首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Gram-negative pathogen Pseudomonas aeruginosa, mutants in the gene for the prepilin peptidase (pilD) are pleiotropic, as they not only fail to process pilin but also accumulate in the periplasm, in their mature form, several toxins and hydrolytic enzymes that are normally exported to the external medium (excreted). We have suggested that this excretion defect is due to the lack of PilD-dependent processing of proteins that share sequences in common with the prepilin subunit and that are components of a protein-excretion machinery. In this paper we report the isolation and characterization of transposon-induced excretion mutants with phenotypes similar to that of a pilD gene mutant. Using oligonucleotide probes designed to recognize sequences encoding the cleavage site of the type IV prepilins, we have isolated four linked genes with the predicted putative PilD-dependent cleavage site. Site-specific mutations within these genes have shown that they are required for protein excretion, and PilD-dependent processing of at least one of the four encoded proteins was demonstrated. Evidence suggests that similar components play a role in protein excretion in a wide variety of Gram-negative bacteria.  相似文献   

2.
Precursors of the type IV pilins of a number of bacterial pathogens, as well as related proteins involved in extracellular protein export and DNA uptake, are synthesized with short basic leader sequences. Maturation of these proteins involves two consecutive posttranslational modifications. The leader sequence is first proteolytically removed by specialized endopeptidases, of which the prototype is encoded by the pilD gene of Pseudomonas aeruginosa. Subsequently, the amino termini of these proteins are methylated. Here we demonstrate that PilD, in addition to cleaving the amino-terminal leader sequences of prepilin, also catalyzes N-methylation of the amino-terminal phenylalanine of the mature pilin, using S-adenosyl-L-methionine as a methyl donor. Thus, to our knowledge, PilD is the first characterized bacterial N-methyltransferase. Complete inhibition of N-methylation, but not peptide cleavage, by structural analogues of S-adenosyl-L-methionine suggests that PilD is a bifunctional enzyme with proteolytic and methylation activities carried out within two distinct active sites.  相似文献   

3.
In Arabidopsis, monogalactosyldiacylglycerol (MGDG) is synthesized by a multigenic family of MGDG synthases consisting of two types of enzymes differing in their N-terminal portion: type A (atMGD1) and type B (atMGD2 and atMGD3). The present paper compares type B isoforms with the enzymes of type A that are known to sit in the inner membrane of plastid envelope. The occurrence of types A and B in 16:3 and 18:3 plants shows that both types are not specialized isoforms for the prokaryotic and eukaryotic glycerolipid biosynthetic pathways. Type A atMGD1 gene is abundantly expressed in green tissues and along plant development and encodes the most active enzyme. Its mature polypeptide is immunodetected in the envelope of chloroplasts from Arabidopsis leaves after cleavage of its transit peptide. atMGD1 is therefore likely devoted to the massive production of MGDG required to expand the inner envelope membrane and build up the thylakoids network. Transient expression of green fluorescent protein fusions in Arabidopsis leaves and in vitro import experiments show that type B precursors are targeted to plastids, owing to a different mechanism. Noncanonical addressing peptides, whose processing could not be assessed, are involved in the targeting of type B precursors, possibly to the outer envelope membrane where they might contribute to membrane expansion. Expression of type B enzymes was higher in nongreen tissues, i.e., in inflorescence (atMGD2) and roots (atMGD3), where they conceivably influence the eukaryotic structure prominence in MGDG. In addition, their expression of type B enzymes is enhanced under phosphate deprivation.  相似文献   

4.
Neutral metalloendopeptidase enzymes were identified and partially characterized in the brush-border membranes of rat small intestinal mucosal cells using insulin B chain and glutaryl-trialanine-4-methoxy-beta-naphthylamide as substrates. Three different molecular species of endopeptidase were identified by disc gel electrophoresis. These enzymes were shown to be distinct from pancreatic endopeptidases on the basis of the following: enrichment in the brush-border membrane fraction, site of hydrolysis of peptide substrates, sensitivity to specific proteinase inhibitors, and the presence of brush-border membrane-associated endopeptidase activity in mucosal cells of Thirty-Vella loops. Hydrolysis of the substrates was shown to be a two-step process involving initial cleavage by endopeptidase with secondary hydrolysis of the peptide products by brush-border membrane aminopeptidase N. Hydrolysis of both substrates was maximum at a neutral pH and was strongly inhibited by metal chelating agents, phosphoramidone, and amastatin. Intestinal perfusion studies using glutaryl-trialanine-4-methoxy-beta-naphthylamide suggest that these enzymes play a physiologic role in protein digestion. It was concluded that neutral endopeptidases are integral components of the intestinal brush-border membrane and work in concert with aminopeptidase N to hydrolyze dietary protein. This process may be of nutritional importance in normal subjects and those with diminished exocrine pancreatic function.  相似文献   

