首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim of the study

Lilium lancifolium is commonly used to treat bronchitis, pneumonia, etc. In this study, we investigated the anti-inflammatory effects of methanol extracts of the root of Lilium lancifolium (LL extracts) in LPS-stimulated Raw264.7 cells.

Material and methods

Levels of NO, PGE2 and pro-inflammatory cytokines (IL-6 and TNF-α) in the supernatant fraction were determined using sandwich ELISA. Expression of COX-2 and iNOS, phosphorylation of MAPK subgroups (ERK and JNK), and NF-κB activation in extracts were detected via Western blot and immunocytochemistry assays.

Results

The LL extract significantly inhibited NO, PGE2, IL-6 and TNF-α production in LPS-stimulated cells, and suppressed iNOS and COX-2 expression. A mechanism-based study showed that phosphorylation of ERK1/2 and JNK and translocation of the NF-κB p65 subunit into nuclei were inhibited by the LL extract. Furthermore, interleukin-4 and interleukin-13 production in Con A-induced splenocytes was suppressed.

Conclusion

These results indicate that anti-inflammatory effects of methanol extracts from Lilium lancifolium are due to downregulation of iNOS and COX-2 via suppression of NF-κB activation and nuclear translocation as well as blocking of ERK and JNK signaling in LPS-stimulated Raw264.7 cells.  相似文献   

2.

Ethnopharmacological relevance

Clematis mandshurica Ruprecht root is widely used in Asia as an analgesic and anti-inflammatory agent. This research investigated the anti-inflammatory effects of Clematis mandshurica Ruprecht root extract (CRE) using RAW 264.7 macrophage cells and carrageenan- (CA-) induced rat paw edema.

Materials and methods

Production of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, nitric oxide (NO) and prostaglandin E2 (PGE2) in the culture supernatant, mRNA expression of TNF-α, IL-1β, IL-6, iNOS and COX-2, protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in the extract were assayed. In addition, the effect of CRE on acute inflammation in vivo was observed using CA-induced rat hind paw edema assay. The changes on the histopathology and histomorphometry of hind paw skins—dorsum and ventrum pedis were observed using CA-treated rats.

Results

Treatment with CRE (0.25, 0.5, and 1 mg/mL) resulted in inhibited levels of protein expression of lipopolysaccharide- (LPS-) induced iNOS, COX-2, NF-κB, and MAPKs (ERK, JNK, and p38) as well as production of TNF-α, IL-1β, IL-6, NO, and PGE2 induced by LPS. Consistent with these results, CRE reduced the LPS-induced expressions of these cytokines, iNOS and COX-2 at the mRNA levels in a dose-dependent manner. In particular, results of the CA-induced rat hind paw edema assay showed an anti-edema effect of CRE. In addition, treatment with CRE resulted in dose-dependent inhibition of CA-induced increases of skin thickness, mast cell degranulation, and infiltrated inflammatory, TNF-α, IL-1β, iNOS, and COX-2-positive cells in both dorsum and ventrum pedis skin, respectively.

Conclusions

These results demonstrate that CRE exhibits anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the pathways of NF-κB and MAPKs in LPS-induced macrophage cells. In addition, results of the CA-induced rat hind paw edema assay show an anti-edema effect of CRE. Our findings also support the traditional use of CRE in the inflammatory symptoms of rheumatic arthritis and acute icteric hepatitis. Thus, CRE may have therapeutic potential for a variety of inflammation-mediated diseases and may be developed into potent anti-inflammatory drugs.  相似文献   

3.

Aims of study

Although the flowers of Chrysanthemum indicum Linné (Asteraceae) have long been used in traditional Korean and Chinese medicine to treat inflammatory diseases, the underlying mechanism(s) by which these effects are induced remains to be defined. We investigated the effects of a 70% ethanolic extract of C. indicum (CIE) on the activities of cellular signaling molecules that mediate inflammatory responses.

Materials and methods

Production of NO, PGE2, TNF-α, and IL-1β by ELISA, mRNA and protein expression of iNOS and COX-2, phosphorylation of MAPKs, and activation of NF-κB by RT-PCR and Western blotting were examined in LPS-induced RAW 264.7 macrophages.

