首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developments in telepathology robotic systems have evolved the concept of a 'virtual microscope' handling 'digital slides'. Slide digitization is a method of archiving salient histological features in numerical (digital) form. The value and potential of this have begun to be recognized by several international centres. Automated complete slide digitization has application at all levels of clinical practice and will benefit undergraduate, postgraduate, and continuing education. Unfortunately, as the volume of potential data on a histological slide represents a significant problem in terms of digitization, storage, and subsequent manipulation, the reality of virtual microscopy to date has comprised limited views at inadequate resolution. This paper outlines a system refined in the authors' laboratory, which employs a combination of enhanced hardware, image capture, and processing techniques designed for telepathology. The system is able to scan an entire slide at high magnification and create a library of such slides that may exist on an internet server or be distributed on removable media (such as CD-ROM or DVD). A digital slide allows image data manipulation at a level not possible with conventional light microscopy. Combinations of multiple users, multiple magnifications, annotations, and addition of ancillary textual and visual data are now possible. This demonstrates that with increased sophistication, the applications of telepathology technology need not be confined to second opinion, but can be extended on a wider front.  相似文献   

2.
Colour is central to the practice of pathology because of the use of coloured histochemical and immunohistochemical stains to visualize tissue features. Our reliance upon histochemical stains and light microscopy has evolved alongside a wide variation in slide colour, with little investigation into the implications of colour variation. However, the introduction of the digital microscope and whole‐slide imaging has highlighted the need for further understanding and control of colour. This is because the digitization process itself introduces further colour variation which may affect diagnosis, and image analysis algorithms often use colour or intensity measures to detect or measure tissue features. The US Food and Drug Administration have released recent guidance stating the need to develop a method of controlling colour reproduction throughout the digitization process in whole‐slide imaging for primary diagnostic use. This comprehensive review introduces applied basic colour physics and colour interpretation by the human visual system, before discussing the importance of colour in pathology. The process of colour calibration and its application to pathology are also included, as well as a summary of the current guidelines and recommendations regarding colour in digital pathology.  相似文献   

3.
《Diagnostic Histopathology》2021,27(11):425-430
Whole slide imaging (WSI) has been increasingly adopted for digital evaluation of surgical pathology specimens. Unlike histological slides, cytological preparations frequently display a heterogeneous distribution of cells throughout slides in different focal planes sometimes admixed with obscuring material, therefore requiring multiple scanning planes which significantly lengthens image acquisition and evaluation times. Although examination of digital images can be more advantageous than conventional glass slides, the challenges of focusing, scanning and screening cytological specimens and the associated increase in scan times and data storage needs have limited the routine application of WSI in cytopathology practice. Emerging digital systems designed to overcome image acquisition obstacles coupled with artificial intelligence algorithms augmenting screening of digital cytology slides offer innovative solutions to address these limitations. The aim of this review is to critically address the potential benefits and pitfalls of employing WSI in cytopathology practice and to introduce promising state-of-the-art solutions on the horizon.  相似文献   

4.
By imaging large numbers of slides automatically at high resolution, modem automated whole slide imaging (WSI) systems have the potential to become useful tools in pathology practice. This article describes a pilot validation study for use of automated high-speed WSI systems for surgical pathology quality assurance (QA). This was a retrospective comparative study in which 24 full genitourinary cases (including 47 surgical parts and 391 slides) were independently reviewed with traditional microscopy and whole slide digital images. Approximately half the cases had neoplasia in the diagnostic line. At the end of the study, diagnostic discrepancies were evaluated by a pathology consensus committee. The study pathologists felt that the traditional and WSI methods were comparable for case review. They reported no difference in perceived case complexity or diagnostic confidence between the methods. There were 4 clinically insignificant discrepancies with the signed-out cases: 2 from glass slide and 2 with WSI review. Of the 2 discrepancies reported by the WSI method, the committee agreed with the reviewer once and the original report once. At the end of the study, the participants agreed that automated WSI is a viable potential modality for surgical pathology QA, especially in multifacility health systems that would like to establish interfacility QA. The participants felt that major issues limiting the implementation of WSI-based QA did not involve image acquisition or quality but rather image management issues such as the pathologist's interface, the hospital's network, and integration with the laboratory information system.  相似文献   