5.
During a 36-month period, 28 patients treated for infections due to amikacin-susceptible Pseudomonas aeruginosa subsequently developed infections or colonization with amikacin-resistant P aeruginosa at the same site. Eleven amikacin-susceptible/-resistant pairs of isolates were analyzed for aminoglycoside-inactivating enzymes, plasmid profiles, cellular proteins, outer membrane proteins (OMPs), lipopolysaccharide (LPS) profiles, and amikacin uptake. While clearly distinct from isolates of other patients, sensitive and resistant isolates from the same patients were indistinguishable in plasmid profile, LPS profiles, and OMPs. These results suggest that the resistant P aeruginosa isolates were derived from the sensitive isolates. None of the resistant isolates produced enzymes known to inactivate amikacin. In nine of 11 resistant isolates tested, transport of amikacin into P aeruginosa was reduced. A major mechanism of in vivo development of amikacin resistance in P aeruginosa is alteration in permeability to amikacin, but the aquisition of plasmids or changes in OMPs or LPS profile may not account for this phenomenon.  相似文献   

6.
7.
We reported recently that the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans and that many P. aeruginosa virulence factors (genes) required for maximum virulence in mouse pathogenicity are also required for maximum killing of C. elegans. Here we report that among eight P. aeruginosa PA14 TnphoA mutants isolated that exhibited reduced killing of C. elegans, at least five also exhibited reduced virulence in mice. Three of the TnphoA mutants corresponded to the known virulence-related genes lasR, gacA, and lemA. Three of the mutants corresponded to known genes (aefA from Escherichia coli, pstP from Azotobacter vinelandii, and mtrR from Neisseria gonorrhoeae) that had not been shown previously to play a role in pathogenesis, and two of the mutants contained TnphoA inserted into novel sequences. These data indicate that the killing of C. elegans by P. aeruginosa can be exploited to identify novel P. aeruginosa virulence factors important for mammalian pathogenesis.  相似文献   

8.
The biological significance of bacterial extracellular proteases that specifically cleave human IgA1 is unknown. We have prepared a gene bank of gonococcal chromosomal DNA in Escherichia coli K-12 using a cosmid cloning system. Among these clones, we have identified and characterized an E. coli strain that elaborates an extracellular endopeptidase that is indistinguishable from gonococcal IgA1 protease in its substrate specificity and action on human IgA1. Analysis of recombinant plasmids and examination of plasmid-specific peptides in minicells have shown that the IgA1 protease activity in E. coli is associated with expression of a Mr 140,000 peptide. We have isolated IgA1 protease-deficient mutants of Neisseria gonorrhoeae by reintroduction of physically defined deletions of the cloned gene into the gonococcal chromosome by transformation.  相似文献   

9.
A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5(-/-) AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1(-/-) and AEP(-/-) mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation.  相似文献   

10.
The common acute lymphoblastic leukemia antigen (CALLA) is a 749-amino acid type II integral membrane protein expressed by most acute lymphoblastic leukemias, certain other lymphoid malignancies with an immature phenotype, and normal lymphoid progenitors. A computer search against the most recent GenBank release (no. 56) indicates that human CALLA cDNA encodes a protein nearly identical to the rat and rabbit neutral endopeptidase 24.11 ("enkephalinase;" EC 3.4.24.11). This zinc metalloendopeptidase, which has been shown to inactivate a variety of peptide hormones including enkephalin, chemotactic peptide, substance P, neurotensin, oxytocin, bradykinin, and angiotensins I and II, had not been identified in lymphoid cells. To determine whether CALLA cDNA derived from human acute lymphoblastic leukemia cells (Nalm-6 cell line) encodes functional neutral endopeptidase activity, we generated CALLA+ stable transfectants in the CALLA- murine myeloma cell line J558 and analyzed them for enzymatic activity in a fluorometric assay based upon cleavage of the substrate glutaryl-Ala-Ala-Phe 4-methoxy-2-naphthylamide at the Ala-Phe bond. Total lysates as well as whole-cell suspensions of the Nalm-6 line and of the CALLA+ transfectants, but not of the CALLA- J558 cells, possessed neutral endopeptidase activity. This enzymatic activity was associated with the cellular membrane fraction and was abrogated by the specific neutral endopeptidase inhibitor phosphoramidon. The unequivocal identification of CALLA as a functional neutral endopeptidase provides insight into its potential role in both normal and malignant lymphoid function.  相似文献   

