首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.Contraction of heart muscle is initiated by an intracellular Ca2+ transient followed by binding of Ca2+ to troponin in the thin filaments. The resulting change in thin filament structure allows myosin heads or motor domains from the thick filaments to bind to actin in the thin filaments, and a change in the conformation of the actin-attached head domain linked to ATP hydrolysis drives force generation and filament sliding (13). During this “working stroke,” small conformational changes in the catalytic domain of the myosin head associated with release of ATP hydrolysis products are amplified by its light chain domain, containing the essential and regulatory light chains (4), to produce a nanometer-scale displacement at the connection of the head to the thick filament backbone.Contractility of heart muscle is also controlled by multiple posttranslational modifications of both thick and thin filament regulatory proteins, and these changes in filament proteins have been widely implicated in the modulation of cardiac output in health and disease (57). In the present study, we focused on phosphorylation of the cardiac isoform of the regulatory light chain (cRLC) as a well-characterized and experimentally accessible example of modification of a thick filament component. cRLC is at the thick filament end of the myosin head, where it joins the coiled–coil tail that forms the thick filament backbone. cRLC is partially phosphorylated in vivo under basal conditions (812), and changes in its phosphorylation level are linked to heart disease (8, 11, 13, 14). cRLC mutations associated with hypertrophic cardiomyopathy abolish cRLC phosphorylation in vitro (15), and mice expressing nonphosphorylatable cRLCs show severe cardiac dysfunction (10, 16). In the vertebrate heart, cRLCs are phosphorylated almost exclusively by the cardiac isoform of myosin light chain kinase (cMLCK) (17, 18), and cMLCK gene ablation leads to severe cardiac hypertrophy (19).The mechanisms responsible for the regulation of cardiac function by cRLC phosphorylation are poorly understood at the molecular, cellular, and organ levels. Mechanistic hypotheses at the molecular level have been largely based on studies of smooth and skeletal muscle RLCs, which have similar molecular structures and contain phosphorylatable serines analogous to that (Ser15) in cRLC (4, 2022). Phosphorylation of the analogous serine in smooth muscle RLC (smRLC) is the primary mechanism of contractile regulation in that tissue. Phosphorylation of skRLC plays a similar role in some invertebrate skeletal muscles (23, 24) and enhances contractility in mammalian skeletal muscle (25).Electron microscopy studies of isolated myosins and thick filaments from all these sources (21, 26, 27) suggest a conserved molecular mechanism in which RLC phosphorylation activates or potentiates contractility by disrupting a compact OFF conformation of myosin in which the myosin heads are folded back on the myosin tail (20, 21, 28) (Fig. 1A). In striated muscles, this folded OFF conformation is linked to the formation of an ordered helical lattice of myosin head domains on the surface of the thick filaments, with the long axis of the head roughly parallel to the filament axis. This surface lattice of myosin heads is stabilized by intermolecular interactions between adjacent myosin molecules and possibly between myosin and two other thick filament components, titin, and myosin-binding protein C (MyBP-C). This characteristic folded OFF state of myosin is also present in the C-zone of cardiac thick filaments: the region that contains MyBP-C (26, 27). Phosphorylation of skRLC in isolated thick filaments of skeletal muscle disrupts the lattice, releasing the myosin heads from the filament surface (Fig. 1B). These structural studies on isolated proteins and filaments led to the hypothesis that RLC phosphorylation potentiates contractility in skeletal and cardiac muscle by increasing the number of myosin heads available for actin interaction.Open in a separate windowFig. 1.OFF and ON conformations of the thick and thin filaments in heart muscle. (A) OFF conformations at low [Ca2+] in the absence of phosphorylation of the cRLC (blue). (B) ON conformations with calcium (green) bound to troponin C (pink/red) and cRLC phosphorylated (yellow circle, P). Troponin I, troponin T, and tropomyosin are yellow, blue, and sepia, respectively. Essential light chain is brown. BC-cRLC probe dipole is indicated by red double arrows.The aim of the present work was to understand the role of interactions between thick and thin filament-based regulatory mechanisms in a heart muscle cell, in which the normal structure, organization, and interrelationship of the filaments is preserved. We measured the structural changes in the thick filaments of ventricular trabeculae by polarized fluorescence from bifunctional probes attached to the cRLC, exploiting the fact that the native cRLCs in demembranated trabeculae can be efficiently replaced by labeled cRLCs with negligible effect on trabecular function (29, 30). We used in situ phosphorylation of cRLC by an expressed cMLCK to control the regulatory state of the thick filament and further exploited the cRLC exchange protocol to introduce cRLC mutants for mechanistic studies. We studied the relationship between thick and thin filament regulation using calcium titrations with probes on both the cRLC in the thick filaments and troponin in the thin filaments. The results presented below show that integration of thick and thin filament-based signaling pathways is essential for the normal regulation of contractility in the heart.  相似文献   