5.
This paper describes the design and fabrication of a novel array microscope for the first ultrarapid virtual slide processor (DMetrix DX-40 digital slide scanner). The array microscope optics consists of a stack of three 80-element 10 x 8-lenslet arrays, constituting a "lenslet array ensemble." The lenslet array ensemble is positioned over a glass slide. Uniquely shaped lenses in each of the lenslet arrays, arranged perpendicular to the glass slide constitute a single "miniaturized microscope." A high-pixel-density image sensor is attached to the top of the lenslet array ensemble. In operation, the lenslet array ensemble is transported by a motorized mechanism relative to the long axis of a glass slide. Each of the 80 miniaturized microscopes has a lateral field of view of 250 microns. The microscopes of each row of the array are offset from the microscopes in other rows. Scanning a glass slide with the array microscope produces seamless two-dimensional image data of the entire slide, that is, a virtual slide. The optical system has a numerical aperture of N.A.= 0.65, scans slides at a rate of 3 mm per second, and accrues up to 3,000 images per second from each of the 80 miniaturized microscopes. In the ultrarapid virtual slide processing cycle, the time for image acquisition takes 58 seconds for a 2.25 cm2 tissue section. An automatic slide loader enables the scanner to process up to 40 slides per hour without operator intervention. Slide scanning and image processing are done concurrently so that post-scan processing is eliminated. A virtual slide can be viewed over the Internet immediately after the scanning is complete. A validation study compared the diagnostic accuracy of pathologist case readers using array microscopy (with images viewed as virtual slides) and conventional light microscopy. Four senior pathologists diagnosed 30 breast surgical pathology cases each using both imaging modes, but on separate occasions. Of 120 case reads by array microscopy, there were 3 incorrect diagnoses, all of which were made on difficult cases with equivocal diagnoses by light microscopy. There was a strong correlation between array microscopy vs. "truth" diagnoses based on surgical pathology reports. The kappa statistic for the array microscopy vs. truth was 0.96, which is highly significant (z=10.33, p <0.001). There was no statistically significant difference between rates of agreement with truth between array microscopy and light microscopy (z=0.134, p >0.05). Array microscopy and light microscopy did not differ significantly with respect to the number/percent of correct decisions rendered (t=0.552, p=0.6376) or equivocal decisions rendered (t=2.449, p=0.0917). Pathologists rated 95.8% of array microscopy virtual slide images as good or excellent. None were rated as poor. The mean viewing time for a DMetrix virtual slide was 1.16 minutes. The DMetrix virtual slide processor has been found to reduce the virtual slide processing cycle more than 10 fold, as compared with other virtual slide systems reported to date. The virtual slide images are of high quality and suitable for diagnostic pathology, second opinions, expert opinions, clinical trials, education, and research.  相似文献   

6.
Modern imaging technology, now utilized in most biomedical research areas (bioimaging), enables the detection and visualization of biological processes at various levels of the molecule, organelle, cell, tissue, organ and/or whole body. In toxicologic pathology, the impact of modern imaging technology is becoming apparent from digital histopathology to novel molecular imaging for in vivo studies. This overview summarizes recent progresses in digital microscopy imaging and newly developed digital slide techniques. Applications of virtual microscopy imaging are discussed and compared to traditional optical microscopy reading. New generation digital pathology approaches, including automatic slide inspection, digital slide databases and image management are briefly introduced. Commonly used in vivo preclinical imaging technologies are also summarized. While most of these new imaging techniques are still undergoing rapid development, it is important that toxicologic pathologists embrace and utilize these technologies as advances occur.  相似文献   

