首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Abstract  Polarized outputs of myenteric interneurons in guinea-pig small intestine have been well studied. However, the variety of motility patterns exhibited suggests that some interneuron targets remain unknown. We used antisera selected to distinguish interneuron varicosities and known myenteric neuron types to investigate outputs of three interneuron classes in guinea-pig jejunum; two classes of descending interneurons immunoreactive (IR) for somatostatin (SOM) or nitric oxide synthase (NOS)/vasoactive intestinal peptide (VIP), and one class of ascending interneurons [calretinin/enkephalin (ENK)-IR]. Varicosities apposed to immunohistochemically identified cell bodies were quantified by confocal microscopy. Intrinsic sensory neurons (calbindin-IR) were apposed by few varicosities. Cholinergic secretomotor neurons (neuropeptide Y-IR) were apposed by many SOM-IR varicosities. Longitudinal muscle excitatory motor neurons (calretinin-IR) were apposed by some VIP- and ENK-IR varicosities, but few SOM-IR varicosities. Ascending interneurons (calretinin-IR) were apposed by many varicosities of all types. NOS-IR interneurons and inhibitory motor neurons were apposed by numerous VIP-IR and SOM-IR varicosities. NOS-IR short inhibitory motor neurons were apposed by significantly fewer ENK-IR varicosities than other NOS-IR neurons. Based on the specific chemical coding of ascending (ENK) and descending (SOM) interneurons, we conclude that cholinergic secretomotor neurons and short inhibitory neurons are located in descending reflex pathways, while ascending interneurons and NOS-IR descending interneurons are focal points at which ascending and descending pathways converge.  相似文献   

2.
Rácz B  Halasy K 《Brain research》2002,931(1):50-55
In our previous studies (J. Chem. Neuroanat. 2000;19:233-241), kappa opioid receptors were immunocytochemically identified in inhibitory interneurons of the dentate hilus and CA1 area of the rat hippocampus. From among the known interneuron subtypes, somatostatin- (SOM) and neuropeptide Y- (NPY) immunoreactive (IR) hippocampal interneurons show morphology and distribution similar to the kappa opioid receptor (KOR) immunopositive cells. In the present study, with the help of double immunocytochemical labelling, we provide direct evidence that the majority of the interneurons immunoreactive for SOM and/or NPY also express the kappa opioid receptor. The receptor was localized on the perikaryal and proximal dendritic region of the SOM- and NPY-immunopositive neurons in the dentate hilus and the CA1 region. From among the SOM-immunoreactive cells, 77% in the dentate hilus and 51% in the CA1 stratum oriens was double labelled. In the case of NPY-immunoreactive neurons this proportion was 56 and 65%, respectively. The co-expression of KOR and SOM/NPY suggests that hippocampal interneurons can selectively be activated by the different opioids under different physiological circumstances.  相似文献   

