首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The fact that the composition of acrylic bone cement, as used in cemented primary arthroplasties, is not optimal has been highlighted in the literature. For example: (i) deleterious effects of the radiopacifier (BaSO4 or ZrO2 particles in the powder) have been reported; (ii) there is an indication that pre-polymerized poly(methylmethacrylate) (PMMA) beads in the powder may be dispensed with; and (iii) there is a strong consensus that the accelerator commonly used, N,N-dimethyl-p-toluidine (DMPT), is toxic and has many other undesirable properties. At the same time, the effectiveness of drugs that contain a strontium compound in treating the effects of osteoporosis has been explained in terms of the role of strontium in bone formation and resorption. This indicates that strontium compounds may also have desirable effects on osseointegration of arthroplasties. The present study is a detailed evaluation of 24 acrylic bone cement formulations comprising different relative amounts of BaSO4, strontia (as an alternative radiopacifier), pre-polymerized PMMA beads and DMPT. A large number of properties of the curing and cured cement were determined, including setting time, polymerization rate, fracture toughness and fatigue life. The focus was on the radiopacifier, with the finding being that many properties of formulations that contained strontia were about the same or better than those for cements that contained BaSO4. Thus, further developmental work on strontia-containing acrylic bone cements is justified, with a view to making them candidates for use in cemented primary arthroplasties.  相似文献   

2.
Acrylic bone-cement formulations were prepared with the use of a new tertiary aromatic amine derived from oleic acid, and also by incorporating an acrylic monomer derived from the same acid with the aim of reducing the leaching of toxic residuals and improving mechanical properties. 4-N,N dimethylaminobenzyl oleate (DMAO) was used as an activator in the benzoyl-peroxide radical cold curing of polymethyl methacrylate. Cements that contained DMAO exhibited much lower polymerization exotherm values, ranging between 55 and 62 C, with a setting time around 16--17 min, depending on the amine/BPO molar ratio of the formulation. On curing a commercial bone cement, Palacosreg R with DMAO, a decrease of 20 C in peak temperature and an increase in setting time of 7 min were obtained, the curing parameters remaining well within limits permitted by the standards. In a second stage, partial substitution of MMA by oleyloxyethyl methacrylate (OMA) in the acrylic formulations was performed, the polymerization being initiated with the DMAO/BPO redox system. These formulations exhibited longer setting times and lower peak temperatures with respect to those based on PMMA. The glass transition temperature of the experimental cements were lower than that of PMMA cement because of the presence of long aliphatic chains of both activator and monomer in the cement matrix. Number average molecular weights of the cured cements were in the range of 1.2x10(5). PMMA cements cured with DMAO/BPO revealed a significant (p<0.001) increase in the strain to failure and a significant (p<0.001) decrease in Young's modulus in comparison to Palacosreg R, whereas ultimate tensile strength remained unchanged. When the monomer OMA was incorporated, low concentrations of OMA provided a significant increase in tensile strength and elastic modulus without impairing the strain to failure. The results demonstrate that the experimental cements based on DMAO and OMA have excellent promise for use as orthopaedic and/or dental grouting materials.  相似文献   

3.
The long term success of total joint replacement can be limited by fatigue failure of the acrylic cement and the resulting disruption of the bone-cement interface. The incidence of such problems may be diminished by reduction of the fatigue notch factor in the cement, so that stress concentrations are avoided and the fatigue crack initiation time maximized. This study describes a method for numerical shape optimization whereby the finite element method is used to determine an optimal shape for the femoral stem of a hip prosthesis in order to minimize the fatigue notch factor in the cement layer and at interfaces with the bone and stem.