7.
Digital pathology systems offer pathologists an alternate, emerging mechanism to manage and interpret information. They offer increasingly fast and scalable hardware platforms for slide scanning and software that facilitates remote viewing, slide conferencing, archiving, and image analysis. Deployed initially and validated largely within the research and biopharmaceutical industries, WSI is increasingly being implemented for direct patient care. Improvements in image quality, scan times, and imageviewing browsers will hopefully allow pathologists to more seamlessly convert to digital pathology, much like our radiology colleagues have done before us. However, WSI creates both opportunities and challenges. Although niche applications of WSI technology for clinical, educational, and research purposes are clearly successful, it is evident that several areas still require attention and careful consideration before more widespread clinical adoption of WSI takes place. These include regulatory issues, development of standards of practice and validation guidelines, workflow modifications, as well as defining situations where WSI technology will really improve practice in a cost-effective way. Current progress on these and other issues, along with improving technology, will no doubt pave the way for increased adoption over the next decade, allowing the pathology community as a whole to harness the true potential of WSI for patient care. The digital decade will likely redefine how pathology is practiced and the role of the pathologist.  相似文献   

8.
Telepathology is the process of diagnostic histopathology performed on digital images viewed on a display screen rather than by conventional glass slide light microscopy. The technology of telepathology has radically improved over the past 5 years so that it is no longer the limiting factor in the diagnostic process. This review looks at the resources needed for dynamic and static telepathology, including image quality, computers and software interfaces, means of transmission and human resources. It critically analyses 32 published trials of telepathology, including some large prospective studies, in all areas of diagnostic histopathology including intraoperative frozen sections, routine and referral cases. New developments, including internet solutions and virtual microscopy, are described and there is analysis of the economics of telepathology within health care systems. The review concludes that all the necessary technology for telepathology is available, there is strong published evidence for a diagnostic accuracy comparable with glass slide diagnosis, in many contexts there is a clear-cut economic argument in favour of telepathology, and that the technique should now be integrated into mainstream diagnostic histopathology.  相似文献   

9.
During the last decade, whole slide images have been used in many areas of pathology such as teaching, research, digital archiving, teleconsultation, and quality assurance testing. However, whole slide images have as yet not much been used for up-front diagnostics because of the lack of validation studies. The aim of this study was, therefore, to test the feasibility of whole slide images for diagnosis of gastrointestinal tract specimens, one of the largest areas of diagnostic pathology. One hundred gastrointestinal tract biopsies and resections that had been diagnosed using light microscopy 1 year before were rediagnosed on whole slide images scanned at ×20 magnification by 5 pathologists (all reassessing their own cases), having the original clinical information available but blinded to their original light microscopy diagnoses. The original light microscopy and whole slide image-based diagnoses were compared and classified as concordant, slightly discordant (without clinical consequences), and discordant. The diagnoses based on light microscopy and the whole slide image-based rediagnoses were concordant in 95% of the cases. Light microscopy and whole slide image diagnosis in the remaining 5% of cases were slightly discordant, none of these were with clinical or prognostic implications. Up-front histopathologic diagnosis of gastrointestinal biopsies and resections can be done on whole slide images.  相似文献   

10.
Digital microscopy, a comprehensive integration of digital imaging and light microscopy, can assist the pathologist to observe, acquire, record, share, analyze, and manage pathology image data. To lead the activity for establishing new generation digital microscopy capacity, novel concepts and strategies of digital pathology information flow and digital pathology platform were designed to integrate personal digital pathology microscopy workstations and other pathology imaging modalities with centralized data storage/management. In addition, a strategy for Web-enabled interactive telepathology that would permit global capacity was designed. A novel concept of high content pathology was also created to develop an automated tissue microscopy imaging and screening approach. These new concepts, strategies, and approaches guided the development and implementation of a digital pathology platform, a telepathology platform, and automated tissue slide imaging capacity. Digital microscopy photography is now able to replace photographic film in toxicologic pathology. Digital pathology and telepathology platforms can provide a networked environment for multisite, global team participation. Our practice also ascertained the central value of digital microscopy which can provide innovative quantitative pathology information and data mining capability with various imaging biomarkers via advanced digital image processing and pathology informatics; these are now the focus of ongoing development.  相似文献   

