimulation to the medial perforant path. Similar but smaller effects were obtained in the lateral perforant path and other excitatory pathways within hippocampus. The reductions were blocked by atropine, were not accompanied by evident changes in the EPSP waveform, and were eliminated by lesions to the cholinergic septo-hippocampal projections. Antidromic responses to mossy fiber stimulation, recorded in stratum granulosum, were not affected by the drug. However, paired-pulse facilitation was reliably increased, indicating that the depressed synaptic responses were secondary to reductions in transmitter release. The absence of cholinergic axo-axonic connections in the molecular layer suggests that physostigmine reduces presynaptic release by increasing retrograde signaling from the granule cells. In accord with this, an antagonist of the CB1 cannabinoid receptor eliminated the effects of physostigmine on synaptic responses, while an antagonist of the presynaptically located m2 muscarinic acetylcholine receptor did not. This is in contrast to previously reported effects involving application of cholinergic agonists, in which presynaptic inhibition likely results from direct activation of presynaptically located muscarinic receptors. In summary, it is proposed that the cholinergic inputs from the septum to the middle molecular layer modulate, via endocannabinoid release, the potency of the primary excitatory afferent of hippocampus.  相似文献   

17.
Recent studies have demonstrated the vulnerability of dentate mossy cells to seizure-induced damage. One source of potentially damaging synaptic input are spontaneously active granule cell terminals ('mossy terminals'.) We sought to test whether there were activity-dependent changes in the spontaneous excitatory input to mossy cells. Using the in vitro slice preparation, we examined the frequency and amplitude of spontaneous excitatory postsynaptic potentials (EPSPs) after intracellular current injection designed to mimic the extreme depolarization these neurons receive during repetitive afferent stimulation. In 4 of 7 neurons, depolarization with trains of current pulses resulted in a significant and persistent increase in frequency of spontaneous synaptic depolarizations (to an average of 178% of the initial baseline rate). In 3 of these affected neurons, an increased frequency of large amplitude, fast-rising EPSPs accounted for the majority of this change. Injection of hyperpolarizing current pulses failed to alter spontaneous activity in 3 other mossy cells. These results suggest spontaneous synaptic input to mossy cells in plastic and can be potentiated by depolarization of a single postsynaptic mossy cell. The ability of mossy cells to potentiate their excitatory input may be relevant to their vulnerability to excitotoxic injury during repetitive afferent stimulation.  相似文献   

18.
The relationship between the synaptic potentiations evoked by the protein kinase C activator phorbol-12,13-diacetate and by afferent tetanization has been examined in the CA1 region of the hippocampal slice preparation using extracellular recording. It has been found that the potentiation of the field excitatory postsynaptic potential produced by 1 microM phorbol ester does not affect the amount of long-term potentiation (LTP) that can be evoked by afferent tetanization, and vice versa. A dissociation between phorbol ester-induced and tetanus-induced potentiation is also indicated by the fact that only the former was associated with changes in paired-pulse facilitation. On the other hand, as previously described, higher concentrations (10 microM) of phorbol ester blocked the tetanus-induced potentiation. Since the total potentiation given by 10 microM phorbol ester and tetanization depended on the order of presentation of the potentiation-inducing stimuli, it appears that the blockade of LTP is, at least partly, independent of the phorbol ester-induced potentiation.  相似文献   

19.
Dopaminergic regulation of primate dorsolateral prefrontal cortex (PFC) activity is essential for cognitive functions such as working memory. However, the cellular mechanisms of dopamine neuromodulation in PFC are not well understood. We have studied the effects of dopamine receptor activation during persistent stimulation of excitatory inputs onto fast-spiking GABAergic interneurons in monkey PFC. Stimulation at 20 Hz induced short-term excitatory postsynaptic potential (EPSP) depression. The D1 receptor agonist SKF81297 (5 microM) significantly reduced the amplitude of the first EPSP but not of subsequent responses in EPSP trains, which still displayed significant depression. Dopamine (DA; 10 microM) effects were similar to those of SKF81297 and were abolished by the D1 antagonist SCH23390 (5 microM), indicating a D1 receptor-mediated effect. DA did not alter miniature excitatory postsynaptic currents, suggesting that its effects were activity dependent and presynaptic action potential dependent. In contrast to previous findings in pyramidal neurons, in fast-spiking cells, contribution of N-methyl-D-aspartate receptors to EPSPs at subthreshold potentials was not significant and fast-spiking cell depolarization decreased EPSP duration. In addition, DA had no significant effects on temporal summation. The selective decrease in the amplitude of the first EPSP in trains delivered every 10 s suggests that in fast-spiking neurons, DA reduces the amplitude of EPSPs evoked at low frequency but not of EPSPs evoked by repetitive stimulation. DA may therefore improve detection of EPSP bursts above background synaptic activity. EPSP bursts displaying short-term depression may transmit spike-timing-dependent temporal codes contained in presynaptic spike trains. Thus DA neuromodulation may increase the signal-to-noise ratio at fast-spiking cell inputs.  相似文献   

20.
Excitatory inputs to layer V neurons of the parasubiculum and medial entorhinal cortex were examined in rat brain slices with intracellular and field potential recordings. Single extracellular stimuli to layer V evoked subthreshold excitatory postsynaptic potentials (EPSPs) or a long duration (>100 ms) depolarization that sustained high frequency firing. Repetitive stimulation at low frequencies (from 1/10 s to 1/min) induced stable long-lasting decreases in the threshold for firing in individual cells or population events, and also induced stable long-lasting increases in evoked intracellular or field response amplitudes. More stimuli were required to produce the equivalent changes in threshold and amplitude in the presence of MCPG (200 microM). Smaller changes in amplitude, but equivalent changes in threshold were elicited in the presence of CPP (10 microM), or CPPG (20 microM). No changes in threshold or amplitude were detected in the presence of CNQX (10 microM), even when used in combination with picrotoxin (100 microM). EPSP facilitation was enhanced greatly by firing in postsynaptic cells. It is suggested that stable changes in excitatory inputs to layer V parahippocampal neurons involve the activation of NMDA and metabotropic glutamate receptors, but requires AMPA receptor activation and postsynaptic cell firing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号