首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Le LQ  Parada LF 《Oncogene》2007,26(32):4609-4616
The human disease von Recklinghausen's neurofibromatosis (Nf1) is one of the most common genetic disorders. It is caused by mutations in the NF1 tumor suppressor gene, which encodes a GTPase activating protein (GAP) that negatively regulates p21-RAS signaling. Dermal and plexiform neurofibromas as well as malignant peripheral nerve sheath tumors and other malignant tumors, are significant complications in Nf1. Neurofibromas are complex tumors and composed mainly of abnormal local cells including Schwann cells, endothelial cells, fibroblasts and additionally a large number of infiltrating inflammatory mast cells. Recent work has indicated a role for the microenvironment in plexiform neurofibroma genesis. The emerging evidence points to mast cells as crucial contributors to neurofibroma tumorigenesis. Therefore, further understanding of the molecular interactions between Schwann cells and their environment will provide tools to develop new therapies aimed at delaying or preventing tumor formation in Nf1 patients.  相似文献   

2.
Loss of the tumor suppressor gene NF1 in neurofibromatosis type 1 (NF1) contributes to the development of a variety of tumors, including malignant peripheral nerve sheath tumors (MPNST) and benign neurofibromas. Of the different cell types found in neurofibromas, Schwann cells usually provide between 40 and 80%, and are thought to be critical for tumor growth. Here we describe the identification of growth factors that are upregulated in NF1-/- mouse Schwann cells and are potential regulators of angiogenesis and cell growth. Basic fibroblast growth factor (FGF-2), platelet-derived growth factor (PDGF) and midkine (MK) were found to be induced by loss of neurofibromin and MK was further characterized. MK was induced in human neurofibromas, schwannomas, and various nervous system tumors associated with NF1 or NF2; midkine showed an expression pattern overlapping but distinct from its homolog pleiotrophin (PTN). Immunohistochemistry revealed expression of MK in S-100 positive Schwann cells of dermal and plexiform neurofibromas, and in endothelial cells of tumor blood vessels, but not in normal blood vessels. Furthermore, MK demonstrated potent mitogenic activity for human systemic and brain endothelial cells in vitro and stimulated proliferation and soft agar colony formation of human MPNST derived S100 positive cells and fibroblastoid cells derived from an NF1 neurofibroma. The data support a possible central role for MK as a mediator of angiogenesis and neurofibroma growth in NF1. Oncogene (2001) 20, 97 - 105.  相似文献   

3.
4.
Plexiform neurofibromas are peripheral nerve sheath tumors initiated by biallelic mutation of the NF1 tumor suppressor gene in the Schwann cell lineage. To understand whether neurofibroma formation is possible after birth, we induced Nf1 loss of function with an inducible proteolipid protein Cre allele. Perinatal loss of Nf1 resulted in the development of small plexiform neurofibromas late in life, whereas loss in adulthood caused large plexiform neurofibromas and morbidity beginning 4 months after onset of Nf1 loss. A conditional EGFP reporter allele identified cells showing recombination, including peripheral ganglia satellite cells, peripheral nerve S100β+ myelinating Schwann cells, and peripheral nerve p75+ cells. Neurofibromas contained cells with Remak bundle disruption but no recombination within GFAP+ nonmyelinating Schwann cells. Extramedullary lympho-hematopoietic expansion was also observed in PlpCre;Nf1fl/fl mice. These tumors contained EGFP+/Sca-1+ stromal cells among EGFP-negative lympho-hematopoietic cells indicating a noncell autonomous effect and unveiling a role of Nf1-deleted microenvironment on lympho-hematopoietic proliferation in vivo. Together these findings define a tumor suppressor role for Nf1 in the adult and narrow the range of potential neurofibroma-initiating cell populations.  相似文献   