3.
Activation of neuropeptide Y (NPY) Y1 receptors (Y1r) in the rat basolateral nuclear complex of the amygdala (BLA) produces anxiolysis and interferes with the generation of conditioned fear. NPY is important in regulating the output of the BLA, yet the cell types involved in mediating this response are currently unknown. The current studies employed multiple label immunocytochemistry to determine the distribution of Y1r‐immunoreactivity (‐ir) in glutamatergic pyramidal and GABAergic cell populations in the BLA using scanning laser confocal stereology. Pyramidal neurons were identified by expression of calcium‐calmodulin dependent kinase II (CaMKII‐ir) and functionally distinct interneuron subpopulations were distinguished by peptide (cholecystokinin, somatostatin) or calcium‐binding protein (parvalbumin, calretinin) content. Throughout the BLA, Y1r‐ir was predominately on soma with negligible fiber staining. The high degree of coexpression of Y1r‐ir (99.9%) in CaMKII‐ir cells suggests that these receptors colocalize on pyramidal cells and that NPY could influence BLA output by directly regulating the activity of these projection neurons. Additionally, Y1r‐ir was also colocalized with the interneuronal markers studied. Parvalbumin‐ir interneurons, which participate in feedforward inhibition of BLA pyramidal cells, represented the largest number of Y1r expressing interneurons in the BLA (≈4% of the total neuronal population). The anatomical localization of NPY receptors on different cell populations within the BLA provides a testable circuit whereby NPY could modulate the activity of the BLA via actions on both projection cells and interneuronal cell populations. J. Comp. Neurol. 517:166–176, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
This study examined the amygdaloid complex in Alzheimer's disease (AD). We compared the distribution and morphology of somatostatin (SOM-) and neuropeptide Y-immunoreactive (NPY-IR) neurons in the amygdala with the distribution of neuritic plaques (NP) and acetylcholinesterase (AChE) staining patterns in various subnuclei. We found that in AD, there was an increase in the number of small, atrophic neurons for both SOM and NPY, and subregional analysis revealed similar size reductions in all subnuclei. In contrast, the highest density of NP was found in the corticomedial nuclei and densest staining for AChE in the basal nucleus. Although NPY- and SOM-IR fibers were occasionally associated with NP, a dense, morphologically preserved peptidergic fiber-network was found in all areas including subnuclei with high numbers of NP. Our study indicates that atrophic SOM- and NPY-IR neurons are not correlated with the subregional distribution of NP or cholinesterase staining pattern of the amygdala, and suggests that alterations in SOM and NPY neurons are not characteristics of the primary pathogenic process that underlie the formation of NP or cholinergic cell loss in AD.  相似文献   

5.
Neuropeptide-containing hippocampal interneurons and dentate granule cell inhibition were investigated at different periods following electrical stimulation-induced, self-sustaining status epilepticus (SE) in rats. Immunohistochemistry for somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), cholecystokinin (CCK), and Fluoro-Jade B was performed on sections from hippocampus contralateral to the stimulated side and studied by confocal laser scanning microscopy. Compared to paired age-matched control animals, there were fewer SOM and NPY-immunoreactive (IR) interneurons in the hilus of the dentate gyrus in animals with epilepsy (40-60 days after SE), and 1, 3, and 7 days following SE. In the hilus of animals that had recently undergone SE, some SOM-IR and NPY-IR interneurons also stained for Fluoro-Jade B. Furthermore, there was electron microscopic evidence of the degeneration of SOM-IR interneurons following SE. In contrast, the number of CCK and PV-IR basket cells in epileptic animals was similar to that in controls, although it was transiently diminished following SE; there was no evidence of degeneration of CCK or PV-IR interneurons. Patch-clamp recordings revealed a diminished frequency of inhibitory postsynaptic currents in dentate granule cells (DGCs) recorded from epileptic animals and animals that had recently undergone SE compared with controls. These results confirm the selective vulnerability of a particular subset of dentate hilar interneurons after prolonged SE. This loss may contribute to the reduced GABAergic synaptic inhibition of granule cells in epileptic animals.  相似文献   

6.
Inhibitory GABAergic interneurons are fundamental elements of cortical circuits and play critical roles in shaping network activity. Dysfunction of interneurons can lead to various brain disorders, including epilepsy, schizophrenia, and anxiety. Based on the electrophysiological properties, cell morphology, and molecular identity, interneurons could be classified into various subgroups. In this study, we investigated the density and laminar distribution of different interneuron types and the co-expression of molecular markers in epileptic human cortex. We found that parvalbumin (PV) and somatostatin (SST) neurons were distributed in all cortical layers except layer I, while tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were abundant in the deep layers and white matter. Cholecystokinin (CCK) neurons showed a high density in layers IV and VI. Neurons with these markers constituted ~7.2% (PV), 2.6% (SST), 0.5% (TH), 0.5% (NPY), and 4.4% (CCK) of the gray-matter neuron population. Double- and triple-labeling revealed that NPY neurons were also SST-immunoreactive (97.7%), and TH neurons were more likely to express SST (34.2%) than PV (14.6%). A subpopulation of CCK neurons (28.0%) also expressed PV, but none contained SST. Together, these results revealed the density and distribution patterns of different interneuron populations and the overlap between molecular markers in epileptic human cortex.  相似文献   

