首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was performed to evaluate the effects of dynorphin A(1-3) antiserum when microinjected into an active hyperalgesic region within the rat brain stem. When administered within the dorsal posterior mesencephalic tegmentum (DPMT) of intact conscious rats, dynorphin A(1-13) antiserum produced rapid onset and persistent prolongation of a low intensity thermally evoked tail avoidance response (LITETAR). These analgesic actions of the dynorphin A(1-13) antiserum appeared to be dose dependent. These studies support previous hypotheses about the existence of tonically active brain stem opioid hyperalgesic process. Further, the results provide indirect evidence for a potential role of brain stem dynorphin(s) in facilitating pain.  相似文献   

2.
The effect of morphine tolerance dependence and protracted abstinence on the levels of dynorphin (1–13) in discrete brain regions, spinal cord, pituitary gland and peripheral tissues was determined in male Sprague-Dawley rats. Of all the tissues examined, the highest level of dynorphin (1–13) was found to be in the pituitary gland. Among the brain regions and spinal cord examined, the levels of dynorphin (1–13) in descending order were: hypothalamus, spinal cord, midbrain, pons and medulla, hippocampus, cortex, amygdala and striatum. The descending order for the levels of dynorphin (1–13) in peripheral tissues was: adrenals, heart and kidneys. In morphine tolerant rats, the levels of dynorphin (1–13) increased in amygdala but were decreased in pons and medulla. In morphine abstinent rats, the levels of dynorphin (1–13) were increased in amygdala, hypothalamus and hippocampus. The levels of dynorphin (1–13) were increased in pituitary but decreased in spinal cord and remained so even during protracted abstinence. The levels of dynorphin (1–13) in the peripheral tissues of morphine tolerant rats were unaffected. However, in the heart and kidneys of morphine abstinent rats, the levels of dynorphin (1–13) were increased significantly. It is concluded that both morphine tolerance and abstinence modify the levels of dynorphin (1–13) in pituitary, central and peripheral tissues. Morphine abstinence differed from non-abstinence process in that there were additional changes (increases) in the levels of dynorphin (1–13) in brain regions (hypothalamus and hippocampus) and peripheral tissues (heart and kidneys) and may contribute to the symptoms of the morphine abstinence syndrome. The lower levels of dynorphin (1–13) in spinal cord may be responsible for the potentiation of morphine effects by κ-opiate agonist in morphine tolerant dependent rodents.  相似文献   

3.
Chronic food restriction produces a variety of physiological and behavioral adaptations including a potentiation of the reinforcing effect of food, drugs and lateral hypothalamic electrical stimulation. Previous work in this laboratory has revealed that the lowering of self-stimulation threshold by food restriction is reduced by μ- and κ-selective opioid antagonists. In the present study, the effect of chronic food restriction on levels of three prodynorphin-derived peptides, namely dynorphin A1–17 (A1–17), dynorphin A1–8 (A1–8) and dynorphin B1–13 (B1–13) were measured in eleven brain regions known to be involved in appetite, taste and reward. Food restriction increased levels of A1–17 in dorsal medial (+ 19.6%), ventral medial (+ 24.2%) and medial preoptic (+ 82.9%) hypothalamic areas. Levels of A1–17 decreased in the central nucleus of the amygdala (− 35.1%). Food restriction increased levels of A1–8 in nucleus accumbens (+ 34.4%), bed nucleus of the stria terminalis (+ 24.5%) and lateral hypothalamus (+ 41.9%). Food restriction had no effect on levels of B1–13. A1–17 is highly κ-preferring and the brain regions in which levels increased all have a high ratio of κ:μ and δ receptors. A1–8 is less discriminating among opioid receptor types and the brain regions in which levels increased have a low ratio of κ:μ and δ receptors. The present results suggest that food restriction alters posttranslational processing within the dynorphin A domain of the prodynorphin precursor, possibly leading to a change in the balance between κ and non-κ opioid receptor stimulation in specific brain regions.  相似文献   