A two-dimensional model of the proximal end of a femur fitted with a total hip prosthesis was used which was equivalent to a simplified three-dimensional axisymmetric model. Software was developed to calculate the fatigue notch factor in the cement along the cement/stem and cement/bone interfaces and in the proximal bone. The fatigue notch factor in the cement at the cement/stem interface was then minimized using the ANSYS finite element program while constraining the fatigue notch factor at the cement/bone interface at or below its initial level and maintaining levels of stress in the proximal bone to prevent stress shielding. The results were compared with those from other optimization studies.  相似文献   


4.
Poly(methyl methacrylate) (PMMA) bone cements have a long and successful history of use for implant fixation, but suffer from a relatively low fracture and fatigue resistance which can result in failure of the cement and the implant. Fiber or particulate reinforcement has been used to improve mechanical properties, but typically at the expense of the pre-cured cement viscosity, which is critical for successful integration with peri-implant bone tissue. Therefore, the objective of this study was to investigate the effects of zirconia fiber reinforcement on the fatigue life of acrylic bone cements while maintaining a relatively low pre-cured cement viscosity. Sintered straight or variable diameter fibers (VDFs) were added to a PMMA cement and tested in fully reversed uniaxial fatigue until failure. The mean fatigue life of cements reinforced with 15 and 20 vol% straight zirconia fibers was significantly increased by ~40-fold, on average, compared to a commercial benchmark (Osteobond?) and cements reinforced with 0–10 vol% straight zirconia fibers. The mean fatigue life of a cement reinforced with 10 vol% VDFs was an order of magnitude greater than the same cement reinforced with 10 vol% straight fibers. The time-dependent viscosity of cements reinforced with 10 and 15 vol% straight fibers was comparable to the commercial benchmark during curing. Therefore, the addition of relatively small amounts of straight and variable diameter zirconia fibers was able to substantially improve the fatigue resistance of acrylic bone cement while exhibiting similar handling characteristics compared to current commercial products.  相似文献   

5.
A generic finite element approach was developed to study the effect of adhesion on the mechanical response of bone cement composites and validated against literature data. The results showed that a zero friction bone-cement (PMMA) interface conditions captured the results of the experimental testing better than assuming a fully bonded interface. An experimental model for studying the effect of interface adhesion in a bone-cement like composite was also developed in the present study. The results using this model indicate that the difference in Young's modulus and ultimate strength between a fully bonded interface and unbonded interface is approximately 30% for bone volume fraction similar to what can be found in osteoporotic vertebrae. Apart from concluding that bone to cement adhesion is a major contributor to the mechanical response of bone-cement composites, our studies based on the generic FE approach also indicate that the mechanical properties of the cement is the most important contributor to the resulting mechanical properties of the composite at bone volume fraction relevant in terms of vertebroplasty treatment.  相似文献   

6.
Fractures in the bone-cement mantle (polymethyl methacrylate) have been linked to the failure of cemented total joint prostheses. The heat generated by the curing bone cement has also been implicated in the necrosis of surrounding bone tissue, leading to loosening of the implants. The addition of reinforcements may improve the fracture properties of bone cement and decrease the peak temperatures during curing. This study investigates the changes in the fracture properties and the temperatures generated in the ASTM F451 tests by the addition of 316L stainless steel fibers to bone cement. The influence of filler volume fraction (5-15% by volume) and aspect ratios (19, 46, 57) on the fracture toughness of the acrylic bone cement was assessed. Increasing the volume fraction of the steel fibers resulted in significant increases in the fracture toughness of the steel-fiber-reinforced composite. Fracture-toughness increases of up to 2.63 times the control values were obtained with the use of steel-fiber reinforcements. No clear trend in the fracture toughness was discerned for increasing aspect ratios of the reinforcements. There is a decrease in the peak temperatures reached during the curing of the steel-fiber-reinforced bone cement, though the decrease is too small to be clinically relevant. Large increases in the fatigue life of acrylic bone cement were also obtained by the addition of steel fibers. These results indicate that the use of steel fibers may enhance the durability of cemented joint prostheses.  相似文献   

7.
Lewis G  Sadhasivini A 《Biomaterials》2004,25(18):4425-4432
In the literature on fatigue testing of acrylic bone cements, data sets of various sizes have been used in different test series for the same cement formulation. There are two important consequences of this situation. First, it means that some test series last much longer than others, with all the implications for the cost of testing. Second, it makes drawing conclusions about the fatigue performance of a cement, based on the results of different literature series, a problematic issue. Clearly then, a recommendation as to what should be the minimum number of test specimens to use that would allow for confidence in the results of the statistical treatment of the test results (Gmin) would be desirable. In the present work, a method that could be used to culminate in such a recommendation is described. This method involves (i) obtaining experimental fatigue test results and (ii) analyzing those results using the Weibull probability distribution function and other statistical methods. This methodology is illustrated using fatigue life results obtained from uniaxial tension-compression fatigue tests on specimens fabricated from the polymerizing dough of one commercially available acrylic bone cement. For a tolerable error of 5%, we estimated Gmin to be either 7 (if the fatigue life results are treated using the two-parameter Weibull distribution function) or 11 (if the fatigue life results are treated using the three-parameter Weibull distribution function). To be on the conservative side, we therefore recommend that Gmin be 11. Three key limitations of the methodology presented here are discussed.  相似文献   