7.
Immunohistochemistry was applied to examine the correlation between neuropeptide Y (NPY) and the two calcium binding proteins (CaBPs) parvalbumin (PV) and calbindin D28k (CB) in the trigeminal ganglion following peripheral axotomy of the inferior alveolar nerve (IAN) in the rat. Five days following transection and application of FluoroGold (FG) to the cut end of the IAN, approximately 14.8% (80/539) and 18.6% (90/483) of FG-labeled IAN neurons in the trigeminal ganglion showed PV-like immunoreactivity (-LI) and CB-LI, respectively. The mean ± S.D. area of FG-labeled PV-like immunoreactive (-IR) cells (FG/PV-IR cells) and FG/CB-IR cells were 835.9 ± 303.1 μm2 and 712.7 ± 246.0 μm2, respectively. FG/PV-IR cells were significantly larger than FG/CB-IR cells. Fourteen days following peripheral axotomy of the IAN, NPY-LI appeared in the medium- to large-sized cells. Double immunostaining revealed that approximately 3.3% (52/1569) of NPY-IR cells in the axotomized trigeminal ganglion displayed PV-LI, while approximately 26.7% (371/1392) of NPY-IR cells displayed CB-LI. The mean ± S.D. cross-sectional areas of PV-IR and CB-IR trigeminal ganglion cells displaying NPY-LI were 819.5 ± 265.6 μm2 and 766.5 ± 279.7 μm2, respectively. There were no significant differences in the cross-sectional areas either between NPY/PV-IR cells and NPY/CB-IR cells, or between FG/PV-IR cells and NPY/PV-IR cells, or between FG/CB-IR cells and NPY/CB-IR cells. The present results indicate that injury-evoked medium- to large-sized NPY neurons were a different population from large-sized PV neurons, and NPY was partly co-localized with CB.  相似文献   

8.
Retrograde-tracing and immunohistochemical techniques were used in combination to investigate the types of putative transmitters in pelvic neurons that project to the bladder, colon or penis of rats. In addition, populations of axon varicosities associated with these neurons were characterized. Subpopulations of neurons in colchicine-treated major pelvic ganglia and accessory ganglia of male rats contained immunoreactivity (IR) for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), or enkephalin (ENK), while types of immunoreactivity found in major groups of varicose axons were ENK, cholecystokinin (CCK), and somatostatin (SOM). Substance P (SP)-IR varicose axons were much less common. Bladder and colon neurons were similar in a number of ways. Many neurons contained NPY-IR (greater than or equal to 50%), fewer contained TH-IR (25-30%), and even fewer contained ENK-IR (5-15%) or VIP-IR (5-10%); many neurons were associated with baskets of ENK-IR varicosities (50-65%) and fewer neurons were surrounded by CCK- or SOM-IR varicosities (30-35%). Colon neurons differed from penis neurons in having a slightly larger proportion that contained ENK-IR (10-15%, compared with 1-3%). Penis neurons were markedly different from the other two groups in additional ways. More than 90% of them contained VIP-IR, whereas only 5-7% contained NPY-IR and none were immunoreactive for TH. Furthermore, although the proportion of penile neurons associated with many ENK-IR varicosities was similar to the bladder and colon neurons (45-50%), they were rarely seen close to CCK- or SOM-IR varicose axons. These studies describe similarities and differences in the histochemical properties of neurons which project to the bladder, colon, or penis and of the varicose axons associated with those neurons. This gives further insights into the possible transmitter mechanisms involved in the regulation of different pelvic functions.  相似文献   

9.
The neuropeptide corticotropin‐releasing factor (CRF) plays a critical role in mediating anxiety‐like responses to stressors, and dysfunction of the CRF system has been linked to the etiology of several psychiatric disorders. Extra‐hypothalamic CRF can also modulate learning and memory formation, including amygdala‐dependent learning. The basolateral nucleus of the amygdala (BLA) contains dense concentrations of CRF receptors, yet the distribution of these receptors on specific neuronal subtypes within the BLA has not been characterized. Here, we quantified the expression of CRF receptors on three nonoverlapping classes of GABAergic interneurons: those containing the calcium‐binding protein parvalbumin (PV), and those expressing the neuropeptides somatostatin (SOM) or cholecystokinin (CCK). While the majority of PV+ neurons and roughly half of CCK+ neurons expressed CRF receptors, they were expressed to a much lesser extent on SOM+ interneurons. Knowledge of the distribution of CRF receptors within the BLA can provide insight into how manipulations of the CRF system modulate fear and anxiety‐like behaviors.  相似文献   

