首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies delineate substantial genetic components in Parkinson's disease (PD). However, very few studies were performed in Sub-Saharan African populations. Here, we explore the contribution of known PD-causing genes in patients of indigenous Zambian ancestry. We studied thirty-nine Zambian patients, thirty-eight with PD and one with parkinsonian-pyramidal syndrome (18% familial; average onset age 54.9 ± 12.2 years). In the whole group, all SNCA exons and LRRK2 exons 29 to 48 (encoding for important functional domains) were sequenced. In the familial patients and those with onset <55 years (n = 22) the whole LRRK2 coding region was sequenced (51 exons). In the patients with onset <50 years (n = 12), all parkin, PINK1, and DJ-1 exons were sequenced, and dosage analysis of parkin, PINK1, DJ-1, LRRK2, and SNCA was performed. Dosage analysis was also performed in the majority of the late-onset patients. The LRRK2 p.Gly2019Ser mutation was not detected. A novel LRRK2 missense variant (p.Ala1464Gly) of possible pathogenic role was found in one case. Two heterozygous, likely disease-causing deletions of parkin (exon 2 and exon 4) were detected in an early-onset case. Pathogenic mutations were not detected in SNCA, PINK1, or DJ-1. We also report variability at several single nucleotide polymorphisms in the above-mentioned genes. This is the first molecular genetic study in Zambian PD patients, and the first comprehensive analysis of the LRRK2 and SNCA genes in a Sub-Saharan population. Common disease-causing mutations were not detected, suggesting that further investigations in PD patients from these populations might unravel the role of additional, still unknown genes.  相似文献   

3.
To date 11 forms of familial Parkinson's disease (PD) have been mapped to different chromosome loci, of which 6 genes have been identified as the causative genes, i.e., alpha-synuclein (SNCA), parkin, UCH-L1, PINK1, DJ-1, and LRRK2. For UCH-L1, additional families with this mutation are necessary before concluding that UCH-L1 is the definite causative gene for PARK5, as only one family so far has been reported. SNCA, UCH-L1, and LRRK2 mutations cause autosomal dominant PD and the remaining gene mutations autosomal recessive PD. Age of onset tends to be younger in familial PD compared with sporadic PD, particularly so in autosomal recessive PD. Generally familial cases respond to levodopa quite nicely and progression of the disease tends to be slower. It is an interesting question how familial PD-causing proteins are mutually related each other. In this article, we review recent progress in genetics and molecular biology of familial PD.  相似文献   

4.
Data on the frequency of PINK1 mutations in Brazilian patients with early‐onset Parkinson's disease (EOPD) are lacking. The aim of this report was to investigate mutations of the PINK1 gene in a cohort of Brazilian patients with EOPD. Sixty consecutive familial or sporadic EOPD patients were included. All eight PINK1 exons and exon‐intron boundaries were analyzed. We did not find any pathogenic mutation of PINK1 in our cohort. Single Nucleotide Polymorphisms (SNP) were identified in 46.7% of the patients and in 45.9% of controls (P = 0.9). The SNPs identified in our patients had already been described in previous reports. The results of our study support the hypothesis that mutations in PINK1 may not be a relevant cause of EOPD. In Brazil, if we consider only EOPD patients, it seems that parkin and LRRK2 mutations are more common. © 2009 Movement Disorder Society  相似文献   