4.
The effects of des-tyrosine1 dynorphin A-(2–13) (dynorphin A-(2–13)) on carbon monoxide (CO)-induced impairment of learning and memory in mice were investigated using a Y-maze task and a passive avoidance test. The lower percentage alternation and shorter step-down latency of the CO-exposed group indicated that learning and/or memory impairment occurred in mice 5 and 7 days after CO exposure, respectively. Administration of dynorphin A-(2–13) (1.5 and/or 5.0 nmol/mouse, intracerebroventricularly (i.c.v.)) 30 min before behavioral tests improved the CO-induced impairment in alternation performance and the CO-induced shortened step-down latency. We previously reported that dynorphin A-(1–13) improved the impairment of learning and/or memory via kappa opioid receptor mediated mechanisms. To determine whether the effect of dynorphin A-(2–13) was also mediated via kappa opioid receptors, we attempted to block its action using a selective kappa opioid receptor antagonist, nor-binaltorphimine (nor-BNI). Nor-BNI (4.9 nmol/mouse, i.c.v.) did not block the effects of dynorphin A-(2–13) on the CO-induced impairment of learning and/or memory. These results indicate that dynorphin A-(2–13) improves impairment of learning and/or memory via a non-opioid mechanism.  相似文献   

5.
We have recently reported that midazolam, a benzodiazepine receptor agonist that is also a short acting anesthetic and analgesic drug, can produce analgesia and decrease morphine tolerance and dependence in the rat by interacting with the opioidergic system. This study was designed to investigate the chronic effect of midazolam and/or morphine on the levels of dynorphin(1–13) in the pituitary gland, different brain regions, spinal cord and peripheral tissues of the rat. Four sets of animals were used: (I) saline-saline; (II) midazolam (0.03, 0.3 or 3.0 mg/kg, body wt., i.p.)-saline; (III) saline-morphine (10.0 mg/kg, body wt., s.c.); and (IV) midazolam-morphine (0.03, 0.3 or 3.0 mg/kg midazolam+10.0 mg/kg morphine) groups. The first saline or midazolam injection was given i.p. and after 30 min, the second injection of saline or morphine was given s.c. daily for 11 days. Animals were sacrificed on the 11th day, 60 min after the last injection and dynorphin(1–13) was measured in indicated tissues by radioimmunoassay method. The midazolam treated animals showed a significant decrease in dynorphin(1–13) levels in the cortex, cerebellum, cervical region of spinal cord, heart and adrenals, and a significant increase in the hypothalamus, striatum and lumbar region of the spinal cord. The morphine treated animals showed a significant decrease in dynorphin(1–13) levels in the pituitary gland, hypothalamus, hippocampus, striatum, cerebellum, pons, medulla, kidneys, adrenals and spleen, and a significant increase only in the lumbar region of the spinal cord. When both drugs were injected together there was no effect on pituitary gland, kidneys and spleen. These drugs antagonize each other's effect on dynorphin(1–13) in the hypothalamus, striatum, cerebellum, pons, medulla and heart. However, the midazolam-morphine combination significantly increases dynorphin(1–13) levels in the hippocampus, cortex, midbrain, cervical and lumbar regions of the spinal cord, and adrenals. These results suggest the involvement of dynorphin(1–13) in the inhibition of morphine-induced tolerance and dependence by midazolam in the rat. These results may also help us in understanding the intrinsic mechanisms involved in narcotic tolerance and dependence.© 1997 Elsevier Science B.V. All rights reserved.  相似文献   

6.
Dynorphin A is an endogenous opioid peptide that preferentially activates κ-opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1–13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both κ-opioid and N-methyl- -aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through κ-opioid and/or NMDA receptor types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons coexpressing κ-opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both κ-opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1–13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1–13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 μM), 2-amino-5-phosphopentanoic acid (100 μM), or 7-chlorokynurenic acid (100 μM)—suggesting that dynorphin A (1–13) was acting (directly or indirectly) through NMDA receptors. In contrast, cotreatment with (−)-naloxone (3 μM), or the more selective κ-opioid receptor antagonist nor-binaltorphimine (3 μM), exacerbated dynorphin A (1–13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 μM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 μM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of dynorphin. This provided indirect evidence that dynorphin also stimulates κ-opioid receptors and suggests that κ receptor activation may be moderately neuroprotective in the presence of an excitotoxic insult. Our findings suggest that dynorphin A (1–13) can have paradoxical effects on neuronal viability through both opioid and non-opioid (glutamatergic) receptor-mediated actions. Therefore, dynorphin A potentially modulates secondary neurodegeneration in the spinal cord through complex interactions involving multiple receptors and signaling pathways.  相似文献   