10.
GABAergic interneurons are key elements regulating the activity of local circuits, and abnormal inhibitory circuits are implicated in certain psychiatric and neurodevelopmental diseases. The glutamatergic input that interneurons receive is a key determinant of their activity, yet its molecular structure and development, which are often distinct from those of glutamatergic input to pyramidal cells, are poorly defined. The membrane-associated guanylate kinase (MAGUK) homologs PSD-95/SAP90, PSD-93/chapsyn110, SAP97, and SAP102 are central organizers of the postsynaptic density at excitatory synapses on pyramidal neurons. We therefore studied the cell-type-specific and developmental expression of MAGUKs in the nonoverlapping parvalbumin (PV)- and somatostatin (SOM)-positive interneurons in the visual cortex. These interneuron subtypes account for the vast majority of interneurons in the cortex and have different functional properties and postsynaptic structures, being either axodendritic (PV(+)) or axospinous (SOM(+)). To study cell-type-specific MAGUK expression, we used DIG-labeled riboprobes against each MAGUK along with antibodies against either PV or SOM and examined tissue from juvenile (P15) and adult mice. Both PV(+) and SOM(+) interneurons express mRNA for PSD-95, PSD-93, and SAP102 in P15 and adult tissue. In contrast, these interneuron subtypes express SAP97 at P15, but for adult visual cortex we found that most PV(+) and SOM(+) interneurons show low or no expression of SAP97. Given the importance of SAP97 in regulating AMPA receptor GluA1 subunit and NMDA receptor subunits at glutamatergic synapses, these results suggest a developmental shift in glutamate receptor subunit composition and regulation of glutamatergic synapses on PV(+) and SOM(+) interneurons.  相似文献   

11.
Origin and molecular specification of striatal interneurons.   总被引:21,自引:0,他引:21  
  相似文献   

12.
Many neurological diseases including major depression and schizophrenia manifest as dysfunction of the GABAergic system within the cingulate cortex. However, relatively little is known about the properties of GABAergic interneurons in the cingulate cortex. Therefore, we investigated the neurochemical properties of GABAergic interneurons in the cingulate cortex of FVB‐Tg(GadGFP)45704Swn/J mice expressing green fluorescent protein (GFP) in a subset of GABAergic interneurons (GFP‐expressing inhibitory interneurons [GINs]) by means of immunocytochemical and design‐based stereologic techniques. We found that GINs represent around 12% of all GABAergic interneurons in the cingulate cortex. In contrast to other neocortical areas, GINs were only found in cortical layers II and III. More than 98% of GINs coexpressed the neuropeptide somatostatin (SOM), but only 50% of all SOM + neurons were GINs. By analyzing the expression of calretinin (CR), calbindin (CB), parvalbumin, and various neuropeptides, we identified several distinct GIN subgroups. In particular, we observed coexpression of SOM with CR and CB. In addition, we found neuropeptide Y expression almost exclusively in those GINs that coexpressed SOM and CR. Thus, with respect to the expression of calcium‐binding proteins and neuropeptides, GINs are surprisingly heterogeneous in the mouse cingulate cortex, and the minority of GINs express only one marker protein or peptide. Furthermore, our observation of overlap between the SOM + and CR + interneuron population was in contrast to earlier findings of non‐overlapping SOM + and CR + interneuron populations in the human cortex. This might indicate that findings in mouse models of neuropsychiatric diseases may not be directly transferred to human patients. J. Comp. Neurol. 524:2281–2299, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Between 25-40% of neurons in laminae I-III are GABAergic, and some of these express neuropeptide Y (NPY). We previously reported that NPY-immunoreactive axons form numerous synapses on lamina III projection neurons that possess the neurokinin 1 receptor (NK1r). The aims of this study were to determine the proportion of neurons and GABAergic boutons in this region that contain NPY, and to look for evidence that they selectively innervate different neuronal populations. We found that 4-6% of neurons in laminae I-III were NPY-immunoreactive and based on the proportions of neurons that are GABAergic, we estimate that NPY is expressed by 18% of inhibitory interneurons in laminae I-II and 9% of those in lamina III. GABAergic boutons were identified by the presence of the vesicular GABA transporter (VGAT) and NPY was found in 13-15% of VGAT-immunoreactive boutons in laminae I-II, and 5% of those in lamina III. For both the lamina III NK1r-immunoreactive projection neurons and protein kinase Cγ (PKCγ)-immunoreactive interneurons in lamina II, we found that around one-third of the VGAT boutons that contacted them were NPY-immunoreactive. However, based on differences in the sizes of these boutons and the strength of their NPY-immunoreactivity, we conclude that these originate from different populations of interneurons. Only 6% of VGAT boutons presynaptic to large lamina I projection neurons that lacked NK1rs contained NPY. These results show that NPY-containing neurons make up a considerable proportion of the inhibitory interneurons in laminae I-III, and that their axons preferentially target certain classes of dorsal horn neuron.  相似文献   