5.
Parkinson's disease (PD) is characterized by progressive dopaminergic neuronal loss and the formation of abnormal protein aggregates, referred to as Lewy bodies (LBs). PINK1 is a serine/threonine protein kinase that protects cells from stress‐induced mitochondrial dysfunction. PINK1 gene mutations cause one form of autosomal recessive early‐onset PD. Transglutaminase 2 (TG2) is an intracellular protein cross‐linking enzyme that has an important role in LB formation during PD pathogenesis. This study identifies PINK1 as a novel TG2 binding partner and shows that PINK1 stabilizes the half‐life of TG2 via inhibition of TG2 ubiquitination and subsequent proteasomal degradation. PINK1 affects TG2 stability in a kinase‐dependent manner. In addition, PINK1 directly phosphorylates TG2 in carbonyl cyanide m‐chlorophenyl hydrazine‐induced mitochondrial damaged states, thereby enhancing TG2 accumulation and intracellular protein cross‐linking products. This study further confirms the functional link between upstream PINK1 and downstream TG2 in Drosophila melanogaster. These data suggest that PINK1 positively regulates TG2 activity, which may be closely associated with aggresome formation in neuronal cells. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Parkinson's disease (PD) is the second most common neurodegenerative disorder among elderly people. 5-10% of PD cases are familial and presumably hereditary forms. Based on the genes responsible for familial PD, genetic PD animal models were produced and provided invaluable information as to the pathogenetic mechanisms of PD. Missense mutations or gene multiplications of alpha-synuclein lead to autosomal dominant form of familial PD termed PARK1 or PARK4, respectively. Transgenic (Tg) mice expressing mutant of wild-type alpha-synuclein replicated main clinical features of PD including Lewy body-like aggregate formation. Inactivation of Parkin E3 enzyme leads to autosomal recessive form of PD without Lewy body formation. We have identified Pael-R as a substrate of Parkin. Accumulation of Pael-R induced by Parkin deletion evokes endoplasmic reticulum (ER) stress, resulting in cell death in cultured cells, Pael-R Tg Drosophila and Parkin-knockout crossed with Pael-R Tg mice. Recently Parkin-deficient and PTEN-induced kinase 1 (PINK1)-deficient flies showed almost identical phenotype: muscle and sperm degeneration accompanied by mitochondrial abnormalities. PINK1 is the gene for PARK6, an autosomal recessive PD. Interestingly, overexpression of Parkin rescued the phenotype of PINK1-deleted fly and Parkin/PINK1 double knockout Drosophila did not aggravated the phenotype of either Parkin or PINK1 single knockouts, indicating that Parkin and PINK1 are located in the common signaling pathway, in which Parkin works downstream of PINK1. Further studies on familial PD animal models will elucidate the roles and relationships of ubiquitin-proteasome system, endoplasmic reticulum and mitochondria in the pathogenesis of PD.  相似文献   

7.
BackgroundRecessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (EOPD). The clinical phenotype of families that have this PINK1-associated disease may present with different symptoms, including typical PD. The loss of the PINK1 protein may lead to mitochondrial dysfunction, which causes dopaminergic neuron death.MethodsThe clinical phenotypes of a large Polish family with EOPD and an identified PINK1 homozygous nonsense mutation were assessed. Ubiquitination and degradation of mitochondrial parkin substrates as well as mitochondrial bioenergetics were investigated as direct functional readouts for PINK1's kinase activity in biopsied dermal fibroblasts.ResultsA four-generation family was genealogically evaluated. Genetic screening identified two affected subjects who were both homozygous carriers of the pathogenic PINK1 p.Q456X substitution. Both patients presented with dystonia and gait disorders at symptom onset. Seven heterozygous mutation carriers remained unaffected. Functional studies revealed that the PINK1 p.Q456X protein is non-functional in activating the downstream ubiquitin ligase parkin and priming the ubiquitination of its substrates, and that the RNA levels of PINK1 were significantly reduced.ConclusionsThe PINK1 p.Q456X mutation leads to a decrease in mRNA and a loss of protein function. The foot dystonia and gait disorders seen at disease onset in affected members of our family, which were accompanied by parkinsonism had a similar clinical presentation to what has been described in previous reports of PINK1 mutation carriers.  相似文献   