11.
Storage-phosphor computed radiography and film digitization systems have been in routine clinical use at the University of Chicago for several years. During this time we have implemented numerous modifications including techniques for scatter reduction, image processing enhancements and display systems to improve the image quality and utility of these devices. We have also evaluated the image quality and functionality of digital systems relative to conventional screen-film radiography. In this paper, we review our experience and summarize our impressions. In addition, we summarize our plans for a rapid transition into picture archiving and communication systems, with hardcopy interpretation being phased out for most modalities over the next 2 to 5 years.  相似文献   

12.
Only recently fast-paced developments in computer technology allowed for the digitization of complete histologic slides. The resulting virtual slides may be viewed via webbrowser by any number of pathologists or students independent of time and location. Usage of a virtual microscope simply requires a computer workstation with a fast internet connection, which opens this technology to a broad public. A virtual microscopy system consists of three components: acquisition, server and client. Such systems are under development by different commercial and academic bodies worldwide. We have developed a virtual microscope system called vMic (http://www.vmic.unibas.ch) which provides virtual slides of very high image quality. Several successfully held online slide seminars and a histology course for students in dentistry are freely accessible in the internet. With the commercial availability of ultra rapid and easy-to-use slide scanners and the fast improvements of technology virtual microscopy will offer many applications in teaching, research and diagnostics. Thanks to additional functionalities, real microscopes will most likely be replaced by computer workstations in a couple of years.  相似文献   

13.
The introduction of fast and robust whole slide scanners has facilitated the implementation of ‘digital pathology’ with various uses, the final challenge being full digital diagnostics. In this article, we describe the implementation process of a fully digital workflow for primary diagnostics in 2015 at the University Medical Centre in Utrecht, The Netherlands, as one of the first laboratories going fully digital with a future‐proof complete digital archive. Furthermore, we evaluated the experience of the first 2 years of working with the system by pathologists and residents. The system was successfully implemented in 6 months, including a European tender procedure. Most pathologists and residents had high confidence in working fully digitally, the expertise areas lagging behind being paediatrics, haematopathology, and neuropathology. Reported limitations concerned recognition of microorganisms and mitoses. Neither the age of respondents nor the number of years of pathology experience was correlated with the confidence level regarding digital diagnostics. The ergonomics of digital diagnostics were better than those of traditional microscopy. In this article, we describe our experiences in implementing our fully digital primary diagnostics workflow, describing in depth the implementation steps undertaken, the interlocking components that are required for a fully functional digital pathology system (laboratory management, hospital information systems, data storage, and whole slide scanners), and the changes required in workflow and slide production.  相似文献   