7.
The effects on sexual behavior of opiate receptor stimulation within A10 and A14 terminal areas were examined in the following experiments. Morphine (0.01–6 nmol) and dynorphin(1–13) (0.01–3 pmol) were microinjected into the medial preoptic area (MPOA). Morphine (10–100 pmol) and dynorphin (10–100 fmol) injected into the MPOA reduced both the latency to ejaculate and the number of intromissions triggering ejaculation. Morphine (6 nmol) produced a failure to resume copulating following the second ejaculation. Morphine (1–10 nmol) injected into the nucleus accumbens (ACC) shortened the latency to the first intromission and lengthened the second postejaculatory interval. Naloxone (3 mg/kg i.p.) reversed the effects of morphine on intromission latency and attenuated the lowering of ejaculatory threshold.  相似文献   

8.
The antinociceptive effects of intracerebroventricularly (i.c.v.) administered dynorphin A, an endogenous agonist for κ-opioid receptors, in combination with various protease inhibitors were examined using the mouse formalin test in order to clarify the nature of the proteases involved in the degradation of dynorphin A in the mouse brain. When administered i.c.v. 15 min before the injection of 2% formalin solution into the dorsal surface of a hindpaw, 1–4 nmol dynorphin A produced a dose-dependent reduction of the nociceptive behavioral response consisting of licking and biting of the injected paw during both the first (0–5 min) and second (10–30 min) phases. When co-administered with p-hydroxymercuribenzoate (PHMB), a cysteine protease inhibitor, dynorphin A at the subthreshold dose of 0.5 nmol significantly produced an antinociceptive effect during the second phase. This effect was significantly antagonized by nor-binaltorphimine, a selective κ-opioid receptor antagonist, but not by naltrindole, a selective δ-opioid receptor antagonist. At the same dose of 0.5 nmol, dynorphin A in combination with phosphoramidon, an endopeptidase 24.11 inhibitor, produced a significant antinociceptive effect during both phases. The antinociceptive effect was significantly antagonized by naltrindole, but not by nor-binaltorphimine. Phenylmethanesulfonyl fluoride (PMSF), a serine protease inhibitor, bestatin, a general aminopeptidase inhibitor, and captopril, an angiotensin-converting enzyme inhibitor, were all inactive. The degradation of dynorphin A by mouse brain extracts in vitro was significantly inhibited only by the cysteine protease inhibitors PHMB and N-ethylmaleimide, but not by PMSF, phosphoramidon, bestatin or captopril. The present results indicate that cysteine proteases as well as endopeptidase 24.11 are involved in two steps in the degradation of dynorphin A in the mouse brain, and that phosphoramidon inhibits the degradation of intermediary δ-opioid receptor active fragments enkephalins which are formed from dynorphin A.  相似文献   

9.
Summary Muscle strips from rat and human detrusor were studied using indirect immunofluorescence and electrical nerve stimulation in an organ bath. Immunoreactivity towards dynorphin was observed in varicose nerve fibres in the detrusor muscle and around immunonegative nerve cell bodies in the prevesical ganglia of the rat. In vitro, dynorphin A (1–13) (10–13-10–6M) strongly facilitated detrusor contraction induced by electrical field stimulation (EFS). This facilitation was counteracted by morphine (10–10 and 10–8M) and naloxone (10–10 and 10–8M) in a competitive manner. The facilitation could also be counteracted by the addition of the K-receptor antagonist Mr 2266 (10–7M). Muscarinic blockade, achieved with atropine (10–6M), did not alter the effect of dynorphin A (1–13). Addition of phentolamine mesylate (10–6M), and propranolol (10–6M)per se facilitated the EFS-induced contractions. Both adrenergic blockade as well as the addition of the substance P blocker spantide, counteracted the facilitating effect of dynorphin A (1–13).In conclusion: Dynorphin A immunoreactive material was found to be present in nerves in the rat detrusor and in prevesical ganglia. Dynorphin A (1–13) facilitated the detrusor contraction, possibly via actions on K-opioid receptors and interaction with non-cholinergic nerves.  相似文献   