11.
Pseudomonas aeruginosa demonstrates high intrinsic resistance to most beta-lactam antibiotics. Two factors that are interrelated appear to be important in this intrinsic resistance: an inducible, chromosomally encoded type Id beta-lactamase and low outer-membrane permeability. beta-Lactamase-noninducible mutants are supersusceptible to many beta-lactam agents, whereas constitutively derepressed mutants are considerably more resistant even to so-called beta-lactamase-stable beta-lactams. For the latter mutants, by analysis of kinetics, it can be demonstrated that synergy between slow permeation across the outer membrane and slow hydrolysis of the beta-lactamase-stable beta-lactams can explain resistance. Wild-type P. aeruginosa allows outer membrane permeation of beta-lactam agents at rates 1%-8% of those measured for Escherichia coli. The majority of trans-outer-membrane channels formed by P. aeruginosa porin protein F are too small to allow passage of beta-lactam antibiotics. Nevertheless, this porin is apparently a conduit for beta-lactams, since protein F-deficient mutants have small changes in susceptibility to certain beta-lactam agents. This low outer-membrane permeability acting in synergy with beta-lactamase is probably responsible for intrinsic beta-lactam resistance in P. aeruginosa.  相似文献   

12.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium capable of causing a variety of life-threatening human infections. The genetic basis for preferential infection of certain immunocompromised patients or individuals with cystic fibrosis by P. aeruginosa is not understood. To establish whether variation in the genomic repertoire of P. aeruginosa strains can be associated with a particular type of infection, we used a whole-genome DNA microarray to determine the genome content of 18 strains isolated from the most common human infections and environmental sources. A remarkable conservation of genes including those encoding nearly all known virulence factors was observed. Phylogenetic analysis of strain-specific genes revealed no correlation between genome content and infection type. Clusters of strain-specific genes in the P. aeruginosa genome, termed variable segments, appear to be preferential sites for the integration of novel genetic material. A specialized cloning vector was developed for capture and analysis of these genomic segments. With this capture system a site associated with the strain-specific ExoU cytotoxin-encoding gene was interrogated and an 80-kb genomic island carrying exoU was identified. These studies demonstrate that P. aeruginosa strains possess a highly conserved genome that encodes genes important for survival in numerous environments and allows it to cause a variety of human infections. The acquisition of novel genetic material, such as the exoU genomic island, through horizontal gene transfer may enhance colonization and survival in different host environments.  相似文献   

13.
Protein I (P.I) is the major outer membrane protein of Neisseria gonorrhoeae and serves as a porin. By using oligonucleotide probes derived from the known amino-terminal sequence of the mature protein, we have cloned the gene encoding the P.I of gonococcal strain FA19 in three overlapping fragments and determined the DNA sequence. The gene sequence predicts a protein with characteristics typical of the porins of other Gram-negative bacteria. A clone expressing P.I in Escherichia coli was obtained by removing a portion of the P.I gene promoter and reconstructing the entire P.I gene in a position just downstream from a phage T7 promoter. Expression of P.I was then achieved by introducing this recombinant plasmid into an E. coli strain containing an inducible T7 polymerase gene. The clone produced a protein that was identical in size to native P.I and reacted with anti-P.I monoclonal antibodies. Prolonged expression of the protein apparently was lethal for E. coli, possibly explaining failures to clone an intact P.I gene with its own promoter.  相似文献   

14.
Biofilms play an important role in the establishment of chronic infection caused by Pseudomonas aeruginosa. It has been suggested that membrane vesicles (MVs) are released into the surrounding medium during normal growth and might supply the bacterial extracellular DNA that is required for early biofilm formation, as MVs released from the bacterial outer membrane are suspected to be the source of extracellular DNA. MVs possess lipopolysaccharide (LPS), extracellular DNA, and several hydrolytic enzymes. It is well known that the quorum-sensing (QS) system is important in controlling virulence factors in P. aeruginosa and biofilm formation. In the current study, we investigated extracellular LPS and DNA in the supernatants of culture solutions from PAO1, the wild-type P. aeruginosa, and those of QS mutants. As compared to that of las QS mutants, the amount of LPS and DNA released was significantly higher in PAO1 and in las QS mutants complemented with N-(3-oxododecanoyl) homoserine lactone. Our study indicated that the QS is among the regulators involved in the release of extracellular DNA and LPS. It is possible that these extracellular components are supplied from MVs. Investigation of the mechanism of biofilm formation is of particular interest, as it may be useful for designing treatments for severe P. aeruginosa infection.  相似文献   