14.
Whole slide imaging (WSI) has been used in conjunction with virtual microscopy (VM) for training or proficiency testing purposes, multicentre research, remote frozen section diagnosis and to seek specialist second opinion in a number of organ systems. The feasibility of using WSI/VM for routine surgical pathology reporting has also been explored. In this review, we discuss the utility and limitations of WSI/VM technology in the histological assessment of specimens from the prostate. Features of WSI/VM that are particularly well suited to assessment of prostate pathology include the ability to examine images at different magnifications as well as to view histology and immunohistochemistry side-by-side on the screen. Use of WSI/VM would also solve the difficulty in obtaining multiple identical copies of small lesions in prostate biopsies for teaching and proficiency testing. It would also permit annotation of the virtual slides, and has been used in a study of inter-observer variation of Gleason grading to facilitate precise identification of the foci on which grading decisions had been based. However, the large number of sections examined from each set of prostate biopsies would greatly increase time required for scanning as well as the size of the digital file, and would also be an issue if digital archiving of prostate biopsies is contemplated. Z-scanning of glass slides, a process that increases scanning time and file size would be required to permit focusing a virtual slide up and down to assess subtle nuclear features such as nucleolar prominence. The common use of large blocks to process prostatectomy specimens would also be an issue, as few currently available scanners can scan such blocks. A major component of proficiency testing of prostate biopsy assessment involves screening of the cores to detect small atypical foci. However, screening virtual slides of wavy fragmented prostate cores using a computer mouse aided by an overview image is very different from screening glass slides using a microscope stage. Hence, it may be more appropriate in this setting to mark the lesional area and focus only on the interpretation component of competency testing. Other issues limiting the use of digital pathology in prostate pathology include the cost of high quality slide scanners for WSI and high resolution monitors for VM as well as the requirement for fast Internet connection as even a subtle delay in presentation of images on the screen may be very disturbing for a pathologist used to the rapid viewing of glass slides under a microscope. However, these problems are likely to be overcome by technological advances in the future.  相似文献   

15.
Telepathology, the distant service component of digital pathology, is a growth industry. The word "telepathology" was introduced into the English Language in 1986. Initially, two different, competing imaging modalities were used for telepathology. These were dynamic (real time) robotic telepathology and static image (store-and-forward) telepathology. In 1989, a hybrid dynamic robotic/static image telepathology system was developed in Norway. This hybrid imaging system bundled these two primary pathology imaging modalities into a single multi-modality pathology imaging system. Similar hybrid systems were subsequently developed and marketed in other countries as well. It is noteworthy that hybrid dynamic robotic/static image telepathology systems provided the infrastructure for the first truly sustainable telepathology services. Since then, impressive progress has been made in developing another telepathology technology, so-called "virtual microscopy" telepathology (also called "whole slide image" telepathology or "WSI" telepathology). Over the past decade, WSI has appeared to be emerging as the preferred digital telepathology digital imaging modality. However, recently, there has been a re-emergence of interest in dynamic-robotic telepathology driven, in part, by concerns over the lack of a means for up-and-down focusing (i.e., Z-axis focusing) using early WSI processors. In 2010, the initial two U.S. patents for robotic telepathology (issued in 1993 and 1994) expired enabling many digital pathology equipment companies to incorporate dynamic-robotic telepathology modules into their WSI products for the first time. The dynamic-robotic telepathology module provided a solution to the up-and-down focusing issue. WSI and dynamic robotic telepathology are now, rapidly, being bundled into a new class of telepathology/digital pathology imaging system, the "WSI-enhanced dynamic robotic telepathology system". To date, six major WSI processor equipment companies have embraced the approach and developed WSI-enhanced dynamic-robotic digital telepathology systems, marketed under a variety of labels. Successful commercialization of such systems could help overcome the current resistance of some pathologists to incorporate digital pathology, and telepathology, into their routine and esoteric laboratory services. Also, WSI-enhanced dynamic robotic telepathology could be useful for providing general pathology and subspecialty pathology services to many of the world's underserved populations in the decades ahead. This could become an important enabler for the delivery of patient-centered healthcare in the future.  相似文献   

16.
Ultrastructural examination is a time-consuming and tiring process, requiring search for diagnostic features on a low-contrast screen in a dim environment. This article describes a method to circumvent these problems through the creation of a virtual ultrathin slide. This can be achieved by automated capturing of hundreds of images at high magnification and stitching them together into a digital image with a resolution of 4 nm/pixel. The pathologist can then navigate the virtual slide at his/her workstation computer. The image shows good contrast and resolution for diagnostic purposes, and most important, the pathologist can precisely note where the specific ultrastructural features are located. The setup required to implement virtual electron microscopy includes a transmission electron microscope equipped with motorized stage and automated digital image capture function, 2 free software components, self-developed software, and a desktop-grade computer. Besides use in daily diagnosis, virtual electron microscopy can open up many new applications such as undergraduate teaching, pathology resident training, external quality assurance program, and expert consultation.  相似文献   

