首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α, produced by glial cells within the brain, appear to contribute to the neuropathogenesis of several inflammatory neurodegenerative diseases; however, little is known about the mechanism underlying cytokine-induced neurotoxicity. Using human fetal brain cell cultures composed of neurons and glial cells, we investigated the injurious effects of IL-1 β and TNF-α, cytokines which are known to induce nitric oxide (NO) production by astrocytes. Although neither cytokine alone was toxic, IL-1 β and TNF-α in combination caused marked neuronal injury. Brain cell cultures treated with IL-1 β plus TNF-α generated substantial amounts of NO. Blockade of NO production with a NO synthase inhibitor was accompanied by a marked reduction (about 45%) of neuronal injury, suggesting that NO production by astrocytes plays a role in cytokine-induced neurotoxicity. Addition of N-methly-D-aspartate (NMDA) receptor antagonists to brain cell cultures also blocked IL-1 β plus TNF-α-induced neurotoxicity (by 55%), implicating the involvement of NIMDA receptors in cytokine-induced neurotoxicity. Treatment of brain cell cultures with IL-1 β plus TNF-α was found to inhibit [3H]-glutamate uptake and astrocyte glutamine synthetase activity, two major pathways involved in NMDA receptor-related neurotoxicity. These in vitro findings suggest that agents which suppress NO production or inhibit NMDA receptors may protect against neuronal damage in cytokine-induced neurodegenerative diseases.  相似文献   

2.
TNFα and IL-6 are cytokines of great interest, given the numerous biological activities and the documented expression in several central nervous system (CNS) pathologies. In this report, we have examined cultures of IL-1- or IL-1/IFNγ-activated human fetal astrocytes as a model to study mechanisms of cytokine regulation in the inflamed CNS. Since one of the major functions of astrocytes is spatial buffering of K+ ions, we examined the effect of high extracellular KCl on astrocyte cytokine expression by ribonuclease protection assay and ELISA. Results demonstrate that astrocyte TNFα production was potently inhibited by K+ with 44 and 89% inhibition at 25 and 55 mM K+, respectively. In contrast, astrocyte IL-6 inhibition required higher concentrations of K+ (≥75 mM). These results demonstrate a novel role for astrocyte potassium channel activity in modulation of glial cytokine production.  相似文献   

3.
4.
We investigated the effect of agmatine, an arginine metabolite synthesized in the brain, in cultured microglia obtained from neonatal rat cerebral cortex. Agmatine (1–300 μM) did not affect viability of cultured microglia. Activation of microglia by lipopolysaccharide (LPS, 1 μg/ml) caused the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) assessed as the accumulation of nitrite in the culture supernatants. Agmatine had no effect on the expression of iNOS, but significantly suppressed the LPS-induced NO production in a concentration-dependent manner. Agmatine was also effective in suppressing the production of NO induced by a combination of interferon-γ (500 U/ml) and amyloid β protein (10 μM). In co-cultures of rat cortical neurons and microglia, LPS caused significant loss of neuron viability. The LPS neurotoxicity was not observed in the absence of microglia, and was completely blocked by the NOS inhibitor diphenyleneiodoium chloride. The neuronal death induced by microglia-derived NO was significantly attenuated by the presence of agmatine. These results suggest that agmatine works to protect neurons by inhibiting the production of NO in microglia.  相似文献   