15.
The opportunistic human pathogen Pseudomonas aeruginosa produces a variety of virulence factors, including exotoxin A, elastase, alkaline protease, alginate, phospholipases, and extracellular rhamnolipids. The previously characterized rhlABR gene cluster encodes a regulatory protein (RhlR) and a rhamnosyltransferase (RhlAB), both of which are required for rhamnolipid synthesis. Another gene, rhII, has now been identified downstream of the rhlABR gene cluster. The putative RhlI protein shares significant sequence similarity with bacterial autoinducer synthetases of the LuxI type. A P. aeruginosa rhlI mutant strain carrying a disrupted rhlI gene was unable to produce rhamnolipids and lacked rhamnosyltransferase activity. Rhamnolipid synthesis was restored by introducing a wild-type rhlI gene into such strains or, alternatively, by adding either the cell-free spent supernatant from a P. aeruginosa wild-type strain or synthetic N-acylhomoserine lactones. Half-maximal induction of rhamnolipid synthesis in the rhlI mutant strain required 0.5 microM N-butyrylhomoserine lactone or 10 microM N-(3-oxohexanoyl)homoserine lactone. The P. aeruginosa rhlA promoter was active in the heterologous host Pseudomonas putida when both the rhlR and rhlI genes were present or when the rhlR gene alone was supplied together with synthetic N-acylhomoserine lactones. The RhlR-RhlI regulatory system was found to be essential for the production of elastase as well, and cross-communication between the RhlR-RhlI rhamnolipid regulatory system and the LasR-LasI elastase regulatory system was demonstrated.  相似文献   

16.
To explore the correlation of outer membrane protein I (PI) type and auxotype to clinical expression of infection with Neisseria gonorrhoeae, we characterized nutritional requirements by auxotyping and PI serovars by coagglutination assay with monoclonal antibodies of 325 consecutive clinical isolates of N. gonorrhoeae. The clinical status of each infected individual was determined by chart review. The predominant auxotype required proline, citrulline, and uracil with or without hypoxanthine (Pro-Cit-Ura-[Hyx-]) and accounted for 22% of all gonococcal strains. Pro-Cit-Ura-(Hyx-) strains were recovered from seven of 15 men with asymptomatic urethral infections (P less than .01). Of the 325 strains, 33% were PIA and 67% were PIB serovars. All five isolates in disseminated gonococcal infection were PIA serovars (P less than .01). Three percent of 168 urethral infections in men were complicated by epididymitis, and 17% of 135 cervical infections in women were complicated by pelvic inflammatory disease (P less than .0005). Neither of these complications was associated with a particular auxotype or PI serovar.  相似文献   

17.
18.
Type IV pili are thin filaments that extend from the poles of a diverse group of bacteria, enabling them to move at speeds of a few tenths of a micrometer per second. They are required for twitching motility, e.g., in Pseudomonas aeruginosa and Neisseria gonorrhoeae, and for social gliding motility in Myxococcus xanthus. Here we report direct observation of extension and retraction of type IV pili in P. aeruginosa. Cells without flagellar filaments were labeled with an amino-specific Cy3 fluorescent dye and were visualized on a quartz slide by total internal reflection microscopy. When pili were attached to a cell and their distal ends were free, they extended or retracted at rates of about 0.5 microm s(-1) (29 degrees C). They also flexed by Brownian motion, exhibiting a persistence length of about 5 microm. Frequently, the distal tip of a filament adsorbed to the substratum and the filament was pulled taut. From the absence of lateral deflections of such filaments, we estimate tensions of at least 10 pN. Occasionally, cell bodies came free and were pulled forward by pilus retraction. Thus, type IV pili are linear actuators that extend, attach at their distal tips, exert substantial force, and retract.  相似文献   

19.
20.
Pseudomonas aeruginosa: resistance and therapy   总被引:9,自引:0,他引:9  
Pseudomonas aeruginosa resistance to antimicrobials is an important therapeutic consideration. Antibiotic resistance to P. aeruginosa may be chromosomally or plasmid mediated. Resistance to P. aeruginosa may also be affected by changes in the cellular membrane or intracellular environment. P. aeruginosa is primarily a nosocomial organism that most commonly colonizes respiratory secretions and urine. The selection of an antipseudomonal antibiotic depends on its inherent in vitro activity and its resistance potential. Anti-P. aeruginosa antibiotics with a high-resistance potential include gentamicin, tobramycin, ciprofloxacin, ceftazidime, and imipenem. Anti-P. aeruginosa antibiotics with a low-resistance potential include amikacin, piperacillin, cefoperazone, cefepime, meropenem, and polymyxin B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号