首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, is implicated in a variety of biological processes, including reproduction. Previous studies describe increased levels of HB-EGF in the human endometrium during the midsecretory stage of the menstrual cycle, suggesting a function for HB-EGF in implantation of the human blastocyst. Here we have investigated the expression and function of the soluble and transmembrane forms of HB-EGF in the human endometrium. We show that the expression of the transmembrane form of HB-EGF in the human endometrium is modulated according to the stage of the menstrual cycle. We present data demonstrating that both the soluble and transmembrane forms of HB-EGF induce DNA synthesis in human endometrial stromal cells. Furthermore, TNFalpha has a cooperative effect on HB-EGF, EGF, TGFalpha, and betacellulin-induced DNA synthesis in stromal cells, suggesting roles for the EGF family and TNFalpha in regeneration and maturation of human endometrium. Induction of DNA synthesis by HB-EGF and its modulation by TNFalpha in endometrial stromal cells are mediated by the EGF receptor and not the HB-EGF receptor ErbB4. Our data suggest key functions for HB-EGF, TNFalpha, and the EGF receptor in endometrial maturation, via autocrine/paracrine and juxtacrine pathways, in preparation for embryo implantation.  相似文献   

2.
The heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR) and the related receptor tyrosine kinase, ErbB4. HB-EGF-null mice (HB(del/del)) were generated to examine the role of HB-EGF in vivo. More than half of the HB(del/del) mice died in the first postnatal week. The survivors developed severe heart failure with grossly enlarged ventricular chambers. Echocardiographic examination showed that the ventricular chambers were dilated and that cardiac function was diminished. Moreover, HB(del/del) mice developed grossly enlarged cardiac valves. The cardiac valve and the ventricular chamber phenotypes resembled those displayed by mice lacking EGFR, a receptor for HB-EGF, and by mice conditionally lacking ErbB2, respectively. HB-EGF-ErbB interactions in the heart were examined in vivo by administering HB-EGF to WT mice. HB-EGF induced tyrosine phosphorylation of ErbB2 and ErbB4, and to a lesser degree, of EGFR in cardiac myocytes. In addition, constitutive tyrosine phosphorylation of both ErbB2 and ErbB4 was significantly reduced in HB(del/del) hearts. It was concluded that HB-EGF activation of receptor tyrosine kinases is essential for normal heart function.  相似文献   

3.
Mahtouk K  Jourdan M  De Vos J  Hertogh C  Fiol G  Jourdan E  Rossi JF  Klein B 《Blood》2004,103(5):1829-1837
We previously found that some myeloma cell lines express the heparin-binding epidermal growth factor-like growth factor (HB-EGF) gene. As the proteoglycan syndecan-1 is an HB-EGF coreceptor as well as a hallmark of plasma cell differentiation and a marker of myeloma cells, we studied the role of HB-EGF on myeloma cell growth. The HB-EGF gene was expressed by bone marrow mononuclear cells in 8 of 8 patients with myeloma, particularly by monocytes and stromal cells, but not by purified primary myeloma cells. Six of 9 myeloma cell lines and 9 of 9 purified primary myeloma cells expressed ErbB1 or ErbB4 genes coding for HB-EGF receptor. In the presence of a low interleukin-6 (IL-6) concentration, HB-EGF stimulated the proliferation of the 6 ErbB1+ or ErbB4+ cell lines, through the phosphatidylinositol 3-kinase/AKT (PI-3K/AKT) pathway. A pan-ErbB inhibitor blocked the myeloma cell growth factor activity and the signaling induced by HB-EGF. This inhibitor induced apoptosis of patients'myeloma cells cultured with their tumor environment. It also increased patients' myeloma cell apoptosis induced by an anti-IL-6 antibody or dexamethasone. The ErbB inhibitor had no effect on the interaction between multiple myeloma cells and stromal cells. It was not toxic for nonmyeloma cells present in patients' bone marrow cultures or for the growth of hematopoietic progenitors. Altogether, these data identify ErbB receptors as putative therapeutic targets in multiple myeloma.  相似文献   