2.
Contraction of skeletal and cardiac muscle is regulated by Ca2+ -dependent structural changes in troponin that control the interaction between myosin and actin. We measured the orientations of troponin domains in skeletal muscle fibers using polarized fluorescence from bifunctional rhodamine probes on the C and E helices of troponin C. The C helix, in the regulatory head domain, tilts by approximately 30 degrees when muscle is activated in physiological conditions, with a Ca2+ -sensitivity similar to that of active force. Complete inhibition of active force did not affect C-helix orientation, and binding of rigor myosin heads did not affect its orientation at saturating [Ca2+]. The E helix, in the IT arm of troponin, tilted by approximately 10 degrees on activation, and this was reduced to only 3 degrees when active force was inhibited. Binding of rigor myosin heads produced a larger tilt of the E helix. Thus, in situ, the regulatory head acts as a pure Ca2+ -sensor, whereas the IT arm is primarily sensitive to myosin head binding. The polarized fluorescence data from active muscle are consistent with an in vitro structure of the troponin core complex in which the D and E helices of troponin C are collinear. The present data were used to orient this structure in the fiber and suggest that the IT arm is at approximately 30 degrees to the filament axis in active muscle. In relaxed muscle, the IT arm tilts to approximately 40 degrees but the D/E helix linker melts, allowing the regulatory head to tilt through a larger angle.  相似文献   

3.
Muscle contraction is driven by a change in the structure of the head domain of myosin, the "working stroke" that pulls the actin filaments toward the midpoint of the myosin filaments. This movement of the myosin heads can be measured very precisely in intact muscle cells by X-ray interference, but until now this technique has not been applied to physiological activation and force generation following electrical stimulation of muscle cells. By using this approach, we show that the long axes of the myosin head domains are roughly parallel to the filaments in resting muscle, with their center of mass offset by approximately 7 nm from the C terminus of the head domain. The observed mass distribution matches that seen in electron micrographs of isolated myosin filaments in which the heads are folded back toward the filament midpoint. Following electrical stimulation, the heads move by approximately 10 nm away from the filament midpoint, in the opposite direction to the working stroke. The time course of this motion matches that of force generation, but is slower than the other structural changes in the myosin filaments on activation, including the loss of helical and axial order of the myosin heads and the change in periodicity of the filament backbone. The rate of force development is limited by that of attachment of myosin heads to actin in a conformation that is the same as that during steady-state isometric contraction; force generation in the actin-attached head is fast compared with the attachment step.  相似文献   

4.
Effect of temperature on the working stroke of muscle myosin   总被引:1,自引:0,他引:1  
Muscle contraction is due to myosin motors that transiently attach with their globular head to an actin filament and generate force. After a sudden reduction of the load below the maximum isometric force (T0), the attached myosin heads execute an axial movement (the working stroke) that drives the sliding of the actin filament toward the center of the sarcomere by an amount that is larger at lower load and is 11 nm near zero load. Here, we show that an increase in temperature from 2 to 17 degrees C, which increases the average isometric force per attached myosin head by 60%, does not affect the amount of filament sliding promoted by a reduction in force from T0 to 0.7T0, whereas it reduces the sliding under low load by 2.5 nm. These results exclude the possibility that the myosin working stroke is due to the release of the mechanical energy stored in the initial endothermic force-generating process and show that, at higher temperatures, the working stroke energy is greater because of higher force, although the stroke length is smaller at low load. We conclude the following: (i) the working stroke is made by a series of state transitions in the attached myosin head; (ii) the temperature increases the probability for the first transition, competent for isometric force generation; and (iii) the temperature-dependent rise in work at high load can be accounted for by the larger free energy drop that explains the rise in isometric force.  相似文献   

