首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mao F  Gill J  Downey D  Fenster A 《Medical physics》2000,27(8):1961-1970
Segmentation of carotid artery lumen in two-dimensional and three-dimensional ultrasonography is an important step in computerized evaluation of arterial disease severity and in finding vulnerable atherosclerotic plaques susceptible to rupture causing stroke. Because of the complexity of anatomical structures, noise as well as the requirement of accurate segmentation, interactions are necessary between observers and the computer segmentation process. In this paper a segmentation process is described based on the deformable model method with only one seed point to guide the initialization of the deformable model for each lumen cross section. With one seed, the initial contour of the deformable model is generated using the entropy map of the original image and mathematical morphology operations. The deformable model is driven to fit the lumen contour by an internal force and an external force that are calculated, respectively, with geometrical properties of deformed contour and with the image gray level features. The evaluation methodology using distance-based and area-based metrics is introduced in this paper. A contour probability distribution (CPD) method for calculating distance-based metrics is introduced. The CPD is obtained by generating contours of the lumen using a set of possible seed locations. The mean contour can be compared to a manual outlined contour to provide accuracy metrics. The variance computed from the CPD can provide metrics of local and global variability. These metrics provide a complete performance evaluation of an interactive segmentation algorithm and a means for comparing different algorithm settings.  相似文献   

2.
3.
Yu Y  Molloy JA  Acton ST 《Medical physics》2004,31(12):3474-3484
We present a technique for semiautomated segmentation of human prostates using suprapubic ultrasound (US) images. In this approach, a speckle reducing anisotropic diffusion (SRAD) is applied to enhance the images and the instantaneous coefficient of variation (ICOV) is utilized for edge detection. Segmentation is accomplished via a parametric active contour model in a polar coordinate system that is tailored to the application. The algorithm initially approximates the prostate boundary in two stages. First a primary contour is detected using an elliptical model, followed by a primary contour optimization using an area-weighted mean-difference binary flow geometric snake model. The algorithm was assessed by comparing the computer-derived contours with contours produced manually by three sonographers. The proposed method has application in radiation therapy planning and delivery, as well as in automated volume measurements for ultrasonic diagnosis. The average root mean square discrepancy between computed and manual outlines is less than the inter-observer variability. Furthermore, 76% of the computer-outlined contour is less than 1 sigma manual outline variance away from "true" boundary of prostate. We conclude that the methods developed herein possess acceptable agreement with manually contoured prostate boundaries and that they are potentially valuable tools for radiotherapy treatment planning and verification.  相似文献   

4.
Donell ST  Joseph G  Hing CB  Marshall TJ 《The Knee》2006,13(4):266-273
Instability of the patella occurs when it fails to track fully in the femoral groove during knee movement. The groove begins at the metaphysis of the distal femur and extends on its anterior surface inferiorly to the femoral notch. It is normally present at birth and the cartilaginous shape is similar to that of the adult. An abnormal trochlea may be shallow. In extreme cases it may be dome-shaped, where it is associated with recurrent subluxation or dislocation of the patella. In these cases it is logical to consider fashioning a groove as part of a realignment procedure. This study reports the operative technique and early clinical and radiological results of a consecutive case series of the first 15 patients (17 knees) who underwent a deepening trochleoplasty for severe dysplasia developed from that described by Dejour. The follow-up was for a minimum of 1 year (average 3 years, range 1 to 9 years). The boss height was reduced from an average of 7.5 mm (range 6 to 11 mm) to 0.7 mm (range -1 to 3 mm). Tracking became normal in 11 knees and had a slight J-shaped in six. Seven knees had mild residual apprehension. Seven patients were very satisfied, six were satisfied, and two were disappointed. The Kujala score improved from an average of 48 (range 13 to 75) to 75 (range 51 to 98) out of 100 (p<0.05). Three patients returned to full sports. Eight patients required further operations apart from the removal of metallic screws in 10 knees. Five of these were arthroscopic arthrolysis for stiffness at about 6 weeks post-operatively. Trochleoplasty for severe dysplasia of the femoral sulcus is a developing procedure. It requires careful attention to detail. For a rare condition the early results have been satisfactory with an acceptable level of complications.  相似文献   