14.
Peripheral feeding-related hormones such as leptin, insulin, and ghrelin exert their main central effects through neuropeptide Y- (NPY) synthesizing and alpha-melanocyte-stimulating hormone- (alpha-MSH) synthesizing neurons of the hypothalamic arcuate nucleus. In rodents, recent reports have described an asymmetric signaling between these neuron populations by showing that while NPY influences alpha-MSH-synthesizing neurons, the melanocortin-receptor agonist Melanotan II (MTII) does not modulate the electrophysiological properties of NPY neurons. The functional neuroanatomy of the relationship between these cell populations is unknown in humans. The aim of the current study was to analyze the putative relationship of the orexigenic NPY and anorexigenic alpha-MSH systems in the infundibular nucleus of the human hypothalamus, the analogue of the rodent arcuate nucleus. Double-labeling fluorescent immunocytochemistry for NPY and alpha-MSH was performed on postmortem sections of the human hypothalamus. The sections were analyzed by confocal laser microscopy. Both NPY- and alpha-MSH-immunoreactive (IR) neurons were embedded in dense, intermingling networks of NPY- and alpha-MSH-IR axons in the human infundibular nucleus. NPY-IR varicosities were observed in juxtaposition to all alpha-MSH-IR neurons. The mean number of NPY-IR axon varicosities on the surface of an alpha-MSH-IR neuron was approximately six. The majority of NPY-IR neurons were also contacted by alpha-MSH-IR varicosities, although, the number of such contacts was lower (two alpha-MSH-IR varicosities per NPY neuron). In summary, the present data demonstrate that these two antagonistic, feeding-related neuronal systems are interconnected in the infundibular nucleus, and the neuronal wiring possesses an asymmetric character in the human hypothalamus.  相似文献   

15.
The distribution and chemical coding of neurons supplying urinary bladder in the male pig were studied in the sympathetic chain ganglia, inferior mesenteric ganglia and anterior pelvic ganglia. The combined retrograde tracing and immunohistochemistry for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP), substance P (SP), choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) were applied in the experiment. Bladder-projecting neurons were found in all the ganglia studied. The majority of sympathetic ganglia neurons (inferior mesenteric ganglia and sympathetic chain ganglia) expressed immunoreactivity (IR) to DBH. In sympathetic chain ganglia these neurons simultaneously expressed NPY, GAL or VAChT, while in inferior mesenteric ganglia they contained NPY, SOM and/or GAL. A small number of these bladder-projecting neurons was VAChT-IR and some contained NPY. In the pelvic ganglia bladder-projecting neurons formed two populations: DBH- and VAChT-IR. Some of DBH-IR neurons contained IR to NPY, SOM or GAL, while VAChT-IR neurons were NPY-, SOM- or NOS-IR. The results indicate that sympathetic ganglia contain mainly adrenergic neurons, while pelvic ganglia contain both adrenergic and cholinergic neurons. All these neurons contain typical combinations of neuropeptides.  相似文献   