5.
To study the orientation of spin-labeled myosin heads in the first few seconds after the production of saturating ATP, we have used a laser flash to photolyze caged ATP during EPR data acquisition. Rabbit psoas muscle fibers were labeled with maleimide spin label, modifying 60% of the myosin heads without impairing muscle fiber biochemical and physiological activity (ATPase and force). The muscle bundles were incubated for 30 min with 5 mM caged ATP prior to the UV flash. The flash, from an excimer laser, liberated 2-3 mM ATP, generating maximum force in the presence of Ca2+ and relaxing fully in the absence of Ca2+. Control experiments, using fibers decorated with labeled myosin subfragment, showed that the flash liberates sufficient ATP to saturate myosin active sites in all regions of the muscle bundles. To increase the time resolution, and to minimize the time of the contraction, we followed in time the intensity at a single spectral position (P2), which is associated with the high degree of orientational order in rigor. ATP liberation produced a rapid decrease of P2 with liberation of ATP, indicating a large decrease in orientational order in both relaxation and contraction. This transient was absent when caged AMP was used, ruling out nonspecific effects of the UV flash and subsequent photochemistry. The steady-state level of P2 during contraction was almost as low as that reached in relaxation, although the duration of the steady state was much more brief in contraction. Upon depletion of ATP in contraction, the P2 intensity reverted to the original rigor level, accompanied by development of rigor tension. The steady-state results obtained in the brief contractions induced by caged ATP are quantitatively consistent with those obtained in longer contractions by continuously perfusing fibers with ATP. In isometric contraction, most (88% +/- 4%) of the heads are in a population characterized by a high degree of axial disorder, comparable to that observed for all heads in relaxation. Since the stiffness of these fibers in contraction is 80% of the stiffness in rigor, it is likely that most of the heads in this highly disoriented population are attached to actin in contraction and that most actin-attached heads in contraction are in this disoriented population.  相似文献   

6.
Myosin-based regulation in the heart muscle modulates the number of myosin motors available for interaction with calcium-regulated thin filaments, but the signaling pathways mediating the stronger contraction triggered by stretch between heartbeats or by phosphorylation of the myosin regulatory light chain (RLC) remain unclear. Here, we used RLC probes in demembranated cardiac trabeculae to investigate the molecular structural basis of these regulatory pathways. We show that in relaxed trabeculae at near-physiological temperature and filament lattice spacing, the RLC-lobe orientations are consistent with a subset of myosin motors being folded onto the filament surface in the interacting-heads motif seen in isolated filaments. The folded conformation of myosin is disrupted by cooling relaxed trabeculae, similar to the effect induced by maximal calcium activation. Stretch or increased RLC phosphorylation in the physiological range have almost no effect on RLC conformation at a calcium concentration corresponding to that between beats. These results indicate that in near-physiological conditions, the folded myosin motors are not directly switched on by RLC phosphorylation or by the titin-based passive tension at longer sarcomere lengths in the absence of thin filament activation. However, at the higher calcium concentrations that activate the thin filaments, stretch produces a delayed activation of folded myosin motors and force increase that is potentiated by RLC phosphorylation. We conclude that the increased contractility of the heart induced by RLC phosphorylation and stretch can be explained by a calcium-dependent interfilament signaling pathway involving both thin filament sensitization and thick filament mechanosensing.

