首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we have tested the effects of transforming growth factor beta 1 (TGF beta 1) on FSH action toward aromatase activity and lactate production in cultured Sertoli cells isolated from immature porcine testes. Whereas treatment of Sertoli cells with FSH resulted in a dose-dependent increase (about 7-fold) in aromatase activity (conversion of testosterone into estradiol) (ED50 = 80 ng/ml FSH), the addition of TGF beta 1 reduced this gonadotropin action. The inhibitory effect of TGF beta 1 on FSH aromatase activity was dose dependent (ED50 = 0.1 ng/ml, 4 pM TGF beta 1) with a maximal decrease (about 40%) observed after a long term (48-h) treatment. TGF beta 1 exerted its inhibitory effect on FSH action at the level(s) of cAMP accumulation, exerting no apparent effect on the gonadotropin receptor or at a site(s) related to cAMP action. TGF beta 1 (2 ng/ml) significantly (P less than 0.002) reduced (52% decrease) FSH-stimulated cAMP levels in cultured porcine Sertoli cells. However, such an inhibitory effect of the growth factor was no longer observed when stimulation of cAMP accumulation with FSH occurred in the presence of methyl isobutyl xanthine (0.5 mM), an inhibitor of cAMP-phosphodiesterase activity. This observation suggests that TGF beta 1 decreased cAMP levels by increasing catabolism of the cyclic nucleotide through an enhancement of cAMP-phosphodiesterase activity. The inhibitory effect of TGF beta 1 was not limited to the action of FSH on aromatase activity but also extended to the gonadotropin action (mediated by cAMP) on lactate production. As for the inhibitory effect of TGF beta 1 on FSH-induced aromatase activity, the inhibitory effect of the growth factor on FSH-stimulated lactate production was dose and time dependent with a maximal decrease (about 30%) observed in the picomolar range (1 ng/ml, 40 pM) after 48 h treatment with TGF beta 1. In conclusion, the present study demonstrates that TGF beta 1 attenuates FSH action on Sertoli cell activity and that such inhibitory action is potentially exerted through a decrease in cAMP levels. Because of the local production of TGF beta 1, it is suggested that the effects of the growth factor reported here might be exerted in the context of the testicular paracrine mechanisms.  相似文献   

2.
M Knecht  P Feng  K Catt 《Endocrinology》1987,120(4):1243-1249
Regulatory actions of transforming growth factor-beta (TGF beta) on granulosa cell function were analyzed in cells cultured from the ovaries of diethylstilbestrol-implanted rats. In the presence of a suboptimal concentration of FSH (5 ng/ml) that increased LH receptors by 100-fold during a 72-h culture, TGF beta augmented this response in a dose-dependent manner with a maximal effect at 16 pM. In contrast, the growth factor inhibited the LH receptor response to an optimal dose of FSH (50 ng) by up to 50% and was inactive in the absence of gonadotropin. TGF beta also enhanced the formation of cAMP by 5 ng FSH and partially inhibited the effects of higher FSH concentrations. However, the actions of TGF beta were more prominent on LH receptor induction than on cAMP production with either low or high amounts of FSH. In addition, TGF beta had little effect on cAMP production stimulated by cholera toxin or forskolin, but amplified the actions of these ligands as well as that of 8-bromo-cAMP on LH receptor expression. TGF beta also modulated the steroidogenic activity of the granulosa cells, with increased production of progesterone in response to 5-100 ng FSH. The bifunctional actions of TGF beta on FSH-induced LH receptor formation were observed throughout a 96-h culture period. However, the presence of the growth factor was not required for the first 24 h of culture, indicating that TGF beta alters the later events involved in LH receptor formation. TGF beta augmented the stimulatory actions of 5 ng FSH on LH receptors in the absence or presence of insulin, but its inhibitory effect on these receptors was only observed in cells treated with insulin. These results indicate that TGF beta modifies FSH action during granulosa cell development in a biphasic manner. TGF beta can exert stimulatory or inhibitory effects depending upon the concentration of FSH and the presence of insulin, and these are due to alterations in cAMP action as well as cAMP production. Autocrine and/or endocrine actions of TGF beta during granulosa cell differentiation may be involved in the processes of follicle selection and development.  相似文献   