Results

The CIE strongly inhibited NO, PGE2, TNF-α, and IL-1β production, and also significantly inhibited mRNA and protein expression of iNOS and COX-2 in LPS-induced RAW 264.7 macrophages, in a dose-dependent manner. Furthermore, the CIE clearly suppressed nuclear translocation of NF-κB p65 subunits, which correlated with an inhibitory effect on IκBα phosphorylation. The CIE also attenuated the activation of ERK1/2 and JNK in a dose-dependent manner.

Conclusion

Our results suggest that the anti-inflammatory properties of CIE might result from the inhibition of inflammatory mediators, such as NO, PGE2, TNF-α, and IL-1β, via suppression of MAPKs and NF-κB-dependent pathways.  相似文献   

4.
5.

Aim of the study

The root of Panax notoginseng (PN) is commonly used to treat chronic liver disease with its therapeutic abilities to stop haemorrhage in the circulation, while the PN flower (PN-F) is largely unknown in the biological activities on inflammation and mechanisms of its actions. In this study, the pharmacologic effects of PN-F methanol extract on inflammation were investigated to address potential therapeutic or toxic effects in LPS-stimulated mouse macrophage cells, RAW264.7 cells.

Materials and methods

Production of NO, PGE2 and pro-inflammatory cytokines (TNF-α and IL-1β) in supernatant, the expression of iNOS, COX-2 and cytokines, the phosphorylation of MAPK moleduces (ERK1/2, JNK and p38 MAPK), and the activation of NF-κB in PN-F extract were assayed in LPS-stimulated RAW264.7 cells.

Results

PN-F extract significantly inhibited the productions of NO, PGE2, TNF-α and IL-1β on the LPS-stimulated RAW264.7 cells. In addition, PN-F extract suppressed the mRNA and protein expressions of iNOS, COX-2, TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. The molecular mechanism of PN-F extract-mediated attenuation in RAW264.7 cells has close a relationship to suppressing the phosphorylation of MAPK molecules such as ERK1/2, JNK and p38 MAPK, and the translocation of NF-κB p65 subunit into nuclear.

Conclusion

These results indicate that PN-F extract inhibits LPS-induced inflammatory response via the blocking of NF-κB signaling pathway in macrophages, and demonstrated that PN-F extract possesses anti-inflammatory properties in vitro.  相似文献   

6.
7.
8.
9.
10.

Aim of the study

This paper aimed to elucidate the anti-inflammatory effects of EtOAc fraction prepared from Melilotus suaveolens Ledeb ethanol extract with a cellular model of LPS-stimulated RAW 264.7 cell.

Materials and methods

Some key pro-inflammatory cytokines and mediators including IL-1β, IL-6, NO, iNOS, COX-2 and TNF-α, two important anti-inflammatory cytokines and mediators IL-10 and HO-1, I-κB and NF-κB were studied by sandwich ELISA, real-time PCR, western blot analysis and immunocytochemistry. At last a HPLC fingerprint was taken to evaluate the fraction.

Results

The EtOAc fraction could significantly inhibit the production of IL-1β, IL-6, NO, TNF-α, COX-2 in LPS-stimulated cell than that of single LPS-stimulated cell (p < 0.01 or p < 0.05), and the extract could increase the production of IL-10 and HO-1 than that of single LPS intervention cell (p < 0.01 or p < 0.05). Meanwhile, the extract also could inhibit the production of NF-κB compared to single LPS-stimulated cell. All the results showed that the extract had a good anti-inflammatory effect on LPS-stimulated RAW264.7 cell.

Conclusions

Taken together, the anti-inflammatory actions of M. suaveolens Ledeb EtOAc fraction might be due to the down-regulation of IL-1β, IL-6, NO, TNF-α and COX-2 via the suppression of NF-κB activation, and another pathway was up regulating the production of IL-10 and HO-1. Meanwhile, the EtOAc fraction might be further studied to isolate the active anti-inflammatory ingredients besides coumarin.  相似文献   

11.

Ethnopharmacological relevance

Rhizoma Polygonati is originated from the dried rhizomes of Polygonatum sibircum Red. It has long been used in traditional Chinese medicine for the treatment of inflammatory disorders.