The contraction of cardiac muscle is generated by reciprocal sliding of actin-containing thin filaments and myosin-containing thick filaments in the sarcomere driven by myosin motors. The interaction of the myosin motors with the overlapping thin filament is primarily controlled by calcium-induced structural changes in the thin filament linked to the intracellular calcium transient (1). Calcium ions released in the cytoplasm following an action potential bind to troponin, triggering the movement of tropomyosin around the filament, which uncovers actin sites to which the motors can bind and power contraction (2). However, some of the myosin motors may not be available for actin binding, as they are folded onto the thick filament surface in relaxing conditions (3). Thick filament–based regulatory mechanisms control the release of the myosin motors from the folded conformation and contribute to the regulation of contractility of striated muscle (36).Electron microscopy (EM) studies on isolated thick filaments from vertebrate heart muscle showed that the myosin motors in the region of the filament that contains myosin-binding protein C (MyBP-C), the C-zone, are sequestered in helical tracks on the thick filament surface and are folded back onto their tails in an asymmetric conformation called the interacting-heads motif, or IHM (7, 8), originally identified in two-dimensional crystals of dephosphorylated smooth muscle myosin (9). The IHM has also been associated with a biochemical state of myosin with a very low adenosine triphosphate (ATP)-ase rate, called the “super-relaxed” state (10), which is considered to be an OFF state of myosin. A recent X-ray diffraction study of cardiac muscle (11) extended that concept and suggested that in diastole, the resting phase of the cardiac cycle, three distinct motor conformations coexist in the thick filament in roughly equal numbers: folded helical, folded nonhelical, and disordered. The folded helical motors are likely to correspond to the IHM conformation and are confined to the C-zone. All the folded motors would be unavailable for actin binding and therefore OFF, but the disordered motors would constitute a population of constitutively ON motors that are immediately available for actin binding upon activation of the thin filament.Stress sensing in the thick filament can control the release of the myosin motors from the folded states and might be responsible for modulating the strength of contraction of cardiac muscle in response to changes in the afterload (i.e., the arterial pressure) (12). Moreover, the transitions between these motor conformations, together with the calcium-induced structural changes in the thin filament, control the speed of contraction and relaxation (11). According to this mechanosensing paradigm of thick filament regulation, the constitutively ON motors play a fundamental role in the activation of cardiac muscle, as the force generated by these motors immediately after the electrical stimulus triggers a positive mechanosensing feedback loop that controls the number of active motors and the dynamics of contraction. Destabilization of the folded conformations by mutations in myosin and other thick filament proteins can alter the equilibrium between these motor conformations, leading to a hypercontractile phenotype in some hypertrophic cardiomyopathies (HCM) (13, 14). Pharmacological therapies targeting thick filament proteins to treat HCM (1517) have been aimed at reversing the destabilization of the folded states caused by these mutations.The contractility of the heart is also controlled by phosphorylation of the myosin regulatory light chain (RLC) (18) and by β-adrenergic signaling pathways mediated by phosphorylation of MyBP-C in the thick filament (19) as well as troponin in the thin filament, which are also likely to alter the equilibrium between regulatory conformations of the motors. RLC phosphorylation is essential for the normal function of the heart. The pattern of contraction of the heart may depend on a spatial gradient of RLC phosphorylation across the ventricle wall (20), and a decrease in the level of RLC phosphorylation is associated with heart failure (21, 22). RLC phosphorylation potentiates the contractility of vertebrate and invertebrate striated muscle, an effect that is generally thought to be mediated by disrupting the folded helical conformation of the myosin motors on the thick filament and increasing the number of motors available for interaction with actin during contraction at a given [Ca2+] (23, 24). Disordering of the myosin motors on the thick filament by RLC phosphorylation has been shown in in vitro studies on isolated thick filaments (23) and is the main mechanism of thick filament activation in intact striated muscle of tarantula during contraction (25). However, the effect of RLC phosphorylation on the structure of the cardiac thick filament in diastole is unclear. More generally, the large changes in force and the speed of contraction and relaxation of cardiac muscle produced by β-adrenergic agonists are not associated with significant changes in the diastolic structure of the thick filament (26), so they are not simply mediated by increasing the number of ON motors in diastole. Similarly, length-dependent activation (LDA), the cellular correlate of the Frank–Starling law of the heart and a key autoregulatory mechanism that adjusts the cardiac output in response to different extents of diastolic filling (27, 28), seems not to be simply mediated by a stretch-induced change in the structure of the thick filament in diastole (11, 26). Conflicting results have been reported (29), however, and mathematical models have suggested that activation of myosin motors induced by the passive tension transmitted to the thick filament by titin might contribute to LDA in cardiac muscle (30, 31).Here, we investigated the in situ conformation of the myosin motors and its dependence on temperature, RLC phosphorylation, [Ca2+], and sarcomere length (SL) in demembranated cardiac trabeculae from rat hearts using the polarized fluorescence from probes on the N- and C-lobes of the RLC (18, 32). We show that, at the low [Ca2+] values that maintain the relaxed state and at near-physiological temperature and lattice spacing, the RLC-lobe orientations are consistent with about one-third of the myosin motors being in the folded helical conformation corresponding to the IHM, likely stabilized by MyBP-C in the C-zone of the filament. At the low [Ca2+] values that maintain the relaxed state, the folded conformation of the myosin motors is disrupted by cooling but not by RLC phosphorylation or stretch. However, stretching cardiac muscle at higher [Ca2+] that partially activates the thin filament triggers a stress-dependent activation of the thick filament and a force increase that is potentiated by RLC phosphorylation. This increase in contractility, induced by RLC phosphorylation and stretch, can be explained by an interfilament signaling pathway that links the stress-dependent activation of the thick filament to the activation state of the thin filament.  相似文献   