16.
Using immunohistochemistry, high concentrations and widespread distribution of neuropeptide Y-immunoreactive (NPY-IR) neurons were found and examined in each region of the hippocampal formation from birth to 42 years. NPY interneurons are particularly numerous in the stratum oriens of the CA1 subfield, in the deep layers of the subicular complex and entorhinal cortex. They are multipolar round, ovoid or triangular or bipolar and fusiform. There is a dense network of NPY-IR nerve fibers in the subicular complex and the entorhinal cortex. In addition, numerous NPY-IR nerve cell bodies and fibers are observed in the angular bundle and the adjacent white matter and this contrasts with the absence of NPY immunoreactivity in the fiber tracts of the alveus. These NPY-IR neurons which correspond to the interstitial neurons of the white matter, have the morphology and the size of the interneurons detected in the cortex. During the postnatal brain growth spurt which corresponds to the phase of rapid myelination, there is no decline in total number of NPY-IR neurons but there is a decrease in density. They have been spread apart by the growth of the rest of the tissue. So in humans, the total number of NPY nerve cell bodies in the hippocampal system, firmly established at birth, is not modified during consequent brain growth which continues until ages 3-4 years and stays stable at least until age 42 years.  相似文献   

17.
Immunohistochemical studies in several mammalian species and in red-eared turtles have shown that somatostatin (SS) and neuropeptide Y (NPY) co-occur in a substantial proportion of the telencephalic neurons containing either. To explore further the possibility that telencephalic neurons co-containing SS and NPY may be evolutionarily conserved among amniotes, we determined the distribution and co-occurrence of SS and NPY in forebrain neurons in pigeons. Single-label immunohistochemical studies revealed the presence of overlapping populations of SS+ neurons and NPY+ neurons in most of the major subdivisions of the telencephalon. Double-label immunofluorescence studies revealed that in subdivisions of the telencephalon that are comparable to mammalian cortex (i.e., those dorsal and lateral to the basal ganglia), the vast majority of NPY+ neurons were also SS+, whereas a major and regionally variable percentage of the SS+ neurons were not NPY+. In contrast, within the basal telencephalon (including the basal ganglia and several other structures) neurons labeled only for NPY or only SS were more abundant than those containing both neuropeptides. Outside the telencephalon, the only forebrain cell group containing neurons in which SS and NPY were co-localized was in the lateral hypothalamus. A series of double- and triple-label immunohistochemical studies was undertaken to determine the extent of co-occurrence of SS and NPY in striatal neurons and the relationship of these neurons to striatal neurons containing other neuropeptides. In addition, immunohistochemical single- and double-label techniques were employed in conjunction with retrograde-labeling by fluorogold to determine the projections of SS+ and NPY+ striatal neurons. The results indicate that: 1) a population of striatal interneurons containing both SS and NPY exists in pigeons and constitutes approximately the same fraction of all striatal neurons as reported in mammals, 2) neurons containing NPY (but not SS) form a second, larger population of striatal interneurons, 3) neurons containing SS (but not NPY) form a third population of striatal interneurons that is approximately half as abundant as the NPY+ interneuron population, and 4) one-third of the substance P-containing striatonigral projection neurons also contain SS. The existence in pigeons of a major population of neurons containing both SS and NPY throughout the telencephalon, the existence of a population of neurons containing only SS in cortex-equivalent parts of the telencephalon, and the existence of a population of interneurons containing only NPY in the striatum is consistent with findings in mammals and turtles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Within the basolateral amygdaloid complex (BLA), neuropeptide Y (NPY) buffers against protracted anxiety and fear. Although the importance of NPY's actions in the BLA is well documented, little is known about the source(s) of NPY fibers to this region. The current studies identified sources of NPY projections to the BLA by using a combination of anatomical and neurochemical approaches. NPY innervation of the BLA was assessed in rats by examining the degree of NPY coexpression within interneurons or catecholaminergic fibers with somatostatin and tyrosine hydroxylase (TH) or dopamine β‐hydroxylase (DβH), respectively. Numerous NPY+/somatostatin+ and NPY+/somatostatin fibers were observed, suggesting at least two populations