5.
6.
7.
8.
Epidemiological studies have shown that steroidal as well as non-steroidal anti-inflammatory drugs lower the risk of developing Alzheimer's Disease (AD). A suppressive effect of these anti-inflammatory drugs on local inflammatory events in AD brains has been suggested, however the mechanisms responsible are still unknown. In this study we investigated at cellular level the influence of two anti-inflammatory drugs—dexamethasone and indomethacin—and an experimental specific cyclooxygenase-2 inhibitor, BF389, on the production of the pro-inflammatory cytokine IL-6 and the inflammatory mediator PGE2 by human astrocytes. Two human post-mortem astrocyte cultures (A157 and A295) and astroglioma cell lines (U251 and U373 MG) were found to secrete considerable amounts of IL-6 upon stimulation with IL-1β. The glucocorticoid dexamethasone inhibited the IL-1β-activated release of IL-6 from the postmortem astrocyte cultures A157 and A295 and from the astroglioma cell lines. The non-specific cyclooxygenase inhibitor indomethacin and BF389 only suppressed the IL-6 release by post-mortem astrocyte culture A157. This post-mortem astrocyte culture was found to produce large amounts of PGE2 upon stimulation with IL-1β, whereas in the supernatants of the postmortem astrocyte culture A295 and the astroglioma cell lines, low PGE2 concentrations were detected. Addition of exogenous PGE2 prevented the inhibitory effect of indomethacin and BF389 on the IL-1β-activated IL-6 release from A157 astrocytes and largely potentiated the IL-1-induced release of IL-6 from all astrocytes/astroglioma cells tested. Dexamethasone also inhibited the PGE2 release from the astrocytes and astroglioma cells, however the inhibitory effect of dexamethasone on the IL-1β-activated IL-6 release could not be prevented by the addition of PGE2. The observed reduction of IL-6 and/or PGE2 from astrocytes may be involved in the mechanism underlying the beneficial effects of these drugs in AD.  相似文献   

9.
Astrocytes contribute to the immunocompetence of the central nervous system (CNS) via their expression of class II major histocompatibility complex (MHC) antigens and the production of inflammatory cytokines such as interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). Of these cytokines, IL-6 is of particular interest because one of its many immune and inflammatory actions is the promotion of immunoglobulin synthesis, and it is thought that IL-6 expression within the brain exacerbates autoimmune diseases of the CNS, which are marked by local immunoglobulin production. Several stimuli induce astrocyte IL-6 expression, including such inducible endogenous factors as IL-1β and TNF-α. We have investigated the possibility that a constitutively present endogenous factor, the neurotransmitter norepinephrine (NE), can induce astrocyte IL-6 production. We report that NE induces both IL-6 mRNA and protein in primary neonatal rat astrocytes, with optimal induction at 10 μM. IL-6 protein induction by NE is comparable to that seen with IL-1β or TNF-α, and NE synergizes with these cytokines for a ten-fold enhanced effect. In contrast to astrocytes, microglia are relatively unresponsive to NE, IL-1β and TNF-α for IL-6 production. Experiments with the β-adrenergic receptor agonist isoproterenol, and α and β-adrenergic receptor antagonists (propranolol, phentolamine, atenolol, and yohimbine) indicate that β2 and α1-adrenergic receptors are involved in NE induction of astrocyte IL-6 expression. These results help to further the understanding of neuron-glial interactions, and the role of astrocytes and adrenergic activity in immune responses within the CNS.  相似文献   

10.
In astrocytes, nerve growth factor (NGF) synthesis and secretion is stimulated by the cytokine interleukin-1β (IL-1β). In the present study, the role of IL-1 receptor binding sites in the regulation of NGF release was evaluated by determining the pharmacological properties of astroglially localized IL-1 receptors, and, by comparing the effects of both the agonists (IL-1α and IL-1β) and the antagonist (IL-1ra)—members of the IL-1 family on NGF secretion from rat neonatal cortical astrocytes in primary culture. Using receptor-binding studies, binding of [125I] IL-1β to cultured astrocytes was saturable and of high affinity. Mean values for the KD and Bmax were calculated to be 60.7±7.4 pM and 2.5±0.1 fmol mg-1 protein, respectively. The binding was rapid and readily reversible. IL-1 receptor agonists IL-1α (Ki of 341.1 pM) and IL-1β (Ki 59.9 pM), as well as the antagonist IL-1ra (Ki 257.6 pM), displaced specific [125I] IL-1β binding from cultured astrocytes in a monophasic manner. Anti-IL-1RI antibody completely blocked specific [125I] IL-1β binding while anti-IL-1RII antibody had no inhibitory effect. Exposure of cultured astrocytes to IL-1α and IL-1β revealed the functional difference between the agonists in influencing NGF release. In contrast to IL-1β (10 U/ml), which caused a 3-fold increase in NGF secretion compared to control cells, IL-1α by itself had no stimulatory action on NGF release. The simultaneous application of IL-1α and IL-1β elicited no additive response. IL-1ra had no effect on basal NGF release but dose-dependently inhibited the stimulatory response induced by IL-1β. We concluded that IL-1β-induced NGF secretion from cultured rat cortical astrocytes is mediated by functional type I IL-1 receptors, whereas IL-1α and IL-1ra, in spite of their affinity for IL-1RI, have no effect on NGF secretion from these cells. Type II IL-1R is not present on rat neonatal cortical astrocytes.  相似文献   