5.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are well-known factors that induce neovascularization in many tumors. The molecular mechanisms that regulate tumor angiogenesis in human chondrosarcoma are not clear. We assessed in this work the angiogenic activities of a human chondrosarcoma cell line (OUMS-27) in vivo and determined the efficacies of angiogenic factors derived from OUMS-27 cells on human umbilical vein endothelial cells (HUVECs) in vitro. Tumor xenografts induced an increase in the formation of neovessels, but the distributions of Ki-67 antigen, VEGF and bFGF were unaffected. We also demonstrated that OUMS-27 cells secreted VEGF(165) into the culture medium and that it was the maximal angiogenic factor to stimulate endothelial proliferation and migration in chondrosarcoma. Anti-VEGF antibodies induced an approximately 70% inhibition of these responses of HUVECs, but did not have any effect on OUMS-27 cells. Anti-bFGF antibodies suppressed not only the activities of HUVECs but also the growth of tumor cells in vitro. We indicate that angiogenesis is principally elicited by VEGF(165) and that tumorigenesis is mainly regulated by bFGF stored in the extracellular matrix of OUMS-27 cells. The present study may offer the availability of combination therapies for inhibition of VEGF and bFGF action on vascular endothelial cells and chondrosarcoma cells, respectively.  相似文献   

6.
Individuals with the tumor predisposition syndrome, neurofibromatosis 1 (NF1), are prone to development of nervous system tumors, including neurofibromas and pilocytic astrocytomas. Based on the ability of the NF1 gene product (neurofibromin) to function as a GTPase activating protein for RAS, initial biologically based therapies for NF1-associated tumors focused on the use of RAS inhibitors, but with limited clinical success. In an effort to identify additional targets for therapeutic drug design in NF1, we used an unbiased proteomic approach to uncover unanticipated intracellular signaling pathways dysregulated in Nf1-deficient astrocytes. We found that the expression of proteins involved in promoting ribosome biogenesis was increased in the absence of neurofibromin. In addition, Nf1-deficient astrocytes exhibit high levels of mammalian target of rapamycin (mTOR) pathway activation, which was inhibited by blocking K-RAS or phosphatidylinositol 3-kinase activation. This mTOR pathway hyperactivation was reflected by high levels of ribosomal S6 activation in both Nf1 mutant mouse optic nerve gliomas and in human NF1-associated pilocytic astrocytoma tumors. Moreover, inhibition of mTOR signaling in Nf1-/- astrocytes abrogated their growth advantage in culture, restoring normal proliferative rates. These results suggest that mTOR pathway inhibition may represent a logical and tractable biologically based therapy for brain tumors in NF1.  相似文献   

7.
Neurofibromatosis type 1 (Nf1) mutation predisposes to benign peripheral nerve (glial) tumors called neurofibromas. The point(s) in development when Nf1 loss promotes neurofibroma formation are unknown. We show that inactivation of Nf1 in the glial lineage in vitro at embryonic day 12.5 + 1, but not earlier (neural crest) or later (mature Schwann cell), results in colony-forming cells capable of multilineage differentiation. In vivo, inactivation of Nf1 using a DhhCre driver beginning at E12.5 elicits plexiform neurofibromas, dermal neurofibromas, and pigmentation. Tumor Schwann cells uniquely show biallelic Nf1 inactivation. Peripheral nerve and tumors contain transiently proliferating Schwann cells that lose axonal contact, providing insight into early neurofibroma formation. We suggest that timing of Nf1 mutation is critical for neurofibroma formation.  相似文献   

8.
D H Gutmann  A Loehr  Y Zhang  J Kim  M Henkemeyer  A Cashen 《Oncogene》1999,18(31):4450-4459
Individuals affected with neurofibromatosis 1 (NF1) harbor increased numbers of GFAP-immunoreactive cerebral astrocytes and develop astrocytomas that can lead to blindness and death. Mice heterozygous for a targeted Nf1 mutation (Nf1+/-) were employed as a model for the human disease to evaluate the hypothesis that reduced NF1 protein (neurofibromin) expression may confer a growth advantage for astrocytes, such that inactivation of only one NF1 allele is sufficient for abnormal astrocyte proliferation. Here, we report that Nf17+/- mice have increased numbers of cerebral astrocytes and increased astrocyte proliferation compared to wild-type littermates. Intriguingly, primary Nf1+/- astrocyte cultures failed to demonstrate a cell-autonomous growth advantage unless they were cocultured with C17 neuronal cells. This C17 neuronal cell-induced Nf1+/- increase in proliferation was blocked by MEK inhibition (PD98059), suggesting a p21-ras-dependent effect. Furthermore, mice heterozygous for a targeted mutation in another GAP molecule, p120-GAP, demonstrated no increases in cerebral astrocyte number. These findings suggest that reduced NF1 expression results in a cell context-dependent increase in astrocyte proliferation that may be sufficient for the development of astrocytic growth abnormalities in patients with NF1.  相似文献   

9.
Whereas biallelic neurofibromatosis 1 (NF1) inactivation is observed in NF1-associated gliomas, astrocyte-restricted Nf1 conditional knockout mice do not develop gliomas. These observations suggest that NF1 glioma formation requires additional cellular or genetic conditions. To determine the effect of an Nf1 heterozygous brain environment on NF1 glioma formation, we generated Nf1+/- mice lacking Nf1 expression in astrocytes. In contrast to astrocyte-restricted Nf1 conditional knockout mice, Nf1+/- mice lacking Nf1 in astrocytes develop optic nerve gliomas. This mouse model demonstrates that Nf1+/- cells contribute to the pathogenesis of gliomas in NF1 and provides a tool for the preclinical evaluation of potential therapeutic interventions for these tumors.  相似文献   

10.
The genetic evolution from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis type 1 (NF1) syndrome remains unclear. Schwann cells and/or their precursor cells are believed to be the primary pathogenic cell in neurofibromas because they harbor biallelic neurofibromin 1 (NF1) gene mutations. However, the phosphatase and tensin homolog (Pten) and neurofibromatosis 1 (Nf1) genes recently were found to be comutated in high-grade peripheral nerve sheath tumors (PNST) in mice. In this study, we created transgenic mice that lack both Pten and Nf1 in Schwann cells and Schwann cell precursor cells to validate the role of these two genes in PNST formation in vivo. Haploinsufficiency or complete loss of Pten dramatically accelerated neurofibroma development and led to the development of higher grade PNSTs in the context of Nf1 loss. Pten dosage, together with Nf1 loss, was sufficient for the progression from low-grade to high-grade PNSTs. Genetic analysis of human malignant PNSTs (MPNST) also revealed downregulation of PTEN expression, suggesting that Pten-regulated pathways are major tumor-suppressive barriers to neurofibroma progression. Together, our findings establish a novel mouse model that can rapidly recapitulate the onset of human neurofibroma tumorigenesis and the progression to MPNSTs.  相似文献   

11.
Basic fibroblast growth factor (bFGF) is expressed in the vascular endothelium of human brain tumors. To investigate the biological consequences of a possible autocrine modality of microvascular endothelial cell activation by endogenous bFGF in these tumors, mouse brain microvascular endothelial cells were stably transfected with a retroviral expression vector harboring a human bFGF cDNA. When grown on tissue culture plastic, bFGF-transfected clones show a transformed morphology and increased saturation density. bFGF-transfectants have an invasive behavior when seeded on three-dimensional fibrin gel and originate endothelial cell sprouts when embedded within fibrin. Also, bFGF-transfected cells undergo morphogenetic organization and produce a complex network of branching cord-like structures connecting foci of infiltrating cells when seeded on Matrigel, a laminin-rich extracellular matrix material. In contrast, parental and mock-transfected cells do not invade fibrin gels nor organize on Matrigel. These findings demonstrate that bFGF overexpression induces an angiogenic phenotype in brain microvascular endothelial cells characterized by an invasive behavior and morphogenic potential. They support the notion that neovascularization of brain tumors can be triggered by stimuli that induce vascular endothelium to produce its own autocrine factor(s).  相似文献   

12.
Glioblastomas are the most common primary brain tumors in adults. These tumors exhibit a high degree of vascularization, and malignant progression from astrocytoma to glioblastoma is often accompanied by increased angiogenesis and the upregulation of vascular endothelial growth factor and its receptors. In this study, we investigated the in vivo antiangiogenic and antitumor effects of brain-specific angiogenesis inhibitor 1 (BAI1) using human glioblastoma cell lines. Glioblastoma cells were transduced with an adenoviral vector encoding BAI1 (AdBAI1), and Northern and Western blot analyses, respectively, demonstrated BAI1 mRNA and protein expression in the transduced tumor cells. Using an in vivo neovascularization assay, we found that angiogenesis surrounding AdBAI1-transduced glioblastoma cells transplanted into transparent skinfold chambers of SCID mice was significantly impaired compared to control treated cells. Additionally, in vivo inoculation with AdBAI1 of established subcutaneous or intracerebral transplanted tumors significantly impaired tumor growth and promoted increased mouse survival. Morphologically, the tumors exhibited signs of impaired angiogenesis, such as extensive necrosis and reduced intratumoral vascular density. Taken together, these data strongly indicate that BAI1 may be an excellent gene therapy candidate for the treatment of brain tumors, especially human glioblastomas.  相似文献   

13.
The role of vascular endothelial growth factor in pathological angiogenesis   总被引:26,自引:0,他引:26  
Summary Vascular endothelial growth factor (VEGF) is a diffusible endothelial cell-specific mitogen and angiogenic factor that can also increase vascular permeability. By alternative splicing of mRNA, VEGF may exist as one of four different isoforms that have similar biological activities but differ markedly in targeting and bioavailability. The VEGF receptors are specifically expressed in the cell surface of vascular endothelial cells. Recent studies point to VEGF as a major regulator of physiological angiogenesis, such as developmental and reproductive angiogenesis. Furthermore, VEGF appears to be a crucial mediator of blood vessel growth associated with tumors and proliferative retinopathies. The VEGF mRNA is up-regulated in the majority of human tumors and the VEGF protein is increased in the aqueous and vitreous humors of patients with proliferative retinopathies. Anti-VEGF antibodies have the ability to suppress the growth of a variety of tumor cell lines in nude mice and also can inhibit angiogenesis in animal models of intraocular neovascularization. Therefore, strategies aimed at antagonizing VEGF may form the basis for an effective treatment of tumors and retinopathies. Furthermore, VEGF-induced angiogenesis is sufficient to achieve a therapeutic endpoint in models of coronary or limb ischemia.  相似文献   

14.
Benign neurofibromas and malignant peripheral nerve sheath tumors are serious complications of neurofibromatosis type 1. The epidermal growth factor receptor is not expressed by normal Schwann cells, yet is overexpressed in subpopulations of Nf1 mutant Schwann cells. We evaluated the role of EGFR in Schwann cell tumorigenesis. Expression of EGFR in transgenic mouse Schwann cells elicited features of neurofibromas: Schwann cell hyperplasia, excess collagen, mast cell accumulation, and progressive dissociation of non-myelin-forming Schwann cells from axons. Mating EGFR transgenic mice to Nf1 hemizygotes did not enhance this phenotype. Genetic reduction of EGFR in Nf1(+/-);p53(+/-) mice that develop sarcomas significantly improved survival. Thus, gain- and loss-of-function experiments support the relevance of EGFR to peripheral nerve tumor formation.  相似文献   

15.
Because of the prominent neovascularization observed in the growth of brain tumors, we studied the occurrence of basic fibroblast growth factor (bFGF), a potent angiogenic factor in astrocytomas, the most aggressive of which often have marked vascular hyperplasia. Using immunohistochemical methods, we examined 21 examples of such tumors, 7 glioblastomas multiforme, 7 anaplastic astrocytomas, and 7 low grade astrocytomas. Using polyclonal and affinity-purified rabbit antisera to human bFGF, we detected immunoreactive bFGF in all cases of glioblastoma multiforme. bFGF was present in both endothelial cells and neoplastic astrocytes. In 4 of 7 anaplastic astrocytomas, the tumor astrocytes had bFGF immunoreactivity and, in 5 of 7 cases, endothelial cells were also immunopositive. In glioblastomas multiforme and anaplastic astrocytomas, capillaries adjacent to tumor showed bFGF immunoreactivity, whereas capillaries distant from the tumors were not immunostained. In low grade astrocytomas, astrocytic cells were weakly immunoreactive in 2 of 7 cases, and in only 1 of the 7 cases capillaries were immunostained. In each grade, reactive astroglial cells showed variable bFGF immunoreactivity. The immunostaining was not seen with the flow-through fraction obtained after affinity purification of the bFGF antiserum with pure recombinant bFGF. These results suggest a possible role for bFGF in tumor growth and in angiogenesis in astrocytomas.  相似文献   