3.
P Feng  K J Catt  M Knecht 《Endocrinology》1988,122(1):181-186
The effect of transforming growth factor-beta (TGF beta) on meiotic maturation was analyzed in oocytes from immature rats treated with PMSG. TGF beta accelerated the maturation of both follicle-enclosed oocytes and cumulus-oocyte complexes, as measured by an increase in the percentage of oocytes with germinal vesicle breakdown. Concentrations of the growth factor as low as 1 pM (25 pg/ml) increased oocyte maturation by 50% above control values, and 100 pM TGF beta caused a maximal 2-fold rise in the maturation rate. Germinal vesicle breakdown was significantly increased by TGF beta during the first 4 h of incubation, and stimulatory effects were observed as early as 1 h. However, by 8 h over 90% of the oocytes showed maturation in the absence or presence of TGF beta, indicating that the growth factor enhanced the spontaneous rate of oocyte development. TGF beta had no effect in denuded oocytes, demonstrating that the growth factor altered maturation through an action on the surrounding cumulus cells. Oocyte maturation was not accelerated by TGF beta in the presence of inhibitors of germinal vesicle breakdown, such as cAMP and hypoxanthine. Other growth factors, including IGF-I (50 ng/ml) and IGF-II (50 ng/ml), also stimulated oocyte maturation, while platelet-derived growth factor (100 ng/ml) and insulin (1 microgram/ml) had minimal effects on germinal vesicle breakdown. Although epidermal growth factor (EGF; 100 ng/ml) also increased the maturation of oocytes, lower concentrations of TGF beta (1-10 pM) suppressed EGF action by up to 30%. TGF beta, EGF, and insulin-like growth factors had minimal effects on cAMP production by cumulus-oocyte complexes. These results demonstrate that TGF beta and other growth factors are potent in vitro stimulators of oocyte maturation in the rat. Such effects of growth factors in vivo, in the presence of endogenous follicular factors and gonadotropic hormones, may regulate the selection and meiotic maturation of oocytes during follicular development. The rapidity of growth factor action in the oocyte provides a defined model to study signal transduction pathways of growth factors in relationship to their biological activity.  相似文献   

4.
Transforming growth factor beta (TGF beta) caused a dose-dependent increase in both basal and follicle-stimulating hormone (FSH)-stimulated inhibin production by rat granulosa cells in culture. The TGF beta dose-response curve in the absence of FSH was approximately parallel to that in the presence of either a minimally effective dose (1 ng/ml) or a maximally effective dose (30 ng/ml) of FSH, suggesting an additive effect of these two agents on inhibin production. There was also a suggestion of an increased sensitivity of granulosa cell inhibin production to FSH when the cells were coincubated with TGF beta. The time course study showed that similar to FSH, the stimulatory effect of TGF beta on basal and FSH-stimulated inhibin production was evident on day 1 and was maximal by day 4. In addition, epidermal growth factor (EGF) reduced FSH-stimulated inhibin production with an ID50 value of 1.3 ng/ml. Coincubation of cells with EGF and 1 ng TGF beta/ml enhanced greatly the inhibitory action of EGF on FSH-induced inhibin production (ID50 less than 0.1 ng/ml). It is concluded that: (1) TGF beta directly stimulates inhibin production by rat granulosa cells and the combined effect with FSH was largely additive, (2) the inhibitory effect of EGF on FSH-induced inhibin production was enhanced by TGF beta, (3) individual members of the TGF beta/inhibin gene family regulate ovarian function, not only by direct action on follicle cells but also indirectly by influencing the production rate of other members of that family.  相似文献   