7.
Contraction of the heart results from interaction of the myosin and actin filaments. Cardiac myosin filaments consist of the molecular motor myosin II, the sarcomeric template protein, titin, and the cardiac modulatory protein, myosin binding protein C (MyBP-C). Inherited hypertrophic cardiomyopathy (HCM) is a disease caused mainly by mutations in these proteins. The structure of cardiac myosin filaments and the alterations caused by HCM mutations are unknown. We have used electron microscopy and image analysis to determine the three-dimensional structure of myosin filaments from wild-type mouse cardiac muscle and from a MyBP-C knockout model for HCM. Three-dimensional reconstruction of the wild-type filament reveals the conformation of the myosin heads and the organization of titin and MyBP-C at 4 nm resolution. Myosin heads appear to interact with each other intramolecularly, as in off-state smooth muscle myosin [Wendt T, Taylor D, Trybus KM, Taylor K (2001) Proc Natl Acad Sci USA 98:4361-4366], suggesting that all relaxed muscle myosin IIs may adopt this conformation. Titin domains run in an elongated strand along the filament surface, where they appear to interact with part of MyBP-C and with the myosin backbone. In the knockout filament, some of the myosin head interactions are disrupted, suggesting that MyBP-C is important for normal relaxation of the filament. These observations provide key insights into the role of the myosin filament in cardiac contraction, assembly, and disease. The techniques we have developed should be useful in studying the structural basis of other myosin-related HCM diseases.  相似文献   

8.
Enhanced force generation by smooth muscle myosin in vitro.   总被引:3,自引:1,他引:3       下载免费PDF全文
To determine whether the apparent enhanced force-generating capabilities of smooth muscle relative to skeletal muscle are inherent to the myosin cross-bridge, the isometric steady-state force produced by myosin in the in vitro motility assay was measured. In this assay, myosin adhered to a glass surface pulls on an actin filament that is attached to an ultracompliant (50-200 nm/pN) glass microneedle. The number of myosin cross-bridge heads able to interact with a length of actin filament was estimated by measuring the density of biochemically active myosin adhered to the surface; with this estimate, the average force per cross-bridge head of smooth and skeletal muscle myosins is 0.6 pN and 0.2 pN, respectively. Surprisingly, smooth muscle myosin generates approximately three times greater average force per cross-bridge head than does skeletal muscle myosin.  相似文献   

9.
Myosin binding protein C (MyBP-C) is one of the major sarcomeric proteins involved in the pathophysiology of familial hypertrophic cardiomyopathy (FHC). The cardiac isoform is tris-phosphorylated by cAMP-dependent protein kinase (cAPK) on beta-adrenergic stimulation at a conserved N-terminal domain (MyBP-C motif), suggesting a role in regulating positive inotropy mediated by cAPK. Recent data show that the MyBP-C motif binds to a conserved segment of sarcomeric myosin S2 in a phosphorylation-regulated way. Given that most MyBP-C mutations that cause FHC are predicted to result in N-terminal fragments of the protein, we investigated the specific effects of the MyBP-C motif on contractility and its modulation by cAPK phosphorylation. The diffusion of proteins into skinned fibers allows the investigation of effects of defined molecular regions of MyBP-C, because the endogenous MyBP-C is associated with few myosin heads. Furthermore, the effect of phosphorylation of cardiac MyBP-C can be studied in a defined unphosphorylated background in skeletal muscle fibers only. Triton skinned fibers were tested for maximal isometric force, Ca(2+)/force relation, rigor force, and stiffness in the absence and presence of the recombinant cardiac MyBP-C motif. The presence of unphosphorylated MyBP-C motif resulted in a significant (1) depression of Ca(2+)-activated maximal force with no effect on dynamic stiffness, (2) increase of the Ca(2+) sensitivity of active force (leftward shift of the Ca(2+)/force relation), (3) increase of maximal rigor force, and (4) an acceleration of rigor force and rigor stiffness development. Tris-phosphorylation of the MyBP-C motif by cAPK abolished these effects. This is the first demonstration that the S2 binding domain of MyBP-C is a modulator of contractility. The anchorage of the MyBP-C motif to the myosin filament is not needed for the observed effects, arguing that the mechanism of MyBP-C regulation is at least partly independent of a "tether," in agreement with a modulation of the head-tail mobility. Soluble fragments occurring in FHC, lacking the spatial specificity, might therefore lead to altered contraction regulation without affecting sarcomere structure directly.  相似文献   