10.
Male Sprague-Dawley rats were rendered tolerant to and physically dependent on U-50,488H, a κ-opiate agonist, by injecting 25 mg/kg of the drug intraperitoneally twice a day for 4 days. Two sets of rats were used. Rats labeled as tolerant-dependent were injected with U-50,488H (25 mg/kg) 1 h before sacrificing on day 5, whereas the abstinent rats were sacrificed on day 5 without the injection of U-50,488H. Of all the tissues examined, the pituitary gland had the highest level of dynorphin (1–13), whereas the heart had the lowest level. The levels of dynorphin (1–13) increased in the hypothalamus, hippocampus and pons/medulla of U-50,488H tolerant-dependent rats, whereas in abstinent rats the levels of dynorphin (1–13) were elevated only in the midbrain. The levels of dynorphin (1–13) in the pituitary gland of U-50,488H tolerant-dependent or abstinent rats were unchanged. In peripheral tissues, the levels of dynorphin (1–13) in the heart of U-50,488H tolerant-dependent rats were increased. In the abstinent rats they were elevated in the adrenals, spleen, and the heart but were decreased in the kidneys. Compared to morphine tolerant-dependent and abstinent rats, significant differences in the levels of dynorphin (1–13) in tissues of 50,488H tolerant-dependent and abstinent rats were observed and may explain many pharmacological differences in the μ- and κ-opiate induced tolerance-dependence and abstinence processes.  相似文献   

11.
Radiolabeled microspheres were used to examine the effects of paralytic intrathecal doses of dynorphin A (Dyn A1–13) and Dyn A3–13 on rat brain and spinal cord blood flows and cardiac output. Dyn A1–13 produced significant dose-related reductions in blood flow to lumbosacral and thoracic spinal cord without altering cardiac output and blood flow to brain and cervical spinal cord. Naloxone failed to block these effects. Dyn A3–13, which lacks opioid activity, also significantly reduced blood flow in lumbosacral spinal cord. Thus, the paralytic effects of Dyn A in the rat may involve reductions in spinal cord resulting from non-opioid actions of Dyn A.  相似文献   

12.
Intrathecal (i.t.) injection of nociceptin at small doses (3.0 and 30.0 fmol) produced a significant hyperalgesic response as assayed by the tail-flick test. This hyperalgesic effect peaked at 15 min following i.t. administration of nociceptin (3.0 fmol) and returned to control level within 30 min. Hyperalgesia elicited by nociceptin was inhibited dose-dependently by i.t. co-administration of tachykinin NK1 receptor antagonists, CP-99,994 and sendide. A significant antagonistic effect of [ -Phe7, -His9] substance P (6–11), a selective antagonist for substance P, was observed against the nociceptin-induced hyperalgesia. Pretreatment with i.t. substance P antiserum and i.t. capsaicin resulted in a complete block of the reduced threshold produced by nociceptin. The NK2 receptor antagonist, MEN-10,376 and pretreatment with neurokinin A antiserum did not alter the behavioural effect of nociceptin. The N-methyl- -aspartate (NMDA) receptor antagonists, dizocilpine (MK-801) and (−)-2-amino-5-phosphonovaleric acid ( -APV), and -NG-nitro arginine methyl ester ( -NAME), a nitric oxide synthase inhibitor, failed to inhibit nociceptin-induced hyperalgesia. The results obtained suggest that the hyperalgesic effect of nociceptin may be mediated through tachykinin NK1 receptors in the spinal cord.  相似文献   