17.
Whole slide imaging is being used increasingly in research applications and in frozen section, consultation and external quality assurance practice. Digital pathology, when integrated with other digital tools such as barcoding, specimen tracking and digital dictation, can be integrated into the histopathology workflow, from specimen accession to report sign‐out. These elements can bring about improvements in the safety, quality and efficiency of a histopathology department. The present paper reviews the evidence for these benefits. We then discuss the challenges of implementing a fully digital pathology workflow, including the regulatory environment, validation of whole slide imaging and the evidence for the design of a digital pathology workstation.  相似文献   

18.
Recent advances in microcomputers and high resolution digital video cameras provide pathologists the opportunity to combine precision optics with digital imaging technology and develop new educational and research tools. We review recent advances in virtual microscopy and describe techniques for viewing digital images using a microcomputer-based workstation to simulate light microscopic examination, including scanning at low power to select features of interest and zooming to increase magnification. Hardware and software components necessary to acquire digital images of histological and cytological slides, and closely simulate their examination under a light microscope are discussed. The workstation is composed of a MicroLumina digital scanning camera (Leaf Systems, Southborough, MA), light microscope (Olympus Optical Co., Lake Success, NY), Pentium (Intel Corp., Santa Clara, CA) 166 MHz microcomputer configured with 64 megabytes of random access memory (RAM), a MGA Millenium Powerdesk graphics card (Matrox Graphics, Inc., Montreal, Canada) and Photoshop software (Adobe Systems Inc., San Jose, CA) running in a Windows 95 (Microsoft Corp., Redmond, WA) environment. Images with spatial resolutions of up to 2700 x 3400 pixels in 36-bit color, can be displayed simultaneously as distinct images in a montage, or merged into a single composite image file to highlight significant features of a histological or cytological slide. These image files are saved in Joint Photographers Experts Group (JPEG) format using compression ratios of up to 80:1 without detectable visual degradation. The advantages and technical limitations of various workstation components are addressed and applications of this technology for pathology education, proficiency testing, telepathology, and database development are discussed.  相似文献   

19.
The use of high-resolution digital images of histopathology slides as a routine diagnostic tool for surgical pathology was investigated. The study purpose was to determine the diagnostic concordance between pathologic interpretations using whole-slide imaging and standard light microscopy. Two hundred fifty-one consecutive surgical pathology cases (312 parts, 1085 slides) from a single pathology service were included in the study after cases had been signed out and reports generated. A broad array of diagnostic challenges and tissue sources were represented, including 52 neoplastic cases. All cases were digitized at ×20 and presented to 2 pathologists for diagnosis using whole-slide imaging as the sole diagnostic tool. Diagnoses rendered by the whole-slide imaging pathologists were compared with the original light microscopy diagnoses. Overall concordance between whole-slide imaging and light microscopy as determined by a third pathologist and jury panel was 96.5% (95% confidence interval, 94.8%-98.3%). Concordance between whole-slide imaging pathologists was 97.7% (95% confidence interval, 94.7%-99.2%). Five cases were discordant between the whole-slide imaging diagnosis and the original light microscopy diagnosis, of which 2 were clinically significant. Discordance resulted from interpretive criteria or diagnostic error. The whole-slide imaging modality did not contribute to diagnostic differences. Problems encountered by the whole-slide imaging pathologists primarily involved the inability to clearly visualize nuclear detail or microscopic organisms. Technical difficulties associated with image scanning required at least 1 slide be rescanned in 13% of the cases. Technical and operational issues associated with whole-slide imaging scanning devices used in this study were found to be the most significant obstacle to the use of whole-slide imaging in general surgical pathology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号