10.
Myosin filaments of muscle are regulated either by phosphorylation of their regulatory light chains or Ca2+ binding to the essential light chains, contributing to on–off switching or modulation of contraction. Phosphorylation-regulated filaments in the relaxed state are characterized by an asymmetric interaction between the two myosin heads, inhibiting their actin binding or ATPase activity. Here, we have tested whether a similar interaction switches off activity in myosin filaments regulated by Ca2+ binding. Cryo-electron microscopy and single-particle image reconstruction of Ca2+-regulated (scallop) filaments reveals a helical array of myosin head-pair motifs above the filament surface. Docking of atomic models of scallop myosin head domains into the motifs reveals that the heads interact in a similar way to those in phosphorylation-regulated filaments. The results imply that the two major evolutionary branches of myosin regulation—involving phosphorylation or Ca2+ binding—share a common structural mechanism for switching off thick-filament activity in relaxed muscle. We suggest that the Ca2+-binding mechanism evolved from the more ancient phosphorylation-based system to enable rapid response of myosin-regulated muscles to activation. Although the motifs are similar in both systems, the scallop structure is more tilted and higher above the filament backbone, leading to different intermolecular interactions. The reconstruction reveals how the myosin tail emerges from the motif, connecting the heads to the filament backbone, and shows that the backbone is built from supramolecular assemblies of myosin tails. The reconstruction provides a native structural context for understanding past biochemical and biophysical studies of this model Ca2+-regulated myosin.  相似文献   

11.
Cardiac myosin binding protein C.   总被引:11,自引:0,他引:11  
S Winegrad 《Circulation research》1999,84(10):1117-1126
Myosin binding protein C (MyBP-C) is one of a group of myosin binding proteins that are present in the myofibrils of all striated muscle. The protein is found at 43-nm repeats along 7 to 9 transverse lines in a portion of the A band where crossbridges are found (C zone). MyBP-C contains myosin and titin binding sites at the C terminus of the molecule in all 3 of the isoforms (slow skeletal, fast skeletal, and cardiac). The cardiac isoform also includes a series of residues that contain 3 phosphorylatable sites and an additional immunoglobulin module at the N terminus that are not present in skeletal isoforms. The following 2 major functions of MyBP-C have been suggested: (1) a role in the formation of the sarcomeric myofibril as a result of binding to myosin and titin and (2) in the case of the cardiac isoform, regulation of contraction through phosphorylation. The first is supported by the demonstrated effect of MyBP-C on the packing of myosin in the thick filament, the coincidence of appearance of sarcomeres and MyBP-C during myofibrillogenesis, and the defective formation of sarcomeres when the titin and/or myosin binding sites of MyBP-C are missing. The second is supported by the specific phosphorylation sites in cardiac MyBP-C, the presence in the thick filament of an enzyme specific for MyBP-C phosphorylation, the alteration of thick filament structure by MyBP-C phosphorylation, and the accompaniment of MyBP-C phosphorylation with all major physiological mechanisms of modulation of inotropy in the heart.  相似文献   

12.
The linear dichroism of iodoacetylrhodamine labels attached to the single reactive thiol groups of myosin heads was measured to determine the spatial orientation of myosin cross-bridges in single glycerinated skeletal muscle fibers. We have shown previously that in rigor the chromophoric labels are well ordered and assume an orientation nearly perpendicular to the fiber axis; in the presence of MgADP, a large fraction of probe remains well ordered but the probe attitude assumes a more slanted orientation; in relaxed muscle, the probe order is largely lost, implying a high degree of cross-bridge disorder. In this paper, we report that during isometric contraction a large fraction of the probe shows a high degree of order, suggesting the attachment of approximately equal to 65% of the cross-bridges to actin. These ordered cross-bridges have a probe attitude similar to that of the MgADP-induced static state and hence are in a mechanical state quite distinct from rigor.  相似文献   

13.
A key unanswered question in smooth muscle biology is whether phosphorylation of the myosin regulatory light chain (RLC) is sufficient for regulation of contraction, or if thin-filament-based regulatory systems also contribute to this process. To address this issue, the endogenous RLC was extracted from single smooth muscle cells and replaced with either a thiophosphorylated RLC or a mutant RLC (T18A/S19A) that cannot be phosphorylated by myosin light chain kinase. The actin-binding protein calponin was also extracted. Following photolysis of caged ATP, cells without calponin that contained a nonphosphorylatable RLC shortened at 30% of the velocity and produced 65% of the isometric force of cells reconstituted with the thiophosphorylated RLC. The contraction of cells reconstituted with nonphosphorylatable RLC was, however, specifically suppressed in cells that contained calponin. These results indicate that calponin is required to maintain cells in a relaxed state, and that in the absence of this inhibition, dephosphorylated cross-bridges can slowly cycle and generate force. These findings thus provide a possible framework for understanding the development of latch contraction, a widely studied but poorly understood feature of smooth muscle.  相似文献   

14.
Elastic distortion of a structural element of the actomyosin complex is fundamental to the ability of myosin to generate motile forces. An elastic element allows strain to develop within the actomyosin complex (cross-bridge) before movement. Relief of this strain then drives filament sliding, or more generally, movement of a cargo. Even with the known crystal structure of the myosin head, however, the structural element of the actomyosin complex in which elastic distortion occurs remained unclear. To assign functional relevance to various structural elements of the myosin head, e.g., to identify the elastic element within the cross-bridge, we studied mechanical properties of muscle fibers from patients with familial hypertrophic cardiomyopathy with point mutations in the head domain of the beta-myosin heavy chain. We found that the Arg-719 --> Trp (Arg719Trp) mutation, which is located in the converter domain of the myosin head fragment, causes an increase in force generation and fiber stiffness under isometric conditions by 48-59%. Under rigor and relaxing conditions, fiber stiffness was 45-47% higher than in control fibers. Yet, kinetics of active cross-bridge cycling were unchanged. These findings, especially the increase in fiber stiffness under rigor conditions, indicate that cross-bridges with the Arg719Trp mutation are more resistant to elastic distortion. The data presented here strongly suggest that the converter domain that forms the junction between the catalytic and the light-chain-binding domain of the myosin head is not only essential for elastic distortion of the cross-bridge, but that the main elastic distortion may even occur within the converter domain itself.  相似文献   

15.
Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I(11)/I(10), in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C(-/-)) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I(11)/I(10) (0.22+/-0.03 versus 0.33+/-0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I(11)/I(10) between untreated and PKA-treated cMyBP-C(-/-) myocardium (0.40+/-0.06 versus 0.42+/-0.05). Although lattice spacing did not change after treatment in wild-type (45.68+/-0.84 nm versus 45.64+/-0.64 nm), treatment of cMyBP-C(-/-) myocardium increased lattice spacing (46.80+/-0.92 nm versus 49.61+/-0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.  相似文献   

16.
Current methods of analyzing EPR spectra of spin-labeled muscle fibers allow the determination of spin-label orientation within the fiber, rather than the orientation of the myosin head itself. In order to describe the orientational distribution of spin labeled myosin heads within the muscle fibers, the orientation of the spin label within the myosin head must be known. The iodoacetamide label orientation in the myosin head was determined to be (16.8 degrees, 28.3 degrees, 4.2 degrees) or (16.6 degrees, 72.0 degrees, 4.3 degrees). These Eulerian angles were obtained from the analysis of EPR spectra of fibers decorated with labeled myosin heads in the absence of ATP, with the assumption that the head's tilt angle is 40 degrees, as observed in a recent EM study [Pollard, T., Bhandari, D., Maupin, P., Wachsstock, D., Weeds, A. & Zot, H. (1993) Biophys. J. 64, 454-471]. Knowledge of spin-label orientation will allow for quantitative determination of myosin head orientation in the various states of the contractile cycle.  相似文献   