13.
The neuroanatomical distribution of the prodynorphin precursor molecule in the forebrain of the male Syrian hamster (Mesocricetus auratus) has been studied with a novel antiserum directed against the C-terminus of the leumorphin [dynorphin B (1-29)] peptide product. C-peptide staining in sections from colchicine-treated hamsters is compared to staining in sections from untreated animals. In addition, the pattern of C-peptide immunostaining in hamster brain is compared to that in the rat brain. Finally, the C-peptide immunolabeling patterns in hamsters and rats are compared to those obtained with antisera to dynorphin A (1-17) and dynorphin B (1-13). Areas of heaviest prodynorphin immunoreactivity in the hamster include the hippocampal formation, lateral septum, bed nucleus of the stria terminalis, medial preoptic area, medial and central amygdaloid nuclei, ventral pallidum, substantia nigra, and numerous hypothalamic nuclei. Although this C-peptide staining pattern is similar to dynorphin staining reported previously in the rat, several species differences are apparent. Whereas moderate dentate gyrus granule cell staining and no CA4 cell staining have been reported in the rat hippocampal formation, intense immunostaining in the dentate gyrus and CA4 cell labeling are observed in the hamster. In addition, the medial preoptic area, bed nucleus of the stria terminalis, and medial nucleus of the amygdala stain lightly for prodynorphin-containing fibers and cells in the rat, compared to heavy cell and fiber staining in the hamster in all three of these regions. In the rat there is no differential staining between tissues processed with the C-peptide, dynorphin A, and dynorphin B antisera, but numerous areas of the hamster brain show striking differences. In most hamster brain areas containing prodynorphin peptides, the C-peptide antiserum immunolabels more cells and fibers than the dynorphin B antiserum, which in turn labels more cells and fibers than dynorphin A antiserum. However, exceptions to this hierarchy of staining intensity are found in the lateral hypothalamus, substantia nigra, arcuate nucleus, and habenula. The differences in staining patterns between rat and hamster are greatest when C-peptide antiserum is used; apparent species differences are present, though less pronounced, in dynorphin B- and dynorphin A-immunostained material.  相似文献   

14.
The effects on vasopressin (VP) release of three dynorphin-A fragments and two antidynorphin antisera were tested in vivo and in vitro.In vivo, the order of potency to inhibit VP release 30 min upon i.c.v. injection was: dynorphin-A-(1–17) > dynorphin-A-(1–13) > dynorphin-A-(1–8).l.c.v. co-administration of 10 nmoles of the specific endopeptidase-inhibitor cFPAAF-pAB and dynorphin-A-(1–8) also suppressed VP secretion. Dynorphin-A-(1–17) antiserum enhanced VP release 20 and 60 min after i.c.v. injection. The antiserum that recognized dynorphin-A-(1–13) elevated VP plasma levels at 60 min post-injection.In vitro, dynorphin-A-(1–8) suppressed electrically evoked VP release from the isolated neuroal lobe. VP release was not affected by dynorphin-A-(1–13), dynorphin-A-(1–17), naloxone, or by the anti-dynorphin antisera.These data indicate that dynorphin-A-(1–17), rather than dynorphin-A-(1–8), plays a role in the centrally located control of neurohypophysial VP release, whereas dynorphin-A-(1–8) is involved in the control located in the posterior pituitary. The synthetic intermediate fragment dynorphin-A-(1–13) appears to affect VP release both centrally and peripherally.  相似文献   

15.
To determine the extent of colocalization of substance P (SP) and prodynorphin peptides within neurons of the medial nucleus of the amygdala (AMe), medial bed nucleus of the stria terminalis (BNSTm) and medial preoptic area (MPOA), we incubated colchicine-treated Syrian hamster brain tissue in an antiserum mixture containing rat anti-SP antibody combined with 1 of 3 rabbit antibodies against prodynorphin peptides: anti-dynorphin A(1-17), anti-dynorphin B(1-13) or anti-C-peptide. This was followed by incubation in a secondary antiserum mixture containing fluorescein-labelled anti-rabbit and rhodamine-labelled anti-rat antibodies. Sections were viewed with an epifluorescence microscope using blue light excitation for fluorescein and green light excitation for rhodamine. Colocalization of SP and prodynorphin labelling was observed in neurons of the caudal parts of AMe, BNSTm and MPOA, areas which are essential for male mating behavior. The colocalization was most extensive in the dorsolateral part of the caudal MPOA, the caudodorsal part of the BNSTm, and in the posterodorsal subdivision of AMe. Although all 3 dynorphin peptides coexisted with SP in these areas, dynorphin B did so less than C-peptide, and dynorphin A less than dynorphin B.  相似文献   