11.
Recent studies using a rat model of pneumococcal meningitis have shown that nitric oxide synthase (NOS) inhibitors greatly attenuated microvascular changes and brain edema formation. The site of NO production during bacterial meningitis is unknown. In this study we tested whether primary astrocyte cultures from neonatal rat cortex can be induced to release NO upon stimulation with pneumococci. NO production was assessed by measuring nitrite in the cell culture supernatant using the Griess reaction. Stimulation with heat-killed unencapsulated pneumococci (HKP) increased nitrite concentrations in astrocyte culture supernatants in a dose-dependent fashion. Administration of AT-nitro-L-arginine (L-NA), aminoguanidine, L-canavanine, cycloheximide, and dexamethasone prevented the increase in nitrite concentrations. Addition of L-arginine, but not of o-arginine, partially reversed the inhibitory effect of L-NA. Administration of SOD increased nitrite accumulation. Moreover, at 72 h after stimulation with heat-killed pneumococci (107 cfu/ml) astrocytes showed an inducible NOS-like immunoreactivity. Accumulation of nitrite was also observed when rat cerebellar neurons and microglia were stimulated with HKP, whereas there was only a slight increase of nitrite in media of rat C6 glioma cells, but no increase of nitrite when the human glioblastoma cell line LN-229 was stimulated with HKP. There was a stronger increase in nitrite levels when astrocytes from Lewis rats were used compared to that from Wistar rats. In conclusion, our study indicates that astrocytes, neurons and microglia are inducible for NO production upon stimulation with pneumococci.  相似文献   

12.
Chronic inflammation and astrocytosis are characteristic histopathological features of Alzheimer's Disease (AD). Astrocytes are one of the predominant cell types in the brain. In AD they are activated and produce inflammatory components such as complement components, acute phase proteins, and cytokines. In this study we analyzed the effect of cytokines on the production of amyloid β (Aβ) in the astrocytoma cell line U373 and in primary human astrocytes isolated postmortem from healthy aged persons as well as from patients with AD. Astrocytes did not produce Aβ in the absence of stimuli or following stimulation with IL-1β, TNFα, IL-6, and TGF-β1. Neither did combinations of TNFα and IL-1β, IL-6 or TGF-β1, or the coadministration of IFNγ and IL-6 or TGF-β1 induce Aβ production. In contrast, pronounced production of Aβ1-40 and Aβ1-42 was observed when primary astrocytes or astrocytoma cells were stimulated with combinations of IFNγ and TNFα or IFNγ and IL-1β. Induction of Aβ production was accompanied by decreased glycosylation of APP as well as by increased secretion of APPsβ. Our results suggest that astrocytes may be an important source of Aβ in the presence of certain combinations of inflammatory cytokines. IFNγ in combination with TNFα or IL-1β seems to trigger Aβ production by supporting β-secretase cleavage of the immature APP molecule.  相似文献   