5.
One of the "nurse cell" functions of Sertoli cells is to provide lactate for the energy production in spermatocytes and spermatids. The present study shows that, as in porcine Sertoli cells, interleukin (IL)1beta and follicle-stimulating hormone (FSH) increase lactate production in rat Sertoli cells (basal, 9.1 +/- 1.0; FSH (100 ng/ml), 16.6 +/- 2.0; IL1beta (50 ng/ml), 13.3 +/- 1.6 microg/microg DNA). Increments in glucose uptake (basal, 1083 +/- 70; FSH, 2686 +/- 128; IL1beta, 1899 +/- 74 dpm/microg DNA), lactic dehydrogenase (LDH) activity (basal, 36.6 +/- 4.1; FSH, 52.2 +/- 4.9; IL1beta, 55.3 +/- 5.1 mUI/microg DNA), LDH A mRNA levels, and redistribution of LDH isozymes are involved in these stimulatory effects. Differences in the period required by IL1beta to increase glucose uptake, as compared with the porcine model, have been observed. In addition, tumor necrosis factor alpha (TNFalpha), one of the major stimulators for lactate production in porcine Sertoli cells, does not control the secretion of this glucose metabolite in rat Sertoli cells. Lactate production may be regulated differently among mammals.  相似文献   

6.
E Y Adashi  C E Reshick 《Endocrinology》1986,119(4):1879-1881
The role of transforming growth factors (TGFs) in the acquisition of granulosa cell aromatase activity was investigated in vitro in a primary culture of granulosa cells harvested from immature, diethylstilbestrol-treated rats. Basal aromatase activity, as assessed by the generation of radioimmunoassayable estrogen, was negligible, remaining unaffected by treatment with either TGF alpha or TGF beta applied by themselves at the 10 ng/ml dose level. Whereas treatment with FSH produced a substantial increase in the extent of aromatization, concurrent treatment with TGF beta (0.01-10 ng/ml) resulted in dose-dependent augmentation of the FSH effect with an apparent median effective dose of 224 +/- (SE) 32 pg/ml (ca. 9 pM), and a maximal effect 3.6-fold greater than that induced by FSH alone. In contrast, concomitant treatment with TGF alpha (0.01-10 ng/ml) resulted in dose-dependent attenuation of FSH action with an apparent median inhibitory dose of 330 +/- (SE) 40 pg/ml (ca. 60 pM), and a maximal inhibitory effect of 91 +/- (SE) 2%. However, combined treatment with identical (10 ng/ml) maximally effective doses of both TGFs had little or no effect on the FSH-stimulated accumulation of estrogen, suggesting mutual neutralization by the opposing actions of these peptides. Further evaluation of the antagonistic interaction of the TGFs revealed it to be dose-dependent in that maximally effective doses of TGF alpha (10 ng/ml) partially overcame the stimulation of aromatase activity brought about by relatively low (less than 0.3 ng/ml) but not higher (greater than 1 ng/ml) concentrations of TGF beta, thereby shifting the TGF beta dose-response curve to the right. Treatment with either TGF had no significant effect on granulosa cell DNA content or synthesis, plating efficiency or viability. Taken together, these findings suggest that picomolar concentrations of exogenously provided TGF alpha TGF beta exert potent but diametrically opposed effects on the acquisition of granulosa cell aromatase activity and that the interaction between these two peptides is antagonistic in nature. Our findings further suggest that these direct cytodifferentiative effects of the TGFs may represent intrinsic novel properties of these peptides distinct from their well-established role in the regulation of cellular growth.  相似文献   