of NPY fibers within the BLA. No colocalization was noted between NPY and TH or DβH immunoreactivities. Additionally, Fluorogold (FG) retrograde tracing with immunohistochemistry was used to identify the precise origin of NPY projections to the BLA. FG+/NPY+ cells were identified within the amygdalostriatal transition area (AStr) and stria terminalis and scattered throughout the bed nucleus of the stria terminalis. The subpopulation of NPY neurons in the AStr also coexpressed somatostatin. Subjecting animals to a conditioned fear paradigm increased NPY gene expression within the AStr, whereas no changes were observed within the BLA or stria terminalis. Overall, these studies identified limbic regions associated with stress circuits providing NPY input to the BLA and demonstrated that a unique NPY projection from the AStr may participate in the regulation of conditioned fear. J. Comp. Neurol. 524:2418–2439, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The cerebral cortex has diverse types of inhibitory neurons. In rat cortex, past research has shown that parvalbumin (PV), somatostatin (SOM), calretinin (CR), and cholecystokinin (CCK) label four distinct chemical classes of GABAergic interneurons. However, in contrast to rat cortex, previous studies indicate that there is significant colocalization of SOM and CR in mouse cortical inhibitory neurons. In the present study we further characterized immunochemical distinctions among mouse inhibitory cortical neurons by double immunochemical labeling with chemical markers. We found that, PV, SOM, and vasointenstinal peptide (VIP) reliably identify three nonoverlapping distinct subpopulations, as there was no overlap of immunoreactivity between PV and all the other chemical markers tested, and SOM and VIP did not show any overlap in labeled neurons in all the cortical areas. In comparison, there was significant overlap in combinations of other chemical markers. With some laminar and regional variations, the average overlap of SOM/CR (percentage of SOM+ cells expressing CR) and SOM/neuropeptide tyrosine (NPY) across all examined layers and cortical regions was 21.6% and 7.1%, respectively. The average overlap of VIP/CR, VIP/NPY, and CR/NPY was 34.2%, 9.5%, and 10%, respectively. We quantified and assessed the percentages of marker‐positive GABAergic cells, and showed that the nonoverlapping subpopulations (i.e., PV+, SOM+ and VIP+ cells) accounted for about 60% of the GABAergic cell population. Taken together, our data reveal important chemical distinctions between mouse inhibitory cortical neurons and indicate that PV, SOM, and VIP can differentially label a majority of mouse inhibitory cortical neurons. J. Comp. Neurol. 518:389–404, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
An important component of neuronal development is the matching of neurotransmitter expression with the appropriate target cell. We have examined how peptide transmitter expression is controlled in a simple model system, the avian ciliary ganglion (CG). This parasympathetic ganglion contains 2 distinct types of neurons: choroid neurons, which project to vasculature in the eye's choroid layer and use somatostatin as a co-transmitter with ACh, and ciliary neurons, which innervate the ciliary body and iris and use ACh but no known peptide co-transmitter. We have found that the earliest developmental stage in which neurons with somatostatinlike immunoreactivity (SOM-IR) are consistently found in vivo is stage 30 (embryonic day 6.5), a time shortly after the extension of neurites to targets in the eye's choroid layer. In cell culture, CG neurons expressed SOM-IR in co-culture with choroid cells, but not when cultured with striated muscle myotubes or with ganglion non-neuronal cells. No significant differences in neuronal survival or in ChAT activity were observed under these different co-culture conditions, which suggests that somatostatin expression is independently regulated. The stimulation of somatostatin expression was also specific in that other neuropeptides commonly found in autonomic neurons [neuropeptide Y (NPY), substance P (SP), vasoactive intestinal polypeptide (VIP)] were not induced in the presence of choroid cells. The ability to stimulate SOM-IR was not contact dependent because a macromolecule of greater than or equal to 10 kDa in choroid-conditioned medium (ChCM) was found to stimulate somatostatin expression in a dosage-dependent fashion. The somatostatin-stimulating activity induced SOM-IR in more than 90% of CG neurons, as well as in retrogradely labeled ciliary neurons, which would not normally express SOM-IR. Thus, the expression of somatostatin in cultured CG neurons is regulated by a macromolecule produced by cells in the choroid layer, a target normally innervated in vivo by CG neurons expressing somatostatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号