Aim of the study

The present study aims to investigate the anti-inflammatory effect of aqueous extract of Rhizoma Polygonati (ERP) in a mouse model of inflammation induced by 12-O-tetradecanoylphorbol-acetate (TPA).

Materials and methods

The anti-inflammatory effect was evaluated by measuring the ear thickness and activity of myeloperoxidase (MPO). The anti-inflammatory mechanism was explored by determining the protein and mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6.

Results

The results showed that ERP significantly decreased the ear thickness and MPO activity in mouse model of inflammation induced by TPA. In addition, ERP also remarkably inhibited the protein and mRNA levels of iNOS, COX-2, TNF-α, IL-1β, and IL-6.

Conclusions

These results indicate that ERP has potential anti-inflammatory effect on TPA-induced inflammatory in mice, and the anti-inflammatory effect may be mediated, at least in part, by inhibiting the mRNA expression of a panel of inflammatory mediators including iNOS, COX-2, TNF-α, IL-1β, and IL-6.  相似文献   

12.

Ethnopharmacological relevance

Arctigenin, a bioactive constituent from dried seeds of Arctium lappa L. (Compositae) which has been widely used as a Traditional Chinese Medicine for dispelling wind and heat included in Chinese Pharmacophere, was found to exhibit anti-inflammatory activities but its molecular mechanism remains unknown yet.

Aim of the study

To investigate the anti-inflammatory mechanism of arctigenin.

Materials and methods

Cultured macrophage RAW 264.7 cells and THP-1 cells were used for the experiments. Griess assay was used to evaluate the inhibitory effect of arctigenin on the overproduction of nitric oxide (NO). ELISA was used to determine the level of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The inhibitory effect on the enzymatic activity of cyclooxygenase-2 (COX-2) was tested by colorimetric method. Western blot was used to detect the expression of inducible nitric oxide synthase (iNOS) and COX-2.

Results

Arctigenin suppressed lipopolysaccharide (LPS)-stimulated NO production and pro-inflammatory cytokines secretion, including TNF-α and IL-6 in a dose-dependent manner. Arctigenin also strongly inhibited the expression of iNOS and iNOS enzymatic activity, whereas the expression of COX-2 and COX-2 enzymatic activity were not affected by arctigenin.

Conclusions

These results indicated that potent inhibition on NO, TNF-α and IL-6, but not COX-2 expression and COX-2 activity, might constitute the anti-inflammatory mechanism of arctigenin. Arctigenin suppressed the overproduction of NO through down-regulation of iNOS expression and iNOS enzymatic activity in LPS-stimulated macrophage.  相似文献   

13.
14.
15.

Ethnopharmacological relevance

Anacardium occidentale is used in traditional African medicine for the treatment of arthritis, fever, aches, pains, and inflammation of the extremities.

Aim of the study

In this study, we investigated the molecular mechanisms responsible for anti-inflammatory effects of a stem bark extract of A. occidentale (ANE) in LPS-stimulated microglia.

Materials and methods

Nitric oxide (NO), prostaglandin E2 and cytokine (TNFα and IL-6) production were evaluated in supernatants from LPS-stimulated BV-2 cells. Cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and microsomal prostaglandin E2 synthase (mPGES-1) protein expressions in rat primary microglia were measured using western blot. The effects of ANE on NF-κB activation and nuclear translocation were evaluated in the luciferase reporter gene assay and ELISA, while ability of ANE to influence IκB phosphorylation was determined using ELISA specific for phospho-IκB. The involvement of MAPK phosphorylation in the anti-inflammatory actions of ANE was evaluated using specific ELISA for phospho-p38, phospho-p42/44 and phospho-JNK. The MTT assay was used to determine the effect of ANE on BV-2 microglia viability.

Results

ANE (25–100 μg/ml) produced significant (p<0.05) reduction in the production of NO, PGE2, TNFα and IL-6 in BV-2 microglia stimulated with LPS for 24 h. Pre-treatment with ANE caused a significant (p<0.05) inhibition of COX-2, iNOS and mPGES-1 protein expressions in the rat primary microglia. Further experiments showed that ANE inhibited COX-2 and iNOS protein expression via IκB-mediated nuclear translocation and transactivation of NF-κB. Our studies also revealed that ANE produced significant (p<0.05) and dose-dependent inhibition of p38, p42/44 and JNK MAPK phosphorylation in LPS-activated BV-2 microglia.