7.
M Mita  J M Price  P F Hall 《Endocrinology》1982,110(5):1535-1541
Sertoli cells from rats aged 16 days were cultured in defined medium for 2 days and then treated by addition of fresh medium containing various hormones (treated) or saline (control). The concentration of lactate in the medium was measured as a function of time. The production of lactate measured under these conditions was increased by addition of FSH to the medium. For NIH FSH (13 and 14), ED50 for stimulation of lactate production was approximately 0.05 micrograms/ml. Stimulation was also seen with LH and TSH (ED50, 0.8 micrograms/ml for both hormones). Reasons are given for believing that TSH may possess the inherent capacity to stimulate production of lactate in contrast to LH, which appears to act only by way of contaminating traces of FSH. Dibutyryl cAMP also stimulates lactate production by Sertoli cells. Other hormones tested, including androgens, were without effect. When production of lactate by Sertoli cells was compared with the maximal consumption by spermatids in vitro, it became apparent that Sertoli cells may provide the major source of metabolic substrate for spermatids in the form of lactate. Stimulation of lactate production by FSH was inhibited by puromycin, cycloheximide, and actinomycin D. Evidently this response requires synthesis of new protein and RNA. This effect of FSH may be important in the regulation of spermatogenesis.  相似文献   

8.
The gonadotropin FSH plays a key role in the control of Sertoli cell function. The FSH molecular mechanism of action is best recognized for its stimulation of the adenylyl cyclase/cAMP pathway. However, other signaling events have also been demonstrated in Sertoli cells. We have recently presented evidence that FSH can stimulate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) pathway in 20-day-old Sertoli cells. At the same time, it was proposed that in 8-day-old Sertoli cells the effects of FSH on phosphorylated PKB (P-PKB) levels can be explained by a combination of increased secretion of endogenous IGF-I, decreased IGF-binding protein-3 (IGFBP-3) production, and a synergistic action of FSH on IGF-I-dependent PI3K activation. The aim of the present study was to determine whether the effect of FSH on 20-day-old Sertoli cells is mediated by IGF-I secretion. Twenty-day-old rat Sertoli cell cultures were used. FSH stimulation produced a time-dependent increment in P-PKB levels reaching maximal values in 60-min incubations. IGF-I stimulation was also time-dependent reaching maximal values in 15-min incubations. On the other hand, stimulation of the cultures with FSH showed time-dependent inhibition in phosphorylated mitogen-activated protein kinase (P-MAPK) levels. In sharp contrast, stimulation of the cultures with IGF-I showed time-dependent increments in P-MAPK levels reaching maximal stimulus in 15-min incubations. In order to rule out an IGF-I action on FSH stimulation of P-PKB levels, the effect of a specific IGF-I antibody on the ability of both hormones to increase P-PKB levels was evaluated. As expected, the antibody inhibited IGF-I stimulation of P-PKB levels. However, simultaneous addition of an IGF-I antibody with FSH did not modify the ability of the hormone to increase P-PKB levels. The next set of experiments intended to analyze the relevance of a PI3K/PKB pathway to two biological responses of Sertoli cells to FSH and IGF-I. The PI3K inhibitor, wortmannin, dose-dependently decreased FSH-stimulated lactate and transferrin production. On the other hand, wortmannin was not able to modify the ability of IGF-I to stimulate these metabolic events. In addition, the analysis of the participation of a MAPK pathway in IGF-I regulation of Sertoli cell biological responses showed that the MAPK kinase inhibitors, PD98059 and U0126, decreased IGF-I-stimulated transferrin secretion while not modifying IGF-I-stimulated lactate levels. In summary, results obtained so far support the hypothesis that FSH action on P-PKB levels and Sertoli cell metabolism in 20-day-old animals is not mediated by autocrine regulation of an IGF-I/ IGFBP-3 axis as previously proposed in 8-day-old Sertoli cells.  相似文献   

9.
This study investigates the effects of spermatogenic germ cells on inhibin alpha-subunit and beta B-subunit expression, and inhibin alpha-subunit and inhibin B production by rat Sertoli cells in vitro. Sertoli cells isolated from 19-day-old rats were cultured for 48 h at 32 degrees C, