首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA binding sites for the replication-associated protein (Rep) of two strains of tomato leaf curl virus from New Delhi (ToLCV-Nde) were identified using electrophoretic mobility shift assays (EMSAs). The Rep proteins of the two strains were found to exhibit sequence specificity in recognition of their cognate repeat motifs (iterons) in the origin, despite the fact that they share 91% sequence identity. Using a series of synthetic oligonucleotides as probes in EMSAs, the interaction of Rep protein with its binding site was found to be dependent on number, size, and sequence of the two iterons. Mutations in the sequence of the repeat motifs or alteration in the arrangement of the motifs compromised the ability of Rep protein to bind the DNA sequence and reduced accumulation of viral DNA in protoplasts, suggesting that binding of Rep protein to its cognate iterons is an essential step in virus replication. In addition, a difference in sequence of two base pairs in the binding site of two ToLCV-Nde strains was found to affect DNA binding by the corresponding Rep protein and replication of the virus DNA in protoplasts.  相似文献   

2.
The 682-nt satellite DNA (sat-DNA) of Tomato leaf curl virus (TLCV) depends on the helper virus for its replication. In contrast to the strict specificity that exists in each geminivirus for its cognate replication associated protein (Rep), TLCV sat-DNA can utilize Rep encoded by distinct geminiviruses. We have used a combination of protein-binding assays and mutagenesis to show that repeat motifs in TLCV and sat-DNA are essential for Rep-binding in vitro. Surprisingly, mutants of TLCV and sat-DNA impaired in their ability to bind TLCV Rep in vitro were infectious in tomato. Thus, in contrast to other geminiviruses reported, TLCV and sat-DNA replication is independent of the high-affinity in vitro Rep binding. These results prompt a reassessment of the current model of geminivirus replication where Rep/DNA interaction is a highly specific step in the initiation of rolling circle replication.  相似文献   

3.
The application of sequence non-specific rolling circle amplification of circular single stranded (ss) DNA molecules to viral metagenomics has facilitated the discovery in various ecosystems of what is probably a diverse array of novel ssDNA viruses. Here we describe a putative novel ssDNA virus (at a genome level), cassava associated circular DNA virus (CasCV), isolated from cassava leaf samples infected with the fungi Collectotrichum and Plectosphaerella. CasCV has a circular ambisense genome and shares significant genome similarities with Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), Mosquito VEM virus SDBVL and Meles meles faecal virus (MmFV). The CasCV genome (2220 nt) has three large open reading frames. While it is probable that one of these encodes a capsid protein, the other two probably express a replication associated protein (Rep) following the removal of an intron such as that found in the Rep encoding genes of some geminiviruses. This Rep would contain four conserved rolling circle replication (RCR) related motifs that have previously been identified in geminivirus, circovirus and nanovirus Reps. Given both that the CasCV Rep and CP share 62.7% and 39.8% amino acid identity respectively with the Rep and CP of SsHADV-1, and that CasCV was discovered associated with cassava infecting fungi, we suggest that CasCV should be classified within the mycovirus taxonomic family. However, host range studies using infectious clones will be required to demonstrate the novel virus' likely origin and actual host species.  相似文献   

4.
Park J  Lee H  Kim MK  Kwak HR  Auh CK  Lee KY  Kim S  Choi HS  Lee S 《Virus research》2011,159(2):124-131
New strains of Tobacco leaf curl virus (TbLCV) were isolated from tomato plants in four different local communities of Korea, and hence were designated TbLCV-Kr. Phylogenetic analysis of the sequences of the whole genome and of individual ORFs of these viruses indicated that they are closely related to the Tobacco leaf curl Japan virus (TbLCJV) cluster, which includes Honeysuckle yellow vein virus (HYVV), Honeysuckle yellow vein mosaic virus (HYVMV), and TbLCJV isolates. Four putative recombination events were recognized within these virus sequences, suggesting that the sequence variations observed in these viruses may be attributable to intraspecific and interspecific recombination events involving some TbLCV-Kr isolates, Papaya leaf curl virus (PaLCV), and a local isolate of Tomato yellow leaf curl virus (TYLCV).  相似文献   

5.
Three new begomovirus isolates and one betasatellite were obtained from a tomato plant exhibiting leaf curl symptom in Laguna, the Philippines. Typical begomovirus DNA components representing the three isolates (PH01, PH02 and PH03) were cloned, and their full-length sequences were determined to be 2754 to 2746 nucleotides. The genome organizations of these isolates were similar to those of other Old World monopartite begomoviruses. The sequence data indicated that PH01 and PH02 were variants of strain B of the species Tomato leaf curl Philippines virus, while PH03 was a variant of strain A of the species Tomato leaf curl Philippines virus. These isolates were designated ToLCPV-B[PH:Lag1:06], ToLCPV-B[PH:Lag2:06], and ToLCPV-A[PH:Lag3:06], respectively. Phylogenetic analysis revealed that the present isolates form a separate monophyletic cluster with indigenous begomoviruses reported earlier in the Philippines. A betasatellite isolated from same sample belongs to the betasatellite species Tomato leaf curl Philippines betasatellite and designated Tomato leaf curl Philippines betasatellite-[Philippines:Laguna1:2006], ToLCPHB-[PH:Lag1:06]. When co-inoculated with this betasatellite, tomato leaf curl Philippines virus induced severe symptoms in N. benthamiana and Solanum lycopersicum plants. Using a PVX-mediated transient assay, we found that the C4 and C2 proteins of tomato leaf curl Philippines virus and the βC1 protein of ToLCPHB-[PH:Lag1:06] function as a suppressor of RNA silencing.  相似文献   

6.
Summary. Distinct subgenomic DNA species known as defective (df) DNA molecules were found in plants infected with tomato leaf curl virus (TLCV). Four df DNAs derived from TLCV Type and Darwin 1 strains were found to contain large deletions that disrupt all of the viral genes required for viral replication, encapsidation and spread. However, the viral origin of replication (ori), including the replication-associated protein (Rep) binding domains, was present in all four df DNAs. Co-agroinfection of leaf strips with tandem repeat constructs of the viral and df DNAs resulted in their replication in the presence of the respective TLCV strain. However, the df DNAs failed to move in whole plants when co-inoculated with TLCV. The df DNAs were shown to be associated with TLCV coat protein, which may indicate encapsidation. Mutational analysis showed the minimum sequence requirements for df DNA replication by TLCV to be the intergenic region containing the Rep-binding domains.  相似文献   

7.
Alberter B  Ali Rezaian M  Jeske H 《Virology》2005,331(2):441-448
Several plant geminiviruses have been shown recently to utilize both rolling-circle replication (RCR) and recombination-dependent replication (RDR) strategies. A highly specific binding of the viral replication-associated protein (Rep) to its cognate DNA is essential for initiation of viral DNA replication and for the recognition of DNA components of the bipartite geminiviruses of the Begomovirus genus. We have extended the replication analysis to the monopartite Australian Tomato leaf curl virus (ToLCV), its Rep binding deficient mutants, and the satellite DNAs it supports. Analyses of viral DNA by two-dimensional agarose gel electrophoresis after fractionation by single-stranded (ss) DNA-selective cellulose chromatography revealed that DNA intermediates of ToLCV and its mutant were identical. Both RCR and RDR intermediates were identified. New ToLCV DNA forms were observed and characterized as subgenomic topoisomers, heterogeneous open circular double-stranded (ds) DNA, and degradation products. A 1350-nt DNA beta satellite associated with the unrelated Cotton leaf curl Multan virus (CLCuMV) was supported by ToLCV and produced intermediates of both RCR and RDR, suggesting that replication strategies of satellites are determined by the helper virus. Replicative intermediates of the 682 nt ToLCV satellite DNA could not be resolved; however, concatemers of up to octamer were detected, together with a field of hybridizing material suggestive of complementary strand replication on heterogeneous circular ssDNA templates.  相似文献   

8.
The complete genome sequences of two monopartite begomovirus isolates (genus Begomovirus, family Geminiviridae) present in a single sweet potato (Ipomoea batatas) plant collected in S?o Paulo, Brazil, are presented. Based on the current taxonomic criteria for the genus Begomovirus, one of the isolates was shown to represent a novel species, tentatively named Sweet potato leaf curl Sao Paulo virus (SPLCSPV). The other isolate represented a new strain of sweet potato leaf curl virus, named sweet potato leaf curl virus-Sao Paulo (SPLCV-SP). The full genome sequence of the SPLCSPV isolate shared the highest nucleotide identity (87.6%) with isolates of sweet potato leaf curl Spain virus (SPLCESV). Phylogenetic and recombination analyses were used to investigate the relationships of these isolates to other monopartite Ipomoea-infecting begomoviruses.  相似文献   

9.
Luan YS  Zhang J  Liu DM  Li WL 《Virus genes》2007,35(2):379-385
A Sweet potato-infecting sweet potato leaf curl virus (SPLCV) isolated in China was detected by Polymerase Chain Reaction (PCR). PCR products amplified from DNA-A were cloned and sequenced. The isolates of SPLCV from China(SPLCV-CN)has a genome organization similar to that of monopartite begomoviruses. The DNA-A had two ORFs (AV1 and AV2) in the virion sense and four ORFs (AC1, AC2, AC3, and AC4) in the complementary sense, separated by an intergenic region (IR) containing a conserved stem-loop motif. Three incomplete direct repeat iterons were also found within the IR. The presence of AV2 ORF supports the relationship of SPLCV-CN to the Old World gemimiviruses. Sequence comparisons showed that the DNA-A sequence of SPLCV-CN were closely related to those of sweet potato leaf curl Georgia virus-[16] (SPLCGV-[16]), Ipomoea yellow vein virus (IYVV-SI), and sweet potato leaf curl virus (SPLCV) with nucleotide sequence identity ranging from 88% to 91%. Comparison of individual encoded proteins between SPLCV-CN and that of three other SPLCV isolates showed the coat protein (AV1) shared the highest amino acid sequence identity (93%–96%), suggesting the coat protein of these viruses may have identical ancestor. The relationships between SPLCV-CN and other whitefly-transmitted geminiviruses were investigated by using phylogeny of derived AV1, AC1, and AV2 amino acid sequences. In all phylogenetic trees, SPLCV-CN clustered with three other isolates of SPLCV. The analyses revealed that the four isolates of SPLCV have coat proteins which are unique from its counterparts from both the Old World and New World. The present of AV2 and phylogenic analysis of AC1 suggest that SPLCV is more close to begomoviruses from the Old World but isolates of this virus seems to form a separate subset. An erratum to this article can be found at  相似文献   

10.
11.
Leaf curl disease of chilli (LCDC) is a major constraint in production of chilli in the Indian subcontinent. The objective of this study was to identify the begomovirus species occurring in chilli in Sri Lanka, where the LCDC was initially recorded in 1938. The virus samples were collected from the North Central Province, the major chilli growing region in Sri Lanka with a history of epidemic prevalence of LCDC. The virus could be readily transmitted by Bemisia tabaci to chilli, tomato and tobacco, where vein clearing followed by leaf curl developed. The genome analysis of two isolates obtained from two distantly located fields showing 100 % LCDC, revealed that the DNA-A genome (2754 nucleotides) shared 89.5 % sequence identity with each other and 68.80–84.40 % sequence identity with the other begomoviruses occurring in the Indian subcontinent. The closest identity (84.40 %) of the virus isolates was with Tomato leaf curl Sri Lanka virus (ToLCLKV). The results support that a new begomovirus species is affecting chilli in Sri Lanka and the name Chilli leaf curl Sri Lanka virus (ChiLCSLV) is proposed. Recombination analysis indicated that ChiLCSLV was a recombinant virus potentially originated from the begomoviruses prevailing in southern India and Sri Lanka. The genome of betasatellite associated with the two isolates consisted of 1366 and 1371 nucleotides and shared 95.2 % sequence identity with each other and 41.50–73.70 % sequence identity with the other betasatellite species. The results suggest that a new begomovirus betasatellite, Chilli leaf curl Sri Lanka betasatellite is associated with LCDC in Sri Lanka. This study demonstrates a new species of begomovirus and betasatellite complex is occurring in chilli in Sri Lanka and further shows that diverse begomovirus species are affecting chilli production in the Indian subcontinent.  相似文献   

12.
The complete genome of a novel Circovirus isolated from an Australian raven (Corvus coronoides) with feather lesions similar to those that occur in psittacine beak and feather disease is reported. Degenerate polymerase chain reaction primers were designed to amplify and sequence novel Circovirus DNA from affected feathers. Sequence analysis indicated that the tentatively named raven circovirus (RaCV) was 1898 nucleotides in size with two major open reading frames synonymous with other avian circoviruses, ORF C1 and ORF V1, likely to encode a putative capsid protein (Cap) and replicase-associated protein (Rep), respectively. In common with other circoviruses was the conservation of several nucleotide structures and amino acid motifs implicated in virus replication. Comparison with other members of the Circoviridae demonstrated that RaCV shares the greatest sequence homology with canary circovirus (CaCV) and pigeon circovirus (PiCV) and was more distantly related to the beak and feather disease virus, goose circovirus, duck circovirus and the two porcine circoviruses, PCV1 and PCV2. Phylogenetic analysis of the genome and the putative Cap and Rep proteins provided further evidence of the close relationship of RaCV with CaCV and PiCV.  相似文献   

13.
Tomato yellow leaf curl disease (TYLCD)-associated viruses present a highly structured population in the western Mediterranean basin, depending on host, geographical region and time. About 1,900 tomato and common bean samples were analyzed from which 111 isolates were characterized genetically based on a genome sequence that comprises coding and non-coding regions. Isolates of three distinct begomoviruses previously described were found (Tomato yellow leaf curl virus, TYLCV, Tomato yellow leaf curl Sardinia virus, TYLCSV, and Tomato yellow leaf curl Málaga virus, TYLCMalV), together with a novel recombinant virus. Mixed infections were detected in single plants, rationalizing the occurrence of recombinants. Except for TYLCV-type strain, single, undifferentiated subpopulations were present for each virus type, probably the result of founder effects. Limited genetic variation was observed in genomic regions, with selection against amino acid change in coding regions.  相似文献   

14.
The incidence and severity of tomato leaf curl disease (TLCD) is increasing worldwide. Here we assess the diversity and distribution within tomato producing areas of Iran of begomoviruses that cause this disease. Tomato with typical TLCD symptoms and asymptomatic weeds were collected in 2005 and 2006 and tested for the presence of begomovirus DNA using polymerase chain reaction (PCR). Analysis of cloned and sequenced PCR products revealed that both mono- and bipartite begomoviruses are associated with TLCD in Iran. Furthermore, our results confirmed the symptomless infection with mono- and bipartite begomoviruses of two weed species, Chrozophora hierosolymitana Spreng (Euphobiaceae) and Herniaria sp. (Caryophyllaceae). Eighteen Iranian begomovirus isolates were classified into two major groups and two or three subgroups according to the 5′-proximal 200 nucleotides of the coat protein (CP) gene or the N-terminal 600 nucleotides of the Rep gene. Whereas most of the monopartite isolates showed closest similarity to tomato yellow leaf curl virus-Gezira (TYLCV-Ge), the three bipartite isolates were most similar to Tomato leaf curl New Delhi virus (ToLCNDV). Mixed mono- and a bipartite begomovirus infections were detected in both tomato and C. hierosolymitana. Our results indicate that the tomato producing areas in central, southern, and southeastern Iran are threatened by begomoviruses originating from both the Mediterranean basin and the Indian subcontinent.  相似文献   

15.
Alphasatellites and betasatellites are begomovirus-associated single-stranded circular DNA molecules. Two distinct alphasatellites, Gossypium darwinii symptomless alphasatellite and Gossypium mustelinium symptomless alphasatellite, were previously isolated from Gossypium davidsonii and G.mustelinium. Here we show that the replication-associated proteins (Rep: a rolling-circle replication initiator protein) encoded by these alphasatellites interact with the Rep and C4 proteins encoded by their helper begomovirus, Cotton leaf curl Rajasthan virus (CLCuRaV), in a yeast two-hybrid assay. Both the alphasatellite-encoded Reps were found to have strong gene silencing suppressor activity, in contrast to the betasatellite-encoded βC1 and CLCuRaV-encoded C2, C4 and V2 proteins. The presence of alphasatellites maintained suppression of gene silencing in the youngest, actively growing tissue of CLCuRaV-betasatellite-infected plants. This is the first demonstration of a rolling-circle replication initiator protein with suppressor of gene silencing activity and provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus-betasatellite complexes.  相似文献   

16.
Guo X  Zhou X 《Virus genes》2006,33(3):279-285
Two virus isolates Hn57 and Hn60 were obtained from Sida cordifolia showing mild upward leaf-curling symptoms in Hainan province of China. Comparison of partial sequences of DNA-A like molecule confirmed the existence of a single type of begomovirus. The complete nucleotide sequence of DNA-A of Hn57 was determined to be 2757 nucleotides, with a genomic organization typical of begomoviruses. Complete sequence comparison with other reported begomoviruses revealed that Hn57 DNA-A has the highest sequence identity (71.0%) with that of Tobacco leaf curl Yunnan virus. Consequently, Hn57 was considered to be a new begomovirus species, for which the name Sida leaf curl virus (SiLCV) is proposed. In addition to DNA-A molecule, two additional circular single-stranded satellite DNA molecules corresponding to DNAβ and DNA1 were found to be associated with SiLCV isolates. Both DNAβ and DNA1 were approximately half the size of their cognate genomic DNA. Sequence analysis shows that DNAβ of Hn57 and Hn60 share 93.8% nucleotide sequence identity, and they have the highest sequence identity (58.5%) with DNAβ associated with Ageratum leaf curl disease (AJ316027). The nucleotide sequence identity between DNA1 of Hn57 and that of Hn60 was 83.8%, they share 58.2–79.3% nucleotide sequence identities in comparison with other previously reported DNAl. The GenBank accession numbers of the sequences reported in this paper are AM050730-35.  相似文献   

17.
The complete genome sequence of a distinct variant of tomato yellow leaf curl virus-Israel (TYLCV-IL) and the DNA-A sequence of a new strain of tomato severe leaf curl virus (ToSLCV) isolated in San Luis Potosi, Mexico, are described and analyzed. The TYLCV-IL[MX:SLP:11] variant differs from all TYLCV-IL isolates described so far by a unique 42-nt duplicated sequence comprising a part of the conserved stem-loop element of the virion-strand replication origin and adjacent regulatory sequences. TYLCV-IL[MX:SLP:11] was associated with tomato chino La Paz virus (ToChLPV-B[MX:SLP:11]) in a Solanum pimpinellifolium plant, and with pepper huasteco yellow vein virus (PHYVV-[MX:SLP:11]) and ToSLCV-GT[MX:SLP:11] in a Solanum lycopersicum plant. In addition, a distinct ToSLCV exhibiting low sequence identity (<89?%) to other ToSLCV isolates from Mexico was found in a tomato plant collected in the same field. Sequence analysis of this new ToSLCV strain indicates that it is a recombinant of close relatives of ToSLCV-GT[MX:SLP:11] and ToChLPV-B[MX:SLP:11] found in mixed infections with TYLCV-IL[MX:SLP:11].  相似文献   

18.
19.
The complete nucleotide (nt) sequence of eight isolates of beak and feather disease virus (BFDV) obtained from a range of psittacine species with psittacine beak and feather disease (PBFD) from throughout Australia were compared with the sequences of two BFDV isolates previously reported from Australia (BFDV-AUS) and America (BFDV-USA), respectively. All isolates had the same basic structure including the position of the open reading frames, the hairpin structure between ORF1 and ORF2, the nonanucleotide motif (TAGTATTAC) therein, the three motifs of Rep protein encoded from ORF1 and involved in rolling circle replication, and the P-loop motif previously described, but the genome size of the eight isolates ranged from 1992 to 2018 nt. Overall nt identity of the isolates compared to BFDV-AUS ranged from 84 to 97%; the variation was due to a combination of point mutations and a number of deletions and insertions ranging from 1 to 17 nt in size detected in both coding and noncoding regions. The identity of the nt sequence of ORF2 compared to BFDV-AUS varied from 80 to 99%, while the identity of the deduced amino acid sequences varied from 73 to 99%. Phylogenetic analysis grouped the isolates into four clusters but there were no apparent regional differences or differences related to the psittacine species of origin. While seven ORFs with the potential to encode proteins greater than 8.7 kDa were detected in the BFDV-AUS isolate described previously, only three of these ORFs were detected in all 10 BFDV isolates for which sequence data were available. The three ORFs were ORF1 that presumably encodes the Rep protein, ORF2 presumably the major capsid protein, and the ORF previously designated ORF5. The ORF5 was of two size classes in different isolates, 303 and 474 nt, and only the first 303 nt of the viruses with an ORF of 474 nt were common to the other isolates.  相似文献   

20.
Mungbean yellow mosaic virus-Vigna (MYMV-Vig) is a bipartite geminivirus that causes a severe yellow mosaic disease in blackgram. An assay was developed to study MYMV-Vig replication by agroinoculation of tobacco leaf discs with partial dimers of the virus. This assay, in a non-host model plant, was used to evaluate pathogen-derived resistance contributed by MYMV-Vig genes in transgenic plants. Viral DNA accumulation was optimum in tobacco leaf discs cultured for 10 days after infection with Agrobacterium tumefaciens strain Ach5 containing partial dimers of both DNA A and DNA B of MYMV-Vig. Transgenic tobacco plants with MYMV-Vig genes for coat protein (CP), replication-associated protein (Rep)-sense, Rep-antisense, truncated Rep (T-Rep), nuclear shuttle protein (NSP) and movement protein (MP) were generated. Leaf discs from transgenic tobacco plants, harbouring MYMV-Vig genes, were agroinoculated with partial dimers of MYMV-Vig and analyzed for viral DNA accumulation. The leaf discs from transgenic tobacco plants harbouring CP and MP genes supported the accumulation of higher levels of MYMV-Vig DNA. However, MYMV-Vig accumulation was inhibited in one transgenic plant harbouring the Rep-sense gene and in two plants harbouring the T-Rep gene. Northern analysis of these plants revealed a good correlation between expression of Rep or T-Rep genes and inhibition of MYMV-Vig accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号