8.
Approximately 3.6% of patients with Parkinson's disease develop symptoms before age 45. Early‐onset Parkinson's disease (EOPD) patients have a higher familial recurrence risk than late‐onset patients, and 3 main recessive EOPD genes have been described. We aimed to establish the prevalence of mutations in these genes in a UK cohort and in previous studies. We screened 136 EOPD probands from a high‐ascertainment regional and community‐based prevalence study for pathogenic mutations in PARK2 (parkin), PINK1, PARK7 (DJ‐1), and exon 41 of LRRK2. We also carried out a systematic review, calculating the proportion of cases with pathogenic mutations in previously reported studies. We identified 5 patients with pathogenic PARK2, 1 patient with PINK1, and 1 with LRRK2 mutations. The rate of mutations overall was 5.1%. Mutations were more common in patients with age at onset (AAO) < 40 (9.5%), an affected first‐degree relative (6.9%), an affected sibling (28.6%), or parental consanguinity (50%). In our study EOPD mutation carriers were more likely to present with rigidity and dystonia, and 6 of 7 mutation carriers had lower limb symptoms at onset. Our systematic review included information from >5800 unique cases. Overall, the weighted mean proportion of cases with PARK2 (parkin), PINK1, and PARK7 (DJ‐1) mutations was 8.6%, 3.7%, and 0.4%, respectively. PINK1 mutations were more common in Asian subjects. The overall frequency of mutations in known EOPD genes was lower than previously estimated. Our study shows an increased likelihood of mutations in patients with lower AAO, family history, or parental consanguinity. © 2012 Movement Disorder Society.  相似文献   

9.
Genomic rearrangements (exon dosage) are common mutations reported in Parkinson's disease (PD) patients. In the present study, we aimed to investigate the prevalence of genomic rearrangements in 88 South African patients with predominantly early-onset PD (age-at-onset ≤50 years). The multiplex ligation-dependent probe amplification method was used to detect exon dosage changes. Two commercially available probe kits, SALSA P051 and P052, were used and together the kits consisted of probes for exons of α-synuclein, parkin, PINK1, DJ-1, LRRK2, UCH-L1, ATP13A2, LPA, TNFRSF9, CAV2, CAV1, GCH1, and two-point mutations. We identified exonic rearrangements in parkin and α-synuclein in 8% of South African patients from different ethnic groups. One patient had a whole-gene triplication of α-synuclein; representing only the fourth family with this mutation reported to date. We found six patients with parkin mutations who had either heterozygous duplications and deletions, or homozygous deletions. A false positive result of an exonic deletion detected in one patient turned out to be homozygous point mutation (Y258X) in PINK1. No exonic rearrangements were found in four of the PD genes; LRRK2, PINK1, DJ-1, and ATP13A2. Mutations in parkin were the predominant genetic cause; however, the frequency of exon dosage in our study group is low compared with previous studies. This indicates the possible involvement of other as yet unidentified PD genes in the development of the disease in the South African population.  相似文献   

10.
BACKGROUND: To date, 5 well-confirmed genes for Parkinson disease (PD) have been identified, including 3 autosomal recessive genes: PTEN-induced putative kinase 1 (PINK1), parkin, and DJ-1. Almost nothing is known about the genetics of PD in Saudi Arabia; however, consanguineous families, not infrequent in this population, could be important in the evaluation of known PD genes and the search for new PD factors in the future. OBJECTIVE: To investigate known recessive PD genes in 5 consanguineous Saudi families with PD. DESIGN: The entire open frame as well as the untranslated region and all 5' and 3' intron-exon boundaries of the PINK1, parkin, and DJ-1 genes were sequenced in 5 probands in Saudi families. RESULTS: Four of 5 probands tested negative for PINK1, parkin, and DJ-1 mutations. However, in a large Saudi family with PD with at least 3 consanguineous marriages between first cousins, we detected a threonine to methionine substitution at codon 313 (T313M) PINK1 mutation that affected the kinase domain. Manifestations of the disease in this family included early onset (age, 28-38 years), tremulous movement, slow progression, diurnal fluctuations, bradykinesia, good response to levodopa therapy, and only mild dyskinesias. A neurologist blinded to genetic status clinically evaluated 15 family members, all older than 20 years, and diagnosed PD only in individuals who were later found to be homozygous for the T313M mutation. None of the 13 heterozygotes demonstrated any sign of PD. CONCLUSION: A homozygous T313M mutation is responsible for PD in this large Saudi family. However, the heterozygous T313M mutation does not act as a PD susceptibility factor, which is in contrast to several reports of mutations affecting only 1 PINK1 allele discovered in sporadic PD.  相似文献   