17.
Axial x-ray diffraction patterns from single intact fibers of frog skeletal muscle were recorded by using a highly collimated x-ray beam at the European Synchrotron Radiation Facility. During isometric contraction at sarcomere lengths 2.2-3.2 microm, the M3 x-ray reflection, associated with the repeat of myosin heads along the filaments, was resolved into two peaks. The total M3 intensity decreased linearly with increasing sarcomere length and was directly proportional to the degree of overlap between myosin and actin filaments, showing that it comes from myosin heads in the overlap region. The separation between the M3 peaks was smaller at longer sarcomere length and was quantitatively explained by x-ray interference between myosin heads in the two overlap regions of each sarcomere. The relative intensity of the M3 peaks was independent of sarcomere length, showing that the axial periodicities of the nonoverlap and overlap regions of the myosin filament have the same value, 14.57 nm, during active contraction. In resting fibers the periodicity is 14.34 nm, so muscle activation produces a change in myosin filament structure in the nonoverlap as well as the overlap part of the filament. The results establish x-ray interferometry as a new tool for studying the motions of myosin heads during muscle contraction with unprecedented spatial resolution.  相似文献   

18.
In contrast to skeletal muscle isoforms of myosin-binding protein C (MyBP-C), the cardiac isoform has 11 rather than 10 modules (labeled C0-C10, N-C terminus), three phosphorylation sites between C1 and C2, and 28 additional amino acids in C5. Within the C5-C10 region of cardiac MyBP-C (cMyBP-C) there are interactions between C5 and C8 as well as C7 and C10. Isolated skinned cardiac trabeculae were incubated with one of three recombinant fragments of cMyBP-C to interfere with interactions of endogenous C5. 2-10 microM C5 or C5-containing peptide fragments of cMyBP-C reversibly reduced Ca sensitivity without extracting myofibrillar protein. C2-C4 fragments had no effect. This result indicated that the region of cMyBP-C that contains C5 maintains a specific structural arrangement of myosin that helps set its contractile properties. Greater than 10 microM C5 caused skinned trabeculae to lose a substantial amount of cMyBP-C and some myosin heavy chain, resulting in irreversible decline in maximum Ca-activated force. MyBP-C appears to stabilize the structure of the thick filament and modulate the way in which myosin heads extend to the thin filament.  相似文献   

19.
Although muscle contraction is known to result from movement of the myosin heads on the thick filaments while attached to the thin filaments, the myosin head movement coupled with ATP hydrolysis still remains to be investigated. Using a gas environmental (hydration) chamber, in which biological specimens can be kept in wet state, we succeeded in recording images of living muscle thick filaments with gold position markers attached to the myosin heads. The position of individual myosin heads did not change appreciably with time in the absence of ATP, indicating stability of the myosin head mean position. On application of ATP, the position of individual myosin heads was found to move by ≈20 nm along the filament axis, whereas no appreciable movement of the filaments was detected. The ATP-induced myosin head movement was not observed in filaments in which ATPase activity of the myosin heads was eliminated. Application of ADP produced no appreciable myosin head movement. These results show that the ATP-induced myosin head movement takes place in the absence of the thin filaments. Because ATP reacts rapidly with the myosin head (M) to form the complex (MADPPi) with an average lifetime of >10 s, the observed myosin head movement may be mostly associated with reaction, M + ATP → MADPPi. This work will open a new research field to study dynamic structural changes of individual biomolecules, which are kept in a living state in an electron microscope.  相似文献   

20.
In addition to the contractile proteins actin and myosin, contractile filaments of striated muscle contain other proteins that are important for regulating the structure and the interaction of the two force-generating proteins. In the thin filaments, troponin and tropomyosin form a Ca-sensitive trigger that activates normal contraction when intracellular Ca is elevated. In the thick filament, there are several myosin-binding proteins whose functions are unclear. Among these is the myosin-binding protein C (MBP-C). The cardiac isoform contains four phosphorylation sites under the control of cAMP and calmodulin-regulated kinases, whereas the skeletal isoform contains only one such site, suggesting that phosphorylation in cardiac muscle has a specific regulatory function. We isolated natural thick filaments from cardiac muscle and, using electron microscopy and optical diffraction, determined the effect of phosphorylation of MBP-C on cross bridges. The thickness of the filaments that had been treated with protein kinase A was increased where cross bridges were present. No change occurred in the central bare zone that is devoid of cross bridges. The intensity of the reflections along the 43-nm layer line, which is primarily due to the helical array of cross bridges, was increased, and the distance of the first peak reflection from the meridian along the 43-nm layer line was decreased. The results indicate that phosphorylation of MBP-C (i) extends the cross bridges from the backbone of the filament and (ii) increases their degree of order and/or alters their orientation. These changes could alter rate constants for attachment to and detachment from the thin filament and thereby modify force production in activated cardiac muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号