13.
Interleukin-1β (IL-1β) is a cytokine that regulates a variety of biological processes. In addition to its traditional role in the immune system, IL-1β plays an integral role in neural-immune and developmental processes in the nervous system. The pleiotropic ability of IL-1β may be due to the activation of different signal transduction mechanisms in specific cell types or under certain cellular conditions. We have previously demonstrated that IL-1β regulates healing and repair in the developing, mammalian nervous system. In the damaged perinatal mouse brain, IL-1β is expressed in astrocytes that change from a stellate to a spindle-shaped morphology. The spindle-shaped astrocytes enclose the wound, separating the healthy from damaged neural tissue. The shape change and subsequent repair processes are IL-1β activity-dependent, acting through the IL-1 type 1 receptor (IL-1R1), as co-application of the IL-1type 1 receptor antagonist protein (IL-1ra) blocks IL-1β induced effects. In the C6 astrocytic cell line, IL-1β induced similar shape changes and upregulated expression of the cytoskeletal protein, glial fibrillary acidic protein (GFAP). Since cytoskeletal changes, as well as specific signal transduction mechanisms, are associated with increases in intracellular calcium ([Ca2+]i), studies were carried out to determine if increases in [Ca2+]i induced by IL-1β occurred through activation of the IL-1R1 in C6 cells. Cells were treated with IL-1β and/or IL-1ra, followed by measurement of relative changes in [Ca2+]i using fura-2 fluorescence imaging methods. IL-1β increased [Ca2+]i levels in a dose and time dependent manner. Treatment with IL-1ra blocked IL-1β induced increases in [Ca2+]i, indicating that IL-1β acts through the IL-1R1. Immunocytochemistry experiments showed that untreated C6 cells normally express IL-1β, IL-1ra, and IL-1R1. Thus, IL-1 system molecules may play a role in normal C6 astrocyte physiology.  相似文献   

14.
15.
Mechanisms underlying human immunodeficiency virus-1 encephalopathy are not completely known; however, recent studies suggest that the viral protein gp41 may be neurotoxic via activation of inducible nitric oxide synthase (iNOS) in glial cells. In the present study, we investigated the NO-generating activity of primary human fetal astrocytes in response to gp41 and the relationship to microglial cell production of interleukin-1 (IL-1). Gp41 failed to trigger iNOS mRNA expression in highly enriched (>99%) astrocyte or microglial cell cultures. However, gp41-treated microglia released a factor(s) that triggered iNOS mRNA expression and NO production in astrocytes. Because IL-1 receptor antagonist protein blocked gp41-induced NO production, a pivotal role was suggested for microglial cell IL-1 production in astrocyte iNOS expression. Also, gp41 induced IL-1beta mRNA expression and IL-1 production in microglial cell but not astrocyte cultures. Using specific inhibitors, we found that gp41-induced IL-1beta production in microglia was mediated via a signaling pathway involving protein-tyrosine kinase. These data support the hypothesis that gp41 induces astrocyte NO production indirectly by triggering upregulation of microglial cell IL-1 expression.  相似文献   

16.
The transforming growth factor β's (TGFβ) are a multipotent family of cytokines with strong immunosuppressive and neurotrophic effects. In the current study, we examined the effect of the TGFβ's 1, 2 and 3 on the proliferation of ramified microglia cultured on top of a confluent astrocyte monolayer. All three TGFβ isoforms inhibited proliferation. PCR analysis also showed the presence of mRNA for the TGFβ receptors type I and II and for all 3 TGFβ isoforms in microglia, astrocytes and in co-cultures. Moreover, removal of this endogenous TGFβ activity with antibodies against TGFβ1 and TGFβ3 strongly stimulated microglial proliferation. These inhibitory effects on the proliferation of ramified microglia suggest that TGFβ's may play an important role in the regulation of the microglial population under normal conditions and after injury or disease in the central nervous system.  相似文献   

17.
18.
The transforming growth factors (TGF) type β1 and β2 are regulatory cytokines strongly affecting rat astrocyte immune functions. Both cytokines suppressed presentation of autoantigen by astrocytes: highly encephalotogenic T cells cocultured with TGF-β-treated astrocytes in the presence of myelin basic protein did not become activated to transfer experimental allergic encephalomyelitis, a central nervous system (CNS) autoimmune disease. Furthermore, TGF-β1 and -β2 antagonized hyperinduction of astrocyte major histocompatibility complex (MHC) class II antigen expression by interferon-γ and tumor necrosis factor-α. Thus, TGF-β might be a potential regulator of CNS inflammation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号