8.
9.
In this study, the fatigue strengths of acrylic cement prepared by various commercially available reduced pressure mixing systems were compared with the fatigue strength of cement mixed by hand (control) under atmospheric conditions. The following observations were made from this investigation. The mean fatigue strength of reduced pressure mixed acrylic bone cement is double that of cement mixed by hand using an open bowl, 11,354+/-6,441 cycles to failure for reduced pressure mixing in comparison with 5,938+/-3,199 cycles for mixing under atmospheric conditions. However, the variability in mean fatigue strengths of reduced pressure mixed bone cement is greater for some mixing devices. The variation in fatigue strengths for the different mixing techniques is explained by the different porosity distributions. The design of the reduced pressure mixing system and the technique employed during mixing strongly contribute to the porosity distribution within the acrylic bone cement. The level of reduced pressure applied during cement mixing has an effect on the fatigue strength of bone cement, but the mixing mechanism is significantly more influential.  相似文献   

10.
In order to minimize the problems associated with implant fixation using acrylic bone cement, we studied a new adhesive bone cement that consists of 4-methacryloyloxyethyl trimellitate anhydryde (4-META) and methylmethacrylate (MMA) as monomers, tri-n-butylborane (TBB) as an initiator, and PMMA powder (4-META/MMA-TBB cement). It shows remarkable adhesive properties to metal and bone in vitro. The purpose of this study was to evaluate the strength of the bond of the cement to both metal and bone in vivo under weight-bearing conditions. Metal prostheses were implanted in the right femora of 12 rabbits using either adhesive 4-META/MMA-TBB cement or the conventional PMMA cement, as the control, for fixation. After 4 and 12 weeks, both femora were excised and the same operations were performed in the left femora in vitro. Eighteen femora were sectioned for the mechanical assessment of the bone-cement and cement-implant interfaces. 4-META/MMA-TBB cement had a significantly higher interfacial shear strength than the conventional PMMA cement: 201 N and 90 N, on average, for the implant-cement interface (p<0.01); and 138 N and 89 N, on average, for the bone-cement interface (p<0.01), at 12 weeks. The present results suggest the efficacy of 4-META/MMA-TBB cement in providing greater fixation of implants to bone and promise a firmer intramedullary fixation than the control conventional PMMA cement.  相似文献   

11.
This paper reports on the damaging effects of different percentage porosities on the fatigue life of acrylic bone cement as used in the fixation of orthopaedic implants. Both hand-mixed (HM) and vacuum-mixed (VM) specimens containing different levels of porosity were fatigue tested to failure. A negative correlation between porosity level and fatigue life was demonstrated for both techniques. Considerable scatter was present in the data. Using the pore size distributions for HM and VM cement virtual HM and VM specimens were created containing various levels of porosity. Incorporating the effect of pore size and pore clustering quantified previously using the theory of critical distances a fatigue life prediction could be obtained for the virtual specimens. The virtual data agreed strongly with the experimental findings, predicting the correlation and more significantly the scatter in the experimental results. Using the virtual porosity failure model, it was demonstrated that given a constant porosity the fatigue life can vary by over an order of magnitude in both HM and VM cement. This suggests that not only porosity level but pore size distribution is extremely important in controlling the fatigue life of bone cement. It was verified that pore clustering and pore size are the major contributors to failure in HM and VM cement respectively. Furthermore, given the beneficial effects of porosity it has been proposed that an even distribution of small pores would provide an optimal bone cement mantle. Using the virtual model, it was determined that neither technique was capable of achieving such a distribution indicating a need for a new more reliable technique. The TCD based virtual porosity failure model should prove to be a powerful tool in the design of such a technique.  相似文献   