5.
We report on the reproducibility of human observers' vanishing detection thresholds for visual targets in contrast-detail (C/D) analysis of ultrasound B-mode images. The images used in this study contain visual targets which are circular cross sections of constant-contrast conical structures in the C/D phantom. The vanishing threshold diameters for these targets vary as a function of the perceived size of the imaged target, target-to-background contrast, image noise content, and reproducibility of the decision levels of human observers for repeated observations. Our study indicates that the determination of absolute vanishing threshold diameter values for several targets of different contrast by human observers yields a high degree of error that is not predicted by existing theoretical assumptions based on a static threshold detector. We find that systematic error is introduced by the observers during the course of the experiment and that the levels of sensitivity of the observers differ widely at all times, and increase the amount of total observer error. These results suggest that, due to the large total observer error, C/D analysis may be impractical in a clinical environment, unless there is access to a team of observers specifically and extensively trained in this task. We suggest that a computer-based observer may be more reliable for the objective performance of contrast-detail analysis as a method for evaluating ultrasound image quality and comparison of imaging systems.  相似文献   

6.
In this paper, we report on two methods for semiautomatic three-dimensional (3-D) prostate boundary segmentation using 2-D ultrasound images. For each method, a 3-D ultrasound prostate image was sliced into the series of contiguous 2-D images, either in a parallel manner, with a uniform slice spacing of 1 mm, or in a rotational manner, about an axis approximately through the center of the prostate, with a uniform angular spacing of 5 degrees. The segmentation process was initiated by manually placing four points on the boundary of a selected slice, from which an initial prostate boundary was determined. This initial boundary was refined using the Discrete Dynamic Contour until it fit the actual prostate boundary. The remaining slices were then segmented by iteratively propagating this result to an adjacent slice and repeating the refinement, pausing the process when necessary to manually edit the boundary. The two methods were tested with six 3-D prostate images. The results showed that the parallel and rotational methods had mean editing rates of 20% and 14%, and mean (mean absolute) volume errors of -5.4% (6.5%) and -1.7% (3.1%), respectively. Based on these results, as well as the relative difficulty in editing, we conclude that the rotational segmentation method is superior.  相似文献   

7.
Segmentation of human prostate from ultrasound (US) images is a crucial step in radiation therapy, especially in real-time planning for US image-guided prostate seed implant. This step is critical to determine the radioactive seed placement and to ensure the adequate dose coverage of prostate. However, due to the low contrast of prostate and very low signal-to-noise ratio in US images, this task remains as an obstacle. The manual segmentation of this object is time consuming and highly subjective. In this work, we have proposed a three-dimensional (3D) deformable surface model for automatic segmentation of prostate. The model has a discrete structure made from a set of vertices in the 3D space that form triangle facets. The model converges from an initial shape to its equilibrium iteratively, by a weighted sum of the internal and external forces. Internal forces are based on the local curvature of the surface and external forces are extracted from the volumetric image data by applying an appropriate edge filter. We have also developed a method for initialization of the model from a few initial contours that are drawn on different slices. During the deformation, a resampling procedure is used to maintain the resolution of the model. The entire model is applied in a multiscale scheme, which increases the robustness and speed, and guarantees a better convergence. The model is tested on real clinical data and initial results are very promising.  相似文献   

8.
本文提出了一种新的软组织显示实现方案,由分割、距离变换、剥皮和体绘制四个步骤组成。在距离变换阶段,该方案采用了一种新的三维欧氏距离变换算法,在保证距离测量精度的同时缩短了运算时间。在体绘制阶段,采用了一种基于体绘制的三维数据场多表面显示方法,为缩短绘制时间它只考虑不同物质的边界体元对显示图象的贡献,并采用投影成像法对边界体元进行快速显示,提高了三维显示的质量。该方案被用于三维医学CT图像中软组织的显示。实验结果表明,该方法能够清晰地再现皮下血管、肌肉与骨骼的空间解剖关系,在临床医学领域具有重要的应用价值。  相似文献   

9.
10.
Speckle is a primary factor which degrades the contrast resolution and masks the meaningful texture information present in an ultrasound image. Its presence severely hampers the interpretation and analysis of ultrasound images. When speckle reduction technique is applied for visual enhancement of ultrasound images, it is to be kept in mind that blurring associated with speckle reduction should be less and fine details are properly enhanced. With these points in consideration, the modified speckle reduction anisotropic diffusion (MSRAD) method is proposed in the present study to improve the visual quality of the ultrasound images. In the proposed MSRAD method, the four neighboring pixel template in speckle reduction anisotropic diffusion (SRAD) method of Yu and Acton (IEEE Trans Image Process 11:1260–1270, 2002) have been replaced by a new template of larger number of neighboring pixels to calculate the diffusion term. To enhance visual quality of ultrasound images, nonquadratic regularization (Yu and Yadegar, Proceedings of the IEEE international conference on image processing, 2006) is incorporated with MSRAD method and accordingly changes in parameter settings have been made. The performance of MSRAD method was evaluated using clinical ultrasound images, interpretation by the medical experts and results of MSRAD method by subjective and objective criteria.  相似文献   

11.
Proper alignment of a needle template and ultrasound software grid is required to accurately deliver permanent prostate seed implants optimized using pretreatment volume studies. Correct alignment may also reduce tissue edema, morbidity, and the time and labor required to deliver permanent prostate seed implants. A technique has been developed to rapidly assess (and, if necessary, improve) the alignment using a custom-designed water phantom. Verification of needle positions can be conducted within 1 mm and requires less than ten minutes. We have instituted the technique as a part of our periodic quality assurance program.  相似文献   

12.
13.
In transrectal ultrasound (TRUS) guided prostate seed brachytherapy, TRUS provides good delineation of the prostate while x-ray imaging, e.g., C-arm, gives excellent contrast for seed localization. With the recent availability of cone beam CT (CBCT) technology, the combination of the two imaging modalities may provide an ideal system for intraoperative dosimetric feedback during implantation. A dual modality phantom made of acrylic and copper wire was designed to measure the accuracy and precision of image coregistration between a C-arm based CBCT and 3D TRUS. The phantom was scanned with TRUS and CBCT under the same setup condition. Successive parallel transverse ultrasound (US) images were acquired through manual stepping of the US probe across the phantom at an increment of 1 mm over 7.5 cm. The CBCT imaging was done with three reconstructed slice thicknesses (0.4, 0.8, and 1.6 mm) as well as at three different tilt angles (0 degrees, 15 degrees, 30 degrees), and the coregistration between CBCT and US images was done using the Variseed system based on four fiducial markers. Fiducial localization error (FLE), fiducial registration error (FRE), and target registration error (TRE) were calculated for all registered image sets. Results showed that FLE were typically less than 0.4 mm, FRE were less than 0.5 mm, and TRE were typically less than 1 mm within the range of operation for prostate implant (i.e., < 6 cm to surface of US probe). An analysis of variance test showed no significant difference in TRE for the CBCT-US fusion among the three slice thicknesses (p = 0.37). As a comparison, the experiment was repeated with a US-conventional CT scanner combination. No significant difference in TRE was noted between the US-conventional CT fusion and that for all three CBCT image slice thicknesses (p = 0.21). CBCT imaging was also performed at three different C-arm tilt angles of 0 degrees, 15 degrees and 30 degrees and reconstructed at a slice thickness of 0.8 mm. There is no significant difference in TRE between 0 degrees and 15 degrees (p = 0.191) as well as between 0 degrees and 30 degrees (p = 0.275), which suggests that the C-arm may be tilted intraoperatively to acquire CBCT images without compromising the quality of image fusion. The results conclude a high degree of accuracy and precision for the CBCT-TRUS fusion, which could be useful toward achieving real time intraoperative dosimetry in prostate brachytherapy.  相似文献   

14.
A new high capacity and reversible data hiding scheme for e-healthcare applications has been presented in this paper. Pixel to Block (PTB) conversion technique has been used as an effective and computationally efficient alternative to interpolation for the cover image generation to ensure reversibility of medical images. A fragile watermark and Block Checksum (computed for each 4 × 4 block) have been embedded in the cover image for facilitating tamper detection and tamper localization, and hence content authentication at receiver. The EPR, watermark data and checksum data has been embedded using Intermediate Significant Bit Substitution (ISBS) to avoid commonly used LSB removal/replacement attack. Non-linear dynamics of chaos have been put to use for encrypting the Electronic Patient Record (EPR)/clinical data and watermark data for improving the security of data embedded. The scheme has been evaluated for perceptual imperceptibility and tamper detection capability by subjecting it to various image processing and geometric attacks. Experimental results reveal that the proposed system besides being completely reversible is capable of providing high quality watermarked images for fairly high payload. Further, it has been observed that the proposed technique is able to detect and localise the tamper. A comparison of the observed results with that of some state-of-art schemes show that our scheme performs better.  相似文献   

15.
Digital diagnostic images from subtraction angiography, computer tomography and ultrasound grabbed at 640 x 560 pixel and 320 x 280 pixel, eight-bit resolution were compressed at seven different levels with the 'lossy' JPEG algorithm in order to decrease the computer magnetic memory space required for their storage. After reconstruction, the deformations caused by the process were assessed (i) qualitatively: a perception test was performed twice, by five radiologists, on a total of 14 images compressed at various levels and (ii) quantitatively: the average grey level value per pixel was calculated at each compression level from each system's residual images obtained by subtracting the compressed image from the original and taking the absolute value of the result. It was concluded that images compressed at a ratio of about 10:1 were indistinguishable from the originals and hence could be considered acceptable for clinical use.  相似文献   

16.
ObjectiveInformation overload is a significant problem facing online clinical trial searchers. We present eTACTS, a novel interactive retrieval framework using common eligibility tags to dynamically filter clinical trial search results.Materials and methodseTACTS mines frequent eligibility tags from free-text clinical trial eligibility criteria and uses these tags for trial indexing. After an initial search, eTACTS presents to the user a tag cloud representing the current results. When the user selects a tag, eTACTS retains only those trials containing that tag in their eligibility criteria and generates a new cloud based on tag frequency and co-occurrences in the remaining trials. The user can then select a new tag or unselect a previous tag. The process iterates until a manageable number of trials is returned. We evaluated eTACTS in terms of filtering efficiency, diversity of the search results, and user eligibility to the filtered trials using both qualitative and quantitative methods.ResultseTACTS (1) rapidly reduced search results from over a thousand trials to ten; (2) highlighted trials that are generally not top-ranked by conventional search engines; and (3) retrieved a greater number of suitable trials than existing search engines.DiscussioneTACTS enables intuitive clinical trial searches by indexing eligibility criteria with effective tags. User evaluation was limited to one case study and a small group of evaluators due to the long duration of the experiment. Although a larger-scale evaluation could be conducted, this feasibility study demonstrated significant advantages of eTACTS over existing clinical trial search engines.ConclusionA dynamic eligibility tag cloud can potentially enhance state-of-the-art clinical trial search engines by allowing intuitive and efficient filtering of the search result space.  相似文献   

17.
Extraction of blood vessel boundaries from intravascular ultrasound images is essential in the quantitative analysis of cardiovascular functions. In this study, we are presenting a completely automated procedure for determining blood vessel borders. This approach uses textural operators to separate different tissue regions and morphological processing to refine extracted contours. The method was tested in a set of 29 intravascular ultrasound images obtainedin vivo. To assess the performance of the method, we have compared the automatically processed images with the manual tracings, using three different criteria: correlation coefficient, match ratio, and relative error of computed shape parameters. In both contour detection and shape parameters estimation, the proposed method yielded consistently good results. Due to its robustness and accuracy, this approach is appropriate for clinical use, whereas computational efficiency of the method facilitates low-cost implementation.  相似文献   

18.
19.
Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5 mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For ‘best case’ comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset–Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94–97% of the variance in orthotropic stiffness entries while Zysset–Curnier equations explained 82–88% of the variance in stiffness. Image derived orientation deviated by 4.4–10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.  相似文献   

20.
We describe a raft technique for the study of chemotaxis which posesses a number of advantages over the use of chambers. Membranes are laid on pads soaked in chemotactic agent and cells are contained in plastic cups, which are inverted on the membrane. This method gives results which are similar to those obtained in conventional vessels. It would seem well suited to comparative measurements of chemotaxis in clinical series, for it avoids the use of special chambers, minimises the number of membranes and their handling and more than one cell suspension can be placed on a membrane. In addition, the method is experimentally versatile: simple manipulations allow work with cells adherent to other surfaces, studies of the effect of substituting a new agent or of reversing the gradient during an experiment, migration against gravity, and of the effect of non-adherent cells on migrating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号