16.
The present study was designed to characterize the relationship between cerebral opioid concentration, cerebral hemodynamics, and cerebral oxygenation following percussion brain injury in neonatal pigs. Previous research found that opioids represent a significant vasoactive component in the regulation of the neonatal piglet cerebral circulation. Anesthesized newborn (1–5 days old) pigs equipped with a closed cranial window were connected to a percussion device consisting of a saline-filled cylindrical reservoir with a metal pendulum. Brain injury of moderate severity (1.9–2.3 atm.) was produced by allowing the pendulum to strike a piston on the cylinder. Fluid percussion brain injury decreased pial arteriolar diameter (132 ± 5 to 110 ± 5 μm within 10 min). Cerebral blood flow also fell within 10 min of injury and continued to fall progressively for 3 h, resulting in a 46 ± 4% decrease. Within 30 s of brain injury, there was a transient increase in cerebral hemoglobin-O2 saturation that was reversed to a progressive profound decrease in cerebral hemoglobin-O2 saturation for the next 3 h, as measured by near infrared spectroscopy. CSF opioid concentrations were increased 10 min after brain injury; dynorphin showed the largest proportional increase (5.8 ± 0.9 fold). The CSF concentration for other opioids continued to increase over 180 min while the dynorphin concentration progressively decreased with time. In naloxone (1 mg/kg i.v.) pretreated piglets, the brain injury induced decrease in arteriolar diameter was attenuated (129 ± 5 to 121 ± 5 μm within 10 min). Similarly, the decrease in regional cerebral blood flow and cerebral hemoglobin-O2 saturation observed following brain injury were also blunted by naloxone. These data show that CSF opioid concentrations increase following brain injury and that the time course and relative increase in CSF concentration vary from opioid to opioid. These data also indicate that in the immature animal, opioids contribute to arteriolar constriction, decreased cerebral blood flow, decreased cerebral oxygenation, and could play a role in causing ischemia after brain injury.  相似文献   

17.
The effects of dynorphin A-(1–13), an endogenous κ opioid agonist, on basal forebrain (BF)-lesion-induced amnesia in rats were investigated using step-through-type passive avoidance task. The BF was lesioned by injecting the cholinergic neurotoxin ibotenic acid (6 μg/side). The number of rats achieving the cut-off time (600 s) of step-through latency (STL) in BF-lesioned group significantly decreased as compared with that in sham-operated group. Dynorphin A-(1–13) (0.3 μg) significantly increased the number of rats achieving the cut-off time of STL in BF-lesioned rats. These results suggest that dynorphins play an improving role in the impairment of memory processes in BF-lesioned rats.  相似文献   

18.
Dynorphin and other kappa opioid agonists are thought to elicit aversive actions and changes in motor activity through direct or indirect modulation of dopamine neurons in ventral tegmental area (VTA) and substantia nigra (SN), respectively. We comparatively examined the immunoperoxidase localization of anti-dynorphin A antiserum in sections through the VTA and SN of adult rat brain to assess whether there were common or differential distributions of this opioid peptide relative to the dopamine neurons. We also more directly examined the relationship between dynorphin terminals and dopamine neurons in VTA and SN by combining immunoperoxidase labeling of rabbit dynorphin antiserum and immunogold-silver detection of mouse antibodies against tyrosine hydroxylase (TH) in single sections through the VTA and SN. Light microscopy showed dynorphin-like immunoreactivity (DY-LI) in varicose processes. These were relatively sparse in VTA and were unevenly distributed in the SN, with little labeling in the pars compacta (pcSN) and the highest density of DY-LI in the medial and lateral pars reticulata (prSN). Electron microscopy established that the regional differences were attributed to differences in density (number/unit area) of immunoreactive profiles. The profiles containing DY-LI were designated as axon terminals based on having diameters greater than 0.1 μm, few microtubules and many synaptic vesicles. In both the VTA and SN, the dynorphin-labeled terminals contained primarily small (35–40 nm) clear vesicles. These vesicles were rimmed with peroxidase immunoreactivity and were often seen clustered above axodendritic synapses. These synaptic specializations were usually symmetric; however a few asymmetric densities also were formed by immunoreactive terminals in both VTA and SN. Additionally, most of the dynorphin-labeled terminals contained 1–2, but occasionally 7 or more intensely peroxidase positive dense core vesicles (DCVs). Approximately 60% of the DCVs were located near axolemmal surfaces. The axolemmal surfaces contacted by immunoreactive DCVs were more often apposed to dendrites in the VTA; while in the SN other axon terminals were the most commonly apposed neuronal profiles. In both regions, a substantial proportion of the plasmalemmal surface in contact with the labeled DCVs was apposed to astrocytic processes. In dually labeled sections through the VTA, 22% (n = 138) of the terminals containing DY-LI formed synapseson or were apposed to TH-labeled dendrites, while 16% were in contact with unlabeled dendrites. The remainder were apposed to other dynorphin labeled and unlabeled terminals and/or astrocytes. In dually labeled sections through the prSN, 37% (n = 216) of the terminals containing DY-LI formed synapses or were apposed to TH-labeled dendrites, while 28% contacted unlabeled dendrites. The remainder were in contact with axon terminals or astrocytes. These findings demonstrate the morphologically heterogeneous terminals containing DY-LI in rat VTA and SN provide a substantial monosynaptic input to dopamine and non-dopamine targets. The finding of symmetric and asymmetric synapses, mixed vesicle populations, and associations with dendrites, terminals, and astrocytes suggests multiple sites for dynorphin actions in both VTA and SN.  相似文献   