11.
Recent authors have concluded that Parkinson's disease (PD) is too heterogeneous to still be considered a single discrete disorder. They advise broadening the concept of PD to include genetic parkinsonisms, and discard Lewy pathology as the confirmatory biomarker. However, PD seen in the clinic is more homogeneous than often recognized if viewed from a long-term perspective. With appropriate diagnostic criteria, it is consistently associated with Lewy neuropathology, which should remain the gold standard for PD diagnostic confirmation. PD seen in the clinic has an inexorable course with eventual development of not only levodopa-refractory motor symptoms, but often cognitive dysfunction and prominent dysautonomia. This contrasts with homozygous parkin, PINK1 or DJ1 parkinsonism, characterized by young-onset (usually <40 years), and a comparatively benign course of predominantly levodopa-responsive symptoms without dementia or prominent dysautonomia. Parkin neuropathology is non-Lewy, with neurodegeneration predominantly confined to substantia nigra (and locus ceruleus), consistent with the limited clinical phenotype. Given the restricted and persistently levodopa-responsive phenotype, these familial cases might be considered “nigropathies”. Based on emerging laboratory evidence linking parkin and PINK1 (and perhaps DJ1) to mitochondrial dysfunction, these nigropathies may represent nigral mitochondrial cytopathies. The dopaminergic substantia nigra is uniquely vulnerable to mitochondrial challenges, which might at least be partially attributable to large energy demands consequent to thin, unmyelinated axons with enormous terminal fields. Although sporadic PD is also associated with mitochondrial dysfunction, Lewy neurodegeneration represents a more pervasive disorder with perhaps a second, or different primary mechanism.  相似文献   

12.
Recessive Parkinson's disease.   总被引:3,自引:0,他引:3  
Parkinson's disease (PD) is a progressive neurodegenerative disease caused by loss of dopaminergic neurons in the substantia nigra pars compacta. Although the etiology of PD remains unclear, it is now clear that genetic factors contribute to the pathogenesis of the disease. Recently, several causative genes have been identified in monogenic forms of PD. Accumulating evidence indicates that their gene products play important roles in mitochondrial function, oxidative stress response, and the ubiquitin-proteasome system, which are also implicated in sporadic PD, suggesting that these gene products share a common pathway to nigral degeneration in both familial and sporadic PD. Here, we review recent advances in knowledge about genes associated with recessive PD, including parkin, PINK1, and DJ-1.  相似文献   

13.
Parkinson's Disease (PD) is a common neurodegenerative disorder that is characterized by the progressive loss of dopamine (DA) neurons. Accompanying the loss the of DA neurons is the accumulation of Lewy bodies and neurites, intracytoplasmic proteinaceous inclusions that contain alpha-synuclein, synphilin-1, components of the ubiquitin proteasomal pathway and parkin. Recent advances indicate that PD is due in some individuals to genetic mutations in alpha-synuclein, DJ-1, PINK-1, LRRK2, and parkin. Understanding the molecular mechanisms by which mutations in familial-linked genes cause PD holds great promise for unraveling the mechanisms by which DA neurons degenerate in PD. Parkin is E3-ubiquitin-protein ligase that ubiquitinates itself and promotes its own degradation. Familial associated mutations of parkin have impaired ubiquitin ligase function suggesting that this may be the cause of familial autosomal recessive PD. Parkin might be required for formation of Lewy bodies as Lewy bodies are absent in patients with parkin mutations. Parkin interacts with and ubiquitinates the alpha-synuclein interacting protein, synphilin-1. Formation of Lewy-body-like ubiquitin-positive cytosolic inclusions occurs upon coexpression of alpha-synuclein, synphilin-1 and parkin. Nitric oxide inhibits Parkin's E-3 ligase activity and its protective function by nitric oxide through S-nitrosylation both in vitro and in vivo. Nitrosative and oxidative stress link parkin function with the more common sporadic form of Parkinson's disease and the related alpha-synucleinopathy, DLBD. Development of new therapies for PD and other disorders associated with nitrosative and oxidative stress may follow the elucidation of the pathways by which NO S-nitrosylates and inhibits parkin. Moreover, parkin and alpha-synuclein are linked in common pathogenic mechanism through their interaction with synphilin-1 and parkin may be important for the formation of Lewy bodies.  相似文献   