Conclusions

We conclude that ANE has an anti-inflammatory property related to inhibition of inflammation-associated cytokine production as well as iNOS and COX-2 gene expression by blocking NF-κB and MAPK pathways in the microglia. It is also suggested that mPGES-1 inhibition contributes to the effect of ANE on PGE2 production in the microglia.  相似文献   

16.

Ethnopharmacological relevance

The roots of Sophora flavescens have long been used in Chinese medicine for the treatment of fever, inflammatory disorders, ulcers and skin burns. Sophora flavescens contains flavonoids and alkaloids.

Aim of the study

This study was conducted to develop a plant-based anti-inflammatory agent focused on chronic inflammatory disorders. To accomplish this, the alkaloid-free prenylated flavonoid-enriched fraction (PFS) of rhizomes of Sophora flavescens was prepared and its in vitro and in vivo anti-inflammatory activities were then evaluated for the first time.

Materials and methods

The inhibitory activity of PFS on PGE2, NO, IL-6 and TNF-α production of lipopolysaccharide (LPS)-treated RAW 264.7 cells was measured. Additionally, adjuvant-induced arthritis in rats was used as an animal model of chronic inflammation to establish the in vivo anti-inflammatory effects of PFS.

Result

PFS inhibited cyclooxygenase-2 (COX-2)-catalyzed PGE2 and inducible nitric oxide synthase (iNOS)-catalyzed NO production by lipopolysaccharide (LPS)-treated RAW 264.7 cells at 10–50 μg/ml, and these effects primarily occurred via COX-2 inhibition and iNOS down-regulation, respectively. PFS also inhibited IL-6 and TNF-α production. When tested against adjuvant-induced arthritis in rats (chronic inflammation), PFS strongly inhibited arthritic inflammation when administered orally at doses of 10–100 mg/kg/day. In addition, PFS administered orally potently inhibited acetic acid-induced writhing in mice.

Conclusions

Our results suggest that PFS inhibits chronic inflammatory response and the inhibition of proinflammatory molecules such as COX-2, iNOS and IL-6 may contribute, at least in part, to the anti-inflammatory activity in vivo. Overall, these results indicate that PFS from Sophora flavescens may have the potential for treatment of chronic inflammatory disorders such as rheumatoid arthritis.  相似文献   

17.
18.

Aims of the study

We recently reported the potential antioxidant and anti-inflammatory activities of umbelliferone 6-carboxylic acid (UMC) isolated from the whole plants of Angelica decursiva. In this study, we elucidated the anti-inflammatory mechanisms of UMC in vitro and in vivo.

Methods

The inhibitory effects of UMC on the production of nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α), the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the activation of nuclear factor kappa B (NF-κB) were evaluated using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The reactive oxygen species (ROS) generation inhibitory activity of UMC was evaluated using t-butyl hydroperoxide (t-BHP)-induced RAW 264.7 cells. Furthermore, the in vivo anti-inflammatory activity of UMC was evaluated using carrageenan induced mouse paw edema model.

Results

UMC dose-dependently inhibited NO and PGE2 production by down-regulating iNOS and COX-2 protein expression in LPS-stimulated RAW 264.7 macrophages. UMC also suppressed the production of the proinflammatory cytokine TNF-α in LPS stimulated RAW 264.7 cells in a concentration dependent manner. In addition, UMC dose-dependently prevented LPS-induced nuclear translocation of NF-κB in RAW 264.7 macrophages. Furthermore, UMC exhibited the inhibitory activity against t-BHP-induced ROS generation in RAW 264.7 cells with an IC50 value of 705.1 μg/ml. Moreover, UMC inhibited λ-carrageenan induced mouse paw edema by 70.40 and 60.20% at doses of 50 and 25 mg/kg body weight, respectively.

Conclusion

The combined results of this study indicate that UMC is an important anti-inflammatory constituent of A. decursiva and its anti-inflammatory effect was due to its ability to inhibit the production of inflammatory mediators via inhibition of NF-κB activation pathway.  相似文献   

19.