12.
This study was conducted to investigate some fundamental fatigue testing variables as they apply to the response characteristics of acrylic bone cement. Cyclic loading under load control was conducted at frequencies of 1, 2, 5, 10, and 20 Hz in air at room temperature. At a tensile stress range of 0.3-20.0 MPa the fatigue life increased linearly with logarithmic frequency. The effect of conditioning and testing in saline at both room temperature and 37 degrees C at similar stress levels and a frequency of 10 Hz were also examined. When compared to dry testing at room temperature, testing in saline at 37 degrees C resulted in a reduction in fatigue life while testing in saline at room temperature produced an increase in fatigue life. Of a number of statistical distributions considered, the Weibull was found to be the most appropriate in documenting the findings of this investigation. A companion fractographic investigation of the failure surfaces demonstrated distinct regions of crack growth and fast fracture.  相似文献   

13.
The present work is concerned with applications of a kinetic model for free-radical polymerization of a polymethylmethacrylate-based bone cement. Autocatalytic behavior at the first part of the reaction as well as a diffusion control phenomenon near vitrification are described by the model. Comparison of theoretical computations with experimental measurements for the temperature evolution during batch casting demonstrated the capacity of the proposed model to represent the kinetic behavior of the polymerization reaction. Temperature evolution and monomer conversion were simulated for the cure of the cement in molds made of different materials. The maximum monomer conversion fraction was markedly influenced by the physical properties of the mold material. The unreacted monomer acts as a plasticizer that influences the mechanical behavior of the cement. Hence, the same cement formulation cured in molds of different materials may result in different mechanical response because of the differences in the amounts of residual monomer. Standardization of the mold type to prepare specimens for the mechanical characterization of bone cements is recommended. Theoretical prediction of temperature evolution during hip replacement indicated that for cement thickness lower than 6 mm the peak temperature at the bone-cement interface was below the limit stated for thermal injury (50 degrees C for more than 1 min). The use of thin cement layers is recommended to diminish the risk of thermal injury; however, it is accompanied by an increase in the amount of unreacted monomer present in the cured material.  相似文献   

14.
The influence of the storage temperature of the cement constituents prior to mixing (21 vs. 4 degrees C) and the mixing method (hand mixing vs. vacuum mixing) on the uniaxial tension-compression fatigue performance and porosity of Palacos R acrylic bone cement was studied. The fatigue results were analyzed using the three-parameter Weibull equation. The fatigue performance was expressed as an index I, which was defined as the product of the Weibull characteristic fatigue life and the square root of the Weibull slope. Statistical analyses of these results show that although the mixing method (for a given storage temperature) exerts a significant influence on the fatigue performance and areal porosity, the effect of storage temperature (for a given mixing method) on either of these parameters is not significant.  相似文献   

15.
The composition of acrylic bone cement has been identified as one of the important parameters affecting its mechanical properties and may, in turn, ultimately influence the longevity of a cemented arthroplasty. Our aim in this study was to determine the influence of change of one compositional variable, the activator, on the fatigue performance and fracture toughness of specimens of the fully cured cement. To that end, three sets of cements were prepared, containing either the conventional activator, 4-N,N dimethyl p-toluidine (DMPT), or novel ones that are tertiary amines based on long-chain fatty acids, that is, 4-N,N dimethylaminobenzyl oleate (DMAO) and 4-N,N dimethylaminobenzyl laurate (DMAL). In the fatigue tests, the specimens were subjected to tension-tension loading, and the results (number of cycles to failure, Nf) were analyzed using the linearized form of the three-parameter Weibull equation. The fracture toughness (KIc) tests were conducted with rectangular compact tension specimens. All fracture surfaces were subsequently examined with scanning electron microscopy. We found that the Weibull mean fatigue lives for specimens fabricated using the DMPT, DMAL, and DMAO containing cements were 272,823, 453,551, and 583,396 cycles, respectively. The corresponding values for KIc were 1.94 +/- 0.05, 2.06 +/- 0.09, and 2.00 +/- 0.07 MPa radical m, respectively. Statistical analyses showed that for both the DMAL- and DMAO-containing cements, the mean values of Nf were significantly higher compared to the corresponding value for the DMPT-containing cement (Mann-Whitney test; alpha < 0.10). This result is attributed to the higher molecular weights of the former cements compared to the latter. The same trend was found for the mean KIc values (Mann-Whitney test; alpha < 0.05), with the trend being explained in terms of the differences seen in the crack morphologies. These results thus demonstrate that these novel amines are viable alternatives to DMPT for incorporation into acrylic bone cement formulations in the future.  相似文献   

16.
Lewis G  Janna SI 《Biomaterials》2004,25(7-8):1415-1420
During a cemented arthroplasty, the prepared polymerizing dough of acrylic bone cement is subjected to pressurization in a number of ways; first, during delivery into the freshly prepared bone bed, second, during packing in that bed (either digitally or with the aid of a mechanical device), and, third, during the insertion of the prosthesis. Only a few studies have reported on the influence of the level of pressurization experienced during these events (which, depending on the cementing technique used, has been put at between 8 and 273 kPa) on various properties of the cement. That was the focus of the present study, in which the fully reversed tension-compression (+/-15 MPa; 5 Hz) fatigue lives (expressed as number of cycles to fracture, N(f)) of rectangular cross-sectioned "dog-bone" specimens (Type V, per ASTM D 638) fabricated from Cemex XL cement, at pressure applied continuously to the cement dough during curing in the specimen mold, p=75,150, and 300 kPa, were determined. The N(f) results were analyzed using the linearized transformation of the three-parameter Weibull relationship to obtain estimates of the Weibull mean, N(WM), which was taken to be the index of fatigue performance of the specimen set. Over the range of p studied, N(WM) increased as p increased (for example, from 329,118 cycles when p was 75 kPa to 388,496 cycles when p was 300 kPa); however, the increase was not significant over any pair of p increment steps (Mann-Whitney U-test; alpha<0.05).  相似文献   

17.
Numerical studies were performed to investigate bone cement polymerization, temperature history and thermal osteonecrosis in cemented hip replacements with finite element methods. In this paper, the effects of pre-cooling and pre-heating of the prosthesis and/or the cement prior to implantation were simulated. It was found that the cement polymerization initiated near the bone-cement interface and progressed toward the prosthesis when both the cement and prosthesis were initially at room temperature. When the prosthesis and/or cement were pre-cooled, a reduction of the peak temperature at the bone-cement interface resulted, and this may reduce thermal osteonecrosis. However, this also slowed the polymerization process, and may result in a weaker bone cement. If the prosthesis was significantly initially heated, bone cement polymerization reversed reaction direction, started from the cement-prosthesis interface and proceeded toward the bone. Such polymerization direction may reduce or eliminate the formation of voids at the cement-prosthesis interface. Numerical results also showed that pre-heating seemed unlikely to produce significant thermal damage to the bone. The method of pre-heating the prosthesis prior to implantation may decrease the likelihood of cement-prosthesis loosening and increase the life of total hip arthroplasty.  相似文献   

18.
Mechanical failure of poly(methyl methacrylate) (PMMA) bone cement is linked to failure of cemented total joint prostheses. An essential step to minimize, if not eliminate, cement fracture is to understand the material characteristics controlling fracture resistance. At least four phases of bone cement can be identified that may affect the damage zone formation: pre-polymerized beads, interbead matrix polymer, BaSO4, and porosity. Gel permeation chromatography (GPC) was used to determine the molecular weight (MW) distributions of the two polymer phases. Mechanical testing, scanning electron microscopy and light microscopy were used to analyse fracture mechanisms. Fatigue crack propagation of bone cement was distinctly different from rapid crack propagation. Microcracks defined the damage zone for fatigue fracture. The microcracks developed in the interbead matrix and not through the pre-polymerized beads. Light microscopy revealed evidence of craze formation on surfaces of fractured beads during rapid fracture, but not on fatigue surfaces. GPC analysis indicated an increase in MW from the bead phase alone to the fully cured bone cement, indicating a greater MW in the interbead matrix polymer. Increases of 36 and 176% were measured for two different bone cements, but the bulk of the polymer has an MW of less than 1 × 106. Three factors were suggested to explain why the microcracks seem to prefer to grow in the interbead matrix: the presence of BaSO4, shrinkage during the curing process, and the different polymerization processes of the bead and the interbead polymers. Pores had an affect on the microcrack formation as well, and did not need to be directly in front of the crack tip to interact with the damage zone. The pores seemed to act as nucleation sites for microcracks. The porosity-microcrack nucleation interaction may explain and reconcile the apparently disparate results concerning the effect of porosity on fracture toughness and fatigue life. Porosity may, however, also provide positive contributions to the fracture properties of bone cement by dispersing the energy at the crack tip, forming a larger damage zone, and effectively blunting the crack. The crack propagation mechanisms revealed by this research indicated the importance of microstructure in the fatigue failure of PMMA.  相似文献   