16.
17.
The most common NF1 feature is the benign neurofibroma, which consists predominantly of Schwann cells. Dermal neurofibromas usually arise during puberty and increase in number throughout adulthood. Plexiform neurofibromas, associated with larger nerves, are often congenital and can be life threatening. Malignant peripheral nerve sheath tumors (MPNST) in NF1 are believed to arise from plexiforms in 5%-10% of patients. There are reports of increased potential for malignant transformation of plexiform tumors and increase in dermal neurofibromas, during pregnancy. These observations suggest that steroid hormones influence neurofibroma growth, and our work is the first to examine steroid hormone receptor expression and ligand-mediated cell growth and survival in normal human Schwann cells and neurofibroma-derived Schwann cell cultures. Immunohistochemistry and real-time PCR showed that estrogen receptors (ERs), progesterone receptor (PR), and androgen receptor are differentially expressed in primary neurofibromas and in NF1 tumor-derived Schwann cell cultures compared to normal Schwann cells. However, there is substantial heterogeneity, with no clear divisions based on tumor type or gender. The in vitro effects of steroid hormone receptor ligands on proliferation and apoptosis of early passage NF1 tumor-derived Schwann cell cultures were compared to normal Schwann cell cultures. Some statistically significant changes in proliferation and apoptosis were found, also showing heterogeneity across groups and ligands. Overall, the changes are consistent with increased cell accumulation. Our data suggest that steroid hormones can directly influence neurofibroma initiation or progression by acting through their cognate receptor, but that these effects may only apply to a subset of tumors, in either gender.  相似文献   

18.
Choi JS  Park SY  Yi EY  Kim YJ  Jeong JW 《Oncology research》2011,19(10-11):455-461
Coenzyme Q10 (CoQ10) is an essential factor of the mitochondrial respiratory chain and has effective antioxidant properties. Therefore, CoQ10 has been used in a variety of clinical applications and used as a nutritional supplement to treat several human diseases. Here, we tested the effects of CoQ10 on angiogenesis stimulated by basic fibroblast growth factor (bFGF). CoQ10 significantly inhibited bFGF-induced angiogenesis in a mouse Matrigel plug and the sprouting of endothelial cells in rat aortic rings. In addition, CoQ10 decreased the ability of tube formation, migration, and invasion in endothelial cells. When CoQ10 was used to inhibit angiogenesis in endothelial cells, the expression of vascular endothelial growth factor (VEGF) and the phosphorylation of ERK were decreased. Taken together, these results indicate that CoQ10 is able to act as an antiangiogenic regulator, and its inhibitory activity is mediated by blocking an ERK-dependent pathway. This study suggests that CoQ10 may be used a therapeutic agent to decrease neovascularization in several diseases, including solid tumors.  相似文献   

19.
Integrin beta4 signaling promotes tumor angiogenesis   总被引:3,自引:0,他引:3  
Mice carrying a targeted deletion of the signaling portion of the integrin beta4 subunit display drastically reduced angiogenesis in response to bFGF in the Matrigel plug assay and to hypoxia in the retinal neovascularization model. Molecular cytology indicates that alpha6beta4 signaling promotes branching of beta4+ medium- and small-size vessels into beta4- microvessels without exerting a direct effect on endothelial cell proliferation or survival. Signaling studies reveal that alpha6beta4 signaling induces endothelial cell migration and invasion by promoting nuclear translocation of P-ERK and NF-kappaB. Upon subcutaneous implantation of various cancer cells, the mutant mice develop smaller and significantly less vascularized tumors than wild-type controls. These results provide genetic evidence that alpha6beta4 signaling promotes the onset of the invasive phase of pathological angiogenesis and hence identify a novel target for antiangiogenic therapy.  相似文献   

20.
Moon EJ  Lee YM  Kim KW 《Oncology reports》2003,10(3):617-621
Conjugated linoleic acid (CLA) is a potent inhibitor of mammary carcinogenesis. Cancer cells produce various angiogenic factors which stimulate host vascular endothelial cell mitogenesis and chemotaxis for their growth and metastasis. Basic fibroblast growth factor (bFGF) is a potent angiogenic factor that is expressed in many tumors. In this study, we found that CLA decreased bFGF-induced endothelial cell proliferation and DNA synthesis in a dose-dependent manner. However, CLA did not inhibit endothelial cell migration. Furthermore, CLA showed a potent inhibitory effect on embryonic vasculogenesis and bFGF-induced angiogenesis in vivo. Collectively, these results suggest that CLA selectively inhibits the active proliferating endothelial cells induced by bFGF, which may explain its anti-carcinogenic properties in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号