4.
5.
IL-11 signaling is critical for decidualization of the endometrial stroma in early pregnancy in the mouse. In this study, we investigate the function of IL-11 signaling in cAMP-induced decidualization of human endometrial stromal cells. We show that treatment of endometrial stromal cells with 8-bromo-cAMP (8-Br-cAMP) results in an increase in the levels of secreted IL-11, whereas levels of cell surface IL-11 receptor alpha are similar with or without 8-Br-cAMP treatment. The production of IL-11 correlates with the production of molecular markers of decidualization, prolactin and IGF-binding protein-1. The expression of these markers is inhibited when IL-11 signaling is specifically blocked in decidualizing endometrial stromal cells by the IL-11 antagonist W147A. We demonstrate that 8-Br-cAMP-induced endometrial stromal cells derived from patients with primary infertility produce lower levels of prolactin, IGF-binding protein-1, and IL-11 than cells derived from fertile women. Our results suggest that IL-11 expression is critically important during decidualization in the human endometrium, and that aberrant regulation of endometrial IL-11 production may be associated with some types of infertility.  相似文献   

6.
TNF is a pleiotropic cytokine that activates both anti- and proapoptotic signaling pathways, with cell fate determined by the balance between these two pathways. Activation of ErbB family members, including EGF receptor (EGFR/ErbB1), promotes cell survival and regulates several signals that overlap with those stimulated by TNF. This study was undertaken to determine the effects of TNF on EGFR and ErbB2 activation and intestinal epithelial cell survival. Mice, young adult mouse colon epithelial cells, and EGFR knockout mouse colon epithelial cells were treated with TNF. Activation of EGFR, ErbB2, Akt, Src, and apoptosis were determined in vivo and in vitro. TNF stimulated EGFR phosphorylation in young adult mouse colon epithelial cells, and loss of EGFR expression or inhibition of kinase activity increased TNF-induced apoptosis, which was prevented in WT but not by kinase-inactive EGFR expression. Similarly, TNF injection stimulated apoptosis in EGFR-kinase-defective mice (EGFRwa2) compared with WT mice. TNF also activated ErbB2, and loss of ErbB2 expression increased TNF-induced apoptosis. Furthermore, Src-kinase activity and the expression of both EGFR and ErbB2 were required for TNF-induced cell survival. Akt was shown to be a downstream target of TNF-activated EGFR and ErbB2. These findings demonstrate that EGFR and ErbB2 are critical mediators of TNF-regulated antiapoptotic signals in intestinal epithelial cells. Given evidence for TNF signaling in the development of colitis-associated carcinoma, this observation has significant implications for understanding the role of EGFR in maintaining intestinal epithelial cell homeostasis during cytokine-mediated inflammatory responses.  相似文献   

7.
The decidualization of endometrial stromal cells in the secretory phase of the menstrual cycle is an essential prerequisite for the implantation of a blastocyst. This profound differentiation process is accompanied by sustained elevated intracellular cAMP concentrations in vivo. Primary cell cultures of endometrial stromal cells decidualize by treatment with cAMP-elevating agents in vitro. Our previous findings indicated that the cAMP-degrading activities of phosphodiesterases (PDE) and signaling of the peptide hormone relaxin are coupled in human endometrial stromal cells. In the present study we have chosen a pharmacological approach to test whether relaxin binding and PDE inhibition cooperate to induce decidualization. Measurement of PDE activity and relaxin-stimulated cAMP accumulation in the presence of diverse PDE inhibitors identified PDE4 and PDE8 as the principal PDE isoforms involved in human endometrial stromal cells. The PDE4 inhibitor rolipram was most effective in elevating intracellular cAMP concentrations and synergizing with relaxin to achieve maximal in vitro decidualization, as determined by measurement of the expression of the decidual marker genes for prolactin and IGF-binding protein-1 and measurement of prolactin secretion. Gene expression for PDE4D and PDE4C was significantly up-regulated during in vitro decidualization. Treatment of cell cultures with the protein kinase A inhibitor H89 revealed a minor role for protein kinase A-mediated positive feedback control of PDE4 activity in human endometrial stromal cells, consistent with sustained elevated cAMP essential for decidualization in vitro. These findings introduce the new idea of clinically applying the combination of a specific PDE4 inhibitor with an effector such as relaxin, thereby offering an alternative nonsteroidal luteal phase support for the endometrium to encourage endometrial development and implantation in subfertile women undergoing assisted reproductive technology procedures.  相似文献   

8.
Peptide growth factors have been proposed as mediators of smooth muscle-epithelial cell interactions in the human prostate; however, the identity of these molecules has not been established. In this study, we compared expression levels of messenger RNAs (mRNAs) encoding the epidermal growth factor (EGF) receptor-related receptor tyrosine kinases (ErbB1 through 4), the six EGF receptor ligands, EGF, transforming growth factor (TGF)-alpha, amphiregulin (ARG), HB-EGF, betacellulin, and epiregulin, and the related molecule heregulin-alpha, in a series of 10 prostate tissue specimens. Only EGF showed a disease-specific association, with increased mRNA levels in four of five PCa specimens in comparison to matched normal tissue from the same subject. In contrast, ARG and HB-EGF mRNAs showed a coordinate pattern of expression in 7/10 specimens that was distinct from all other growth factor or receptor genes examined and from mRNAs for prostate specific antigen, the androgen receptor and GAPDH, a house-keeping enzyme. Analysis of an additional series of benign prostatic hyperplasia and prostate cancer specimens from 60 individuals confirmed that ARG and HB-EGF mRNA levels varied in a highly coordinate manner (r = 0.93; P < 0.0001) but showed no association with disease. ARG was immunolocalized largely to interstitial smooth muscle cells (SMC), previously identified as the site of synthesis of HB-EGF in the prostate, while the cognate ARG and HB-EGF receptor, ErbB1, was localized exclusively to ductal epithelial cells and carcinoma cells. Although ARG was a relatively poor mitogen for Balb/c3T3 cells in comparison to HB-EGF, it was similar in potency to HB-EGF in stimulating human prostate epithelial cell growth, suggesting that prostate epithelia may be a physiologic target for ARG in vivo. Expression of both ARG and HB-EGF mRNAs was induced in cultured prostate SMC by fibroblast growth factor-2, a human prostate SMC mitogen linked to prostate disease. These findings indicate that ARG and HB-EGF are likely to be key mediators of directional signaling between SMC and epithelial cells in the human prostate and appear to be coordinately regulated.  相似文献   

9.
An adequate endometrial glucose metabolism, mediated by facilitative glucose transporter molecules (GLUT), is an essential part of endometrial differentiation and decidualization to provide a nutritional and receptive milieu. In human endometrium, only the GLUT1 and GLUT3 isoforms are expressed, whereas glucose transporters, involved in insulin-dependent glucose uptake (GLUT2, GLUT4, GLUT8), could not be detected. Messenger RNA expression, analyzed by RNase protection assay, of both isoforms increased in total endometrium throughout the secretory phase and in decidua. Analysis of mRNA expression in isolated epithelial cells, stromal cells, and CD45 positive leukocytes revealed that increase of GLUT1 expression was due to increasing stromal expression, whereas increase of GLUT3 was due to its expression in CD45-positive immune cells. In vitro, GLUT1 and GLUT3 were not directly regulated by 17beta-estradiol, progesterone, or IL-1beta, IL-6, and leukemia inhibitory factor, but GLUT1 mRNA increased progressively in stromal cells, decidualized in vitro. Inhibition of glucose transporters by cytochalasin B reduced stromal glucose uptake and stromal decidualization. In idiopathic infertile patients, GLUT1 expression in midsecretory endometrium was suppressed. The suppression was caused by reduced stromal expression. Our results suggest stromal GLUT to play a role in the regulation of endometrial function and be compromised in the preparation of the endometrium for the implanting embryo.  相似文献   

10.
The implantation of a blastocyst into a receptive uterus is associated with a series of events, namely the attachment reaction followed by decidualization of the stroma. Previous studies established that the gene encoding heparin-binding EGF-like growth factor (HB-EGF) is expressed in the luminal epithelium solely at the site of blastocyst apposition preceding the attachment reaction. We report here the expression during implantation of 21 genes encoding other signaling proteins, including those belonging to the Bone morphogenetic protein (BMP), fibroblast growth factor (FGF), WNT, and Hedgehog (HH) pathways. We find that the attachment reaction is associated with a localized stromal induction of genes encoding BMP-2, FGF-2, and WNT-4. Despite efforts by many investigators, a simple in vitro model of implantation is not yet available to study either the hierarchy of the events triggered in the uterus by the embryo or the function of individual signaling proteins. We have therefore approached these questions by introducing beads loaded with purified factors into the receptive uterus. We show that beads soaked in HB-EGF or insulin-like growth factor-1 (IGF-1), but not other proteins, induce many of the same discrete local responses elicited by the blastocyst, including increased localized vascular permeability, decidualization, and expression of Bmp2 at the sites of the beads. By contrast, the expression domains of Indian hedgehog (Ihh), patched, and noggin become restricted as decidualization proceeds. Significantly, beads containing BMP-2 do not themselves elicit an implantation response but affect the spacing of implantation sites induced by blastocysts cotransferred with the beads.  相似文献   

11.
Nuttall RK  Kennedy TG 《Endocrinology》2000,141(2):629-636
Numerous growth factors are involved in mediating proliferation and differentiation of endometrial stromal cells during decidualization. During this period, the extracellular matrix of the endometrium undergoes extensive remodeling. We tested the hypothesis that epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-beta regulate expression of matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), during decidualization. Stromal cells were isolated from uteri hormonally sensitized to undergo decidualization and were cultured in the absence or presence of a growth factor. Using substrate-gel electrophoresis with gelatin as the substrate, we detected activity for gelatinase A and B, and collagenase-3, and using casein as a substrate, we detected activity for stromelysin-1. Increasing concentrations of EGF and bFGF resulted in increased activity of gelatinase B, collagenase-3, and stromelysin-1. Northern blot analyses revealed that EGF and bFGF also increased messenger RNA levels for these MMPs. There was no effect of these growth factors on gelatinase or TIMP-1, -2, and -3, nor was there an effect of transforming growth factor-beta on any MMP or TIMP examined. These data demonstrate that EGF and bFGF increase levels of proteolytic enzymes produced by endometrial stromal cells undergoing decidualization in vitro while having no effect on their inhibitors.  相似文献   

12.
13.
Angiotensin II (Ang II)-mediated signals are transmitted via heparin binding epidermal growth factor (EGF)-like growth factor (HB-EGF) release followed by transactivation of EGF receptor (EGFR). Although Ang II and HB-EGF induce angiogenesis, their link to the angiopoietin (Ang)-Tie2 system remains undefined. We tested the effects of Ang II on Ang1, Ang2, or Tie2 expression in cardiac microvascular endothelial cells expressing the Ang II receptors AT(1) and AT(2). Ang II significantly induced Ang2 mRNA accumulations without affecting Ang1 or Tie2 expression, which was inhibited by protein kinase C inhibitors and by intracellular Ca(2+) chelating agents. Ang II transactivated EGFR via AT(1), and inhibition of EGFR abolished the induction of Ang2. Ang II caused processing of pro-HB-EGF in a metalloproteinase-dependent manner to stimulate maturation and release of HB-EGF. Neutralizing anti-HB-EGF antibody blocked EGFR phosphorylation by Ang II. Ang II also upregulated vascular endothelial growth factor (VEGF) expression in an HB-EGF/EGFR-dependent manner. AT(2) inhibited AT(1)-mediated Ang2 expression and phosphorylation of EGFR. In an in vivo corneal assay, AT(1) induced angiogenesis in an HB-EGF-dependent manner and enhanced the angiogenic activity of VEGF. Although neither Ang2 nor Ang1 alone induced angiogenesis, soluble Tie2-Fc that binds to angiopoietins attenuated AT(1)-mediated angiogenesis. These findings suggested that (1) Ang II induces Ang2 and VEGF expression without affecting Ang1 or Tie2 and (2) AT(1) stimulates processing of pro-HB-EGF by metalloproteinases, and the released HB-EGF transactivates EGFR to induce angiogenesis via the combined effect of Ang2 and VEGF, whereas AT(2) attenuates them by blocking EGFR phosphorylation. Thus, Ang II is involved in the VEGF-Ang-Tie2 system via HB-EGF-mediated EGFR transactivation, and this link should be considerable in pathological conditions in which collateral blood flow is required.  相似文献   

14.
Agonists of G protein-coupled receptors, such as thrombin, act in part by transactivating the epidermal growth factor (EGF) receptor (EGFR). Although at first a ligand-independent mechanism for EGFR transactivation was postulated, it has recently been shown that this transactivation by various G protein-coupled receptor agonists can involve heparin-binding EGF-like growth factor (HB-EGF). Because thrombin stimulation of vascular smooth muscle cell migration is blocked by heparin and because heparin can displace HB-EGF, we investigated the possibility that thrombin stimulation of smooth muscle cells (SMCs) depends on EGFR activation by HB-EGF. In rat SMCs, EGFR phosphorylation and extracellular signal-regulated kinase (ERK) activation in response to thrombin are inhibited not only by the EGFR inhibitor AG1478 and by EGFR blocking antibody but also by heparin and by neutralizing HB-EGF antibody. HB-EGF-dependent signaling induced by thrombin is inhibited by batimastat, which suggests a requirement for pro-HB-EGF shedding by a metalloproteinase. We further demonstrate that this novel pathway is required for the migration of rat and baboon SMCs in response to thrombin. We conclude from these data that the inhibitory effect of heparin on SMC migration induced by thrombin relies, at least in part, on a blockade of HB-EGF-mediated EGFR transactivation.  相似文献   

15.
The effects of hematopoietic cytokines on the expression of transforming growth factors (TGF beta) mRNA and the effect of TGF beta on cytokine and on a major extracellular matrix protein, collagen I, mRNA expression was studied in human marrow stromal cells. As with other cultured mesenchymal cells, stromal cells constitutively express TGF beta 1 but not TGF alpha mRNA. In simian virus 40 (SV40)-transformed stromal cells downregulation of TGF beta 1 expression was observed 2 hours after incubation with recombinant human (rh) tumor-necrosis factor alpha (TNF alpha) and 144 h after addition of rh granulocyte macrophage colony-stimulating factor (GM-CSF). Neither interleukin-1 (IL-1)beta nor IL-6 had an observable effect on TGF beta 1 mRNA expression. TGF beta upregulated collagen I mRNA expression. These data suggest that cytokines may influence TGF beta mRNA expression.  相似文献   

16.
Interleukin-1 (IL-1), a critical cytokine for the initiation of the immune response to infection or antigenic challenge, is known to also possess a variety of biological functions outside the immune system. We examined whether IL-1 could affect the decidualization of human endometrial stromal cells (ESC), a conspicuous part in the process of implantation, by assessing PRL production and morphological transformation in an in vitro system. Purified human ESC were cultured in the presence of progesterone (P) with or without the addition of IL-1. IL-1 markedly suppressed the induction of PRL production by P in a dose-dependent manner. The morphological decidualization of ESC in response to P was also inhibited by IL-1. This report demonstrates for the first time the possibility that IL-1 blocks decidualization, the functional differentiation of human endometrial stromal cells in response to ovarian steroids.  相似文献   

17.
Perivascular decidualized human endometrial stromal cells (HESCs) are ideally positioned to prevent peri-implantational hemorrhage during endovascular trophoblast invasion by expressing tissue factor (TF), the primary cellular mediator of hemostasis. Earlier in vivo and in vitro studies have demonstrated enhanced TF expression in estradiol (E2)-primed HESCs during progestin-induced decidualization. However, the absence of estrogen or progesterone response elements from the TF gene promoter suggests that paracrine factor(s) may mediate these effects. We now demonstrate that significant elevation of TF messenger RNA and protein levels in the cultured HESCs require incubation with both epidermal growth factor (EGF) and the progestin medroxyprogesterone acetate (MPA) added, with or without E2. By contrast, no effects were elicited by adding EGF with E2, or by the separate additions of EGF, MPA, or E2 plus MPA. Our finding, that transforming growth factor-alpha, but not transforming growth factor-beta or interleukin 1-beta mimics these EGF effects, indicates that progestin-enhanced TF expression in cultured HESCs requires activation of the EGF receptor (EGFR). Western blot analysis indicated that MPA increased EGFR levels 2-to 3-fold in cultured HESCs. The current results suggest that the progestin up-regulation of TF levels in decidualized HESCs is mediated by enhanced EGFR expression.  相似文献   

18.
Maruyama T  Yoshimura Y  Sabe H 《Endocrinology》1999,140(12):5982-5990
Human endometrial stromal cells undergo in vitro decidualization when treated with progesterone and estrogen. Using this model, we previously reported specific changes in the c-Src kinase activity and tyrosine phosphorylation of several proteins during in vitro decidualization. Focal adhesion kinase (FAK) and paxillin are known to form a complex with c-Src at the focal contacts and to participate in the integrin-mediated signal transduction as c-Src substrates. We here examined the tyrosine phosphorylation and subcellular localization of the focal adhesion proteins in stromal cells isolated from human endometrium. We found, however, that the total levels of FAK and paxillin tyrosine phosphorylation were not markedly changed during decidualization or after steroid withdrawal. In our culture system numerous multicellular nodules were developed in cultures of decidualized stromal cells, within whose nodules the focal contacts were found to disappear. Moreover, disruption of the focal contacts was accompanied by disorganization of the actin-based cytoskeleton. These findings suggest that tyrosine phosphorylation of the endometrial paxillin and FAK is not tightly regulated by the kinase activity of c-Src during in vitro decidualization. The escape from regulation by c-Src may be in part due to the dissociation of the focal adhesion proteins/c-Src complex caused by the breakdown of the focal adhesion plaques as well as the loss of the actin-based cytoskeletal architecture.  相似文献   

19.
Decidualization of the endometrial stromal compartment is critical for embryo implantation. Initiation of this differentiation process requires elevated intracellular cAMP levels. We now report a massive and sustained up-regulation of p53 tumor suppressor protein during cAMP-induced decidualization of cultured endometrial stromal cells. Nuclear accumulation of p53 was not accompanied by increased mRNA expression, suggesting stabilization of the protein as the underlying mechanism. Proteasomal degradation of p53 is known to be mediated by nuclear Mdm2. Nuclear translocation of Mdm2, in turn, is dependent on phosphorylation by protein kinase B/Akt (PKB/Akt). In cAMP-treated decidualized cells, p53 accumulation was associated with decreased nuclear Mdm2 and cytoplasmic PKB/Akt levels. Conversely, withdrawal of the decidualization stimulus resulted in morphological and biochemical dedifferentiation, disappearance of p53, but increased abundance of PKB/Akt. Furthermore, Western blot and immunohistochemical analyses of endometrial biopsies confirmed that p53 is expressed in vivo in the stromal compartment during the late secretory phase of the cycle. The observation that p53 protein expression is closely associated with decidual transformation indicates a novel role for this tumor suppressor in regulating human endometrial function.  相似文献   

20.
Endothelin-1 (ET-1) in human endometrium has been proposed to have a potential paracrine role, for its receptors are also present within this tissue. In addition, the expression of ET-1 varies during the menstrual cycle, and therefore, ET-1 may be involved in the cyclic change of the human endometrium, such as proliferation and decidualization. However, neither the inactivation of ET-1 in the endometrium nor the paracrine effect of ET-1 on endometrial cells has been determined. We investigated the production of ET-1 and the presence of neutral endopeptidase (NEP), which cleaves and inactivates ET-1, in primary cultured human endometrial cells. We found primary cultured endometrial epithelial cells, not stromal cells, to be the major source of ET-1. Western blot analysis and RT-PCR demonstrated that NEP was predominantly expressed by endometrial stromal cells. We also demonstrated that ET-1 stimulated the phosphorylation of Akt and DNA synthesis in endometrial stromal cells via the ET(A) receptor and phospahtidylinositol-3 kinase signaling pathways. The effect of ET-1 was regulated by NEP expressed by stromal cells. We also found that conditioned medium containing ET-1 from endometrial epithelial cell culture stimulated phosphorylation of Akt via the ET(A) receptor. In conclusion, ET-1 has a paracrine effect of Akt phosphorylation and cell proliferation on endometrial stromal cells, which occurs via the ET(A) receptor and phospahtidylinositol-3 kinase signaling pathways, and is regulated by cell-surface NEP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号