19.
In all acrylic bone cement formulations in clinical use today, radiopacity is provided by micron-sized particles (typical mean diameter of between about 1 and 2 microm) of either BaSO(4) or ZrO(2). However, a number of research reports have highlighted the fact that these particles have deleterious effects on various properties of the cured cement. Thus, there is interest in alternative radiopacifiers. The present study focuses on one such alternative. Specifically, a cement that contains covalently bound iodine in the powder (herein designated the I-cement) was compared with a commercially available cement of comparable composition (C-ment3), in which radiopacity is provided by BaSO(4) particles (this cement is herein designated the B-cement), on the basis of the strength (sigma(b)), modulus (E(b)), and work-to-fracture (U(b)), under four-point bending, plane-strain fracture toughness (K(IC)), Weibull mean fatigue life, N(WM) (fatigue conditions: +/-15 MPa; 2 Hz), activation energy (Q), and frequency factor (ln Z) for the cement polymerization process (both determined by using differential scanning calorimetry at heating rates of 5, 10, 15, and 20 K min(-1)), and the diffusion coefficient for the absorption of phosphate-buffered saline at 37 degrees C (D). For the B-cement, the values of sigma(b), E(b), U(b), K(IC), N(WM), Q, ln Z, and D were 53 +/- 3 MPa, 3000 +/- 120 MPa, 108 +/- 15 kJ m(-3), 1.67 +/- 0.02 MPa check mark m, 7197 cycles, 243 +/- 17 kJ mol(-1), 87 +/- 6, and (3.15 +/- 0.94) x 10(-12) m(2) s(-1), respectively. For the I-cement, the corresponding values were 58 +/- 5 MPa, 2790 +/- 140 MPa, 118 +/- 45 kJ m(-3), 1.73 +/- 0.11 MPa check mark m, 5520 cycles, 267 +/- 19 kJ mol(-1), 95 +/- 9, and (3.83 +/- 0.25) x 10(-12) m(2) s(-1). For each of the properties of the fully cured cement, except for the rate constant of the polymerization reaction, at 37 degrees C (k'), as estimated from the Q and ln Z results, there is no statistically significant difference between the two cements. k' for the I-cement was about a third that for the B-cement, suggesting that the former cement has a higher thermal stability. The influence of various characteristics of the starting powder (mean particle size, particle size distribution, and morphology) on the properties of the cured cements appears to be complex. When all the present results are considered, there is a clear indication that the I-cement is a viable candidate cement for use in cemented arthroplasties in place of the B-cement.  相似文献   

20.
Aseptic loosening is a major complication of joint replacements and is thought to be associated with a heavy macrophage infiltrate in response to wear particles. Bisphosphonates are compounds known to inhibit osteoclastic activity and are used to reduce osteolysis in Paget's disease, osteoporosis, and metastatic bone disease. Oral bisphosphonates have also been used to decrease osteolysis and therefore prevent aseptic loosening of joint replacements. It has been suggested that bisphosphonates mixed in bone cement can reduce bone resorption in joint replacement surgery. This would be an excellent therapeutic option to prevent or control osteolysis. The present aim was to study the mechanical properties of a commercially available acrylic bone cement, Palacos R, mixed with the bisphosphonate pamidronate. The liquid monomer of Palacos R was mixed with liquid pamidronate. Two groups of bone-cement strips were produced, one with added pamidronate and one without. The flexural properties of the cement strips were examined. A significant reduction in both the bending modulus and bending strength of the specimens with added pamidronate was found. In conclusion, the use of liquid pamidronate mixed with the acrylic bone cement Palacos R in order to reduce osteolysis is not recommended because of its effect on the mechanical properties of Palacos R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号