14.
Inzelberg R  Jankovic J 《Neurology》2007,69(15):1542-1550
There is substantial evidence based on well designed epidemiologic studies for low cancer rates in patients with Parkinson disease (PD). This risk reduction cannot be attributed to the recognized low life-long incidence of smoking in patients with PD, as not only smoking-related cancers but also non-smoking-related ones are less common in PD. Whereas the risk for most cancers appears to be relatively low in patients with PD, breast cancer and melanomas occur more frequently in the PD population as compared with controls. The relationship between this peculiar pattern of cancer rates and PD might be related to the involvement of common genes in both diseases. Mutations in parkin gene, for example, have been reported in several types of cancer. Furthermore, genes involved in familial forms of PD appear to be abnormally expressed in cancers. Thus, parkin and PINK1 might be tumor suppressor genes, whereas DJ-1 is an oncogene. Cell survival signals may differ owing to mutated genes and represent two opposite extremes such as cell proliferation in cancer and cell death due to apoptosis in PD. Unraveling the link between PD and cancer may open a therapeutic window for both diseases.  相似文献   

15.
Hyposmia is a common nonmotor feature of Parkinson's disease (PD) and has been variably detected in monogenic Parkinsonisms. To assess olfactory dysfunction in PINK1‐related Parkinsonism, we evaluated olfactory detection threshold, odor discrimination, and odor identification in five groups of subjects: sporadic PD (n = 19), PINK1 homozygous (n = 7), and heterozygous (n = 6) parkinsonian patients, asymptomatic PINK1 heterozygous carriers (n = 12), and Italian healthy subjects (n = 67). All affected subjects and all healthy heterozygotes but one resulted hyposmic, with most patients in the range of functional anosmia or severe hyposmia. Detection threshold was more preserved and discrimination more impaired in patients with PINK1 mutations than in PD cases. Alterations of detection and discrimination were observed also in PINK1 asymptomatic heterozygotes. On the contrary, odor identification appeared to be mostly related to the disease status, as it was impaired in nearly all patients (including PD and PINK1 cases) and preserved in healthy heterozygotes. Our data indicate that olfactory dysfunction is common in PINK1 Parkinsonism and consists typically in defective odor identification and discrimination. A milder olfactory deficit, mostly involving discrimination, can be found in asymptomatic heterozygotes, possibly indicating an underlying preclinical neurodegenerative process. © 2009 Movement Disorder Society  相似文献   

16.
17.
The association of six genes with monogenic forms of parkinsonism has unambiguously established that the disease has a genetic component. Of these six genes, LRRK2 (leucine-rich repeat kinase 2, or PARK8), parkin (PARK2), and PINK1 (PTEN-induced putative kinase 1, or PARK6) are the most clinically relevant because of their mutation frequency. Insights from initial familial studies suggest that LRRK2-associated parkinsonism is dominantly inherited, whereas parkinsonism linked to parkin or PINK1 is recessive. However, screening of patient cohorts has revealed that up to 70% of people heterozygous for LRRK2 mutations are unaffected, and that more than 50% of patients with mutations in parkin or PINK1 have only a single heterozygous mutation. Deciphering the role of heterozygosity in parkinsonism is important for the development of guidelines for genetic testing, for the counselling of mutation carriers, and for the understanding of late-onset Parkinson's disease. We discuss the roles of heterozygous LRRK2 mutations and heterozygous parkin and PINK1 mutations in the development of parkinsonism, and propose an integrated aetiological model for this complex disease.  相似文献   