19.
In opiate-naive rats, the endogenous opioid peptides, β-endorphin, dynorphin(1–13) and Met---Enk---Arg---Phe (MEAP) and the synthetic enkephalin analogue -Ala2- -Leu5-Enk (DADLE) potently stimulated plasma corticosterone in a dose-dependent, naloxone-reversible manner. To characterize their in vivo affinities, the effects of these peptides on plasma corticosterone release were tested in rats made tolerant to morphine, U50488H, DADLE/morphine or β-endorphin. These cross-tolerance studies showed that dynorphin and MEAP exerted their action on plasma corticosterone release at κ-opioid receptors. The action of DADLE occurred at δ-opioid receptors, while the action of β-endorphin occurred principally at another receptor site. These results indicate that there is independent modulation of the hypothalamic-pituitary-adrenal axis by endogenous opioid peptides at μ-, δ- and κ-opioid receptors. In addition, there may be modulation by β-endorphin at a separate site that we suggest could be a central ε-receptor site. This cross-tolerance paradigm, using a neuroendocrine model, provides in vivo evidence for the action of centrally active endogenous opioid peptides at multiple and independent opioid receptors.  相似文献   

20.
Our previous work has demonstrated that 100-Hz electroacupuncture (EA) or 100-Hz transcutaneous electrical nerve stimulation (TENS) was very effective in ameliorating the morphine withdrawal syndrome in rats and humans. The mechanism was obscure. (1) Rats were made dependent on morphine by repeated morphine injections (5–140 mg/kg, s.c., twice a day) for eight days. They were then given 100-Hz EA for 30 min 24 h after the last injection of morphine. A marked increase in tail flick latency (TFL) was observed. This effect of 100-Hz EA could be blocked by naloxone (NX) at 20 mg/kg, but not at 1 mg/kg, suggesting that 100-Hz EA-induced analgesia observed in morphine-dependent rats is mediated by κ-opioid receptors. (2) A significant decrease of the concentration of dynorphin A (1–17) immunoreactivity (-ir) was observed in the spinal perfusate in morphine-dependent rats, that could be brought back to normal level by 100-Hz EA. (3) 100-Hz EA was very effective in suppressing NX-precipitated morphine withdrawal syndrome. This effect of EA could be prevented by intrathecal administration of nor-BNI (2.5 μg/20 μl), a κ-opioid receptor antagonist, or dynorphin A (1–13) antibodies (25 μg/20 μl) administered 10 min prior to EA. In conclusion, while the steady-state spinal dynorphin release is low in morphine-dependent rats, it can be activated by 100-Hz EA stimulation, which may be responsible for eliciting an analgesic effect and ameliorating morphine withdrawal syndrome, most probably via interacting with κ-opioid receptor at spinal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号