Ethnopharmacological relevance

Uncaria guianensis (Aublet) Gmell (Rubiaceae) is a medicinal plant from the jungles of South and Central America, used to treat cancer, arthritis, diabetes, and inflammation. Evaluate the anti-inflammatory and anti-tumor effects of Uncaria guianensis preparations.

Materials and methods

Bio-guided fractionation of a hydroethanolic extract of Uncaria guianensis was performed, evaluating the fractions and subfractions for their effect on inflammatory mediators, tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and prostaglandin E2 (PGE2) by ELISA and nitric oxide (NO) by the Griess reaction in cultured supernatant from RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). The expression of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS) and inhibitor of κB (IκB) were investigated in RAW 264.7 macrophages by flow cytometry. The activity of NF-κB in HeLa cells transfected with a luciferase reporter system was determined. The effect of Uncaria guianensis on the inflammatory response in vivo was assessed in BALB/c mice stimulated with LPS, on rat paw oedema induced by carrageenan, and on tumour growth and lung metastasis in BALB/c mice inoculated with 4T1 mammary tumour cells. Immune cell infiltrates and inflammatory mediators were evaluated in the tumour by immunohistochemistry.

Results

Sub-fraction Ug AIV inhibited, to varying degrees, NO, TNF-α, IL-6 and PGE2 production by macrophages in vitro (30 μg/ml) and in the serum of LPS-challenged mice (5 mg/kg). Macrophage expression of Cox-2 was inhibited (35%), IκB degradation was completely inhibited and NF-κB activation was inhibited (70%) by Ug AIV at 30 μg/ml. Ug AIV decreased paw oedema by 86% (5 mg/kg) and serum NO and TNF-α by 45% and 65% respectively. Ug AIV reduced 4T1 mammary tumour growth by 91% on day 33 post-inoculation as well as the levels of serum NO, IL-6 and TNF-α in the same animals. Ug AIV decreased the number of tumour-infiltrating T lymphocytes, macrophages and neutrophils as well as the number of cells positive for COX-2, iNOS, IL-6, TNF-α and p65.

Conclusions

As Ug AIV was not cytotoxic for tumour cells or macrophages, its anti-tumour effect may be due to a reduction in pro-tumoural inflammatory processes in the tumour microenvironment, possibly mediated through NF-κB.  相似文献   

20.

Ethnopharmacological relevance

Wu Ling Shen, a folklore name for Xylaria nigripes (XN), is a high value medicinal fungus used in traditional Chinese medicine.

Aim of study

The present study aimed to examine the immunomodulatory properties of aqueous (XN-H) and ethanol (XN-E) XN extracts in lipopolysaccharide (LPS)-induced peritoneal macrophage cells of Balb/c mice.

Materials and methods

After treating the macrophage cells with LPS (1 μg/ml) and different XN extracts, the immunomodulatory properties were determined by the responses of inflammatory mediators, namely nitrite oxide (NO), prostaglandin E2 (PGE2) and cytokine (IL-1β, IL-6, TNF-α and IFN-γ) production, iNOS, COX-2 and IκB-α expression, and NF-κB activation.

Results

Results showed that treatment of macrophages with 5-30 μg/ml of XN-H or XN-E plus 1 μg/ml LPS exhibited no cytotoxic effect on cell viability. At these concentrations, although both XN-H and XN-E showed a dose-dependent inhibitory effect on NO, PGE2, IL-1β, IL-6, TNF-α and IFN-γ production in LPS-stimulated macrophages, a greater potency was noted in the XN-H treated group. RT-PCR assay also showed that XN-H possessed a greater inhibition than XN-E on iNOS and COX-2 RNA expression. Furthermore, XN-H also showed a significant stronger suppression than XN-E on the LPS-induced IκB-α phosphorylation and NF-κB activation. XN-E showed a higher total flavonoid and phenol contents but a lower β-glucan content than XN-H.

Conclusion

Taken together, these results conclude that XN-H possesses a stronger anti-inflammatory activity than XN-E, and its mechanism of action could be mediated by inhibiting iNOS and COX-2 expression via the NF-κB signaling pathway, and these activities could be contributed by the β-glucan content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号