18.
Parkinson's disease (PD), the most frequent movement disorder, is caused by the progressive loss of the dopamine neurons within the substantia nigra pars compacta (SNc) and the associated deficiency of the neurotransmitter dopamine in the striatum. Most cases of PD occur sporadically with unknown cause, but mutations in several genes have been linked to genetic forms of PD (α-synuclein, Parkin, DJ-1, PINK1, and LRRK2). These genes have provided exciting new avenues to study PD pathogenesis and the mechanisms underlying the selective dopaminergic neuron death in PD. Epidemiological studies in humans, as well as molecular studies in toxin-induced and genetic animal models of PD show that mitochondrial dysfunction is a defect occurring early in the pathogenesis of both sporadic and familial PD. Mitochondrial dynamics (fission, fusion, migration) is important for neurotransmission, synaptic maintenance and neuronal survival. Recent studies have shown that PINK1 and Parkin play crucial roles in the regulation of mitochondrial dynamics and function. Mutations in DJ-1 and Parkin render animals more susceptible to oxidative stress and mitochondrial toxins implicated in sporadic PD, lending support to the hypothesis that some PD cases may be caused by gene–environmental factor interactions. A small proportion of α-synuclein is imported into mitochondria, where it accumulates in the brains of PD patients and may impair respiratory complex I activity. Accumulation of clonal, somatic mitochondrial DNA deletions has been observed in the substantia nigra during aging and in PD, suggesting that mitochondrial DNA mutations in some instances may pre-dispose to dopamine neuron death by impairing respiration. Besides compromising cellular energy production, mitochondrial dysfunction is associated with the generation of oxidative stress, and dysfunctional mitochondria more readily mediate the induction of apoptosis, especially in the face of cellular stress. Collectively, the studies examined and summarized here reveal an important causal role for mitochondrial dysfunction in PD pathogenesis, and suggest that drugs and genetic approaches with the ability to modulate mitochondrial dynamics, function and biogenesis may have important clinical applications in the future treatment of PD.  相似文献   

19.
目的 探讨硫辛酸(lipoic acid,LA)对MPTP诱导的C57BL/6帕金森病(Parkinson's disease,PD)小鼠模型黑质及纹状体TH、parkin、PINK1、DJ-1自噬相关蛋白表达水平的影响。方法 将60只C57BL/6小鼠随机分为PD模型组、正常组、治疗组、预保护组,采用背部皮下注射MPTP制作PD模型(每组各15只),行为学评价造模,Western Blotting法检测黑质、纹状体TH、parkin、PINK1、DJ-1蛋白的表达水平,免疫组化法观察黑质及纹状体阳性神经元数,免疫荧光检测PINK1的表达水平。结果(1)与正常组比较,PD模型组小鼠黑质、纹状体内TH、Parkin、PINK1、DJ-1的表达水平均明显降低(P<0.01);(2)与PD模型组比较,预保护组黑质、纹状体内TH、PINK1、Parkin、DJ-1表达水平均明显增高(P<0.05);(3)与治疗组比较,预保护组小鼠黑质、纹状体内TH、PINK1、Parkin表达水平略增高,预保护组DJ-1表达水平略降低,但两组比较无统计学差异(P>0.05)。结论 线粒体自噬参与PD小鼠的发病过程; 硫辛酸可能通过上调PD小鼠自噬相关蛋白的表达水平而发挥对多巴胺神经元的保护作用,从而为PD的防治提供新的思路。  相似文献   

20.
Two mutations in the alpha-synuclein gene and various mutations in the parkin gene are associated with familial Parkinson's disease (PD). The present study was performed to analyse if mutations in these genes could be detected in Finnish patients with familial PD. The subjects comprised 22 unrelated patients with familial PD. The molecular genetic analysis consisted of sequence analysis of the non-coding and coding exons of the alpha-synuclein gene and screening of eight point mutations in the parkin gene. In addition, a total of 67 controls and 45 patients with sporadic PD were included in the association analysis on polymorphism of the alpha-synuclein gene. Screened point mutations in the parkin gene were not detected. Sequencing of the coding exons 2-6 of the alpha-synuclein gene did not reveal any mutations or polymorphisms. However, three novel alterations in the T10A7 sequence at the 5' end of the non-coding exon 1' of the alpha-synuclein gene were found. The frequencies of the exon 1' polymorphic genotypes or alleles between familial PD patients and control subjects revealed no statistically significant differences. No association for sporadic PD was observed. The results do not support a role for the alpha-synuclein gene or point mutations of the parkin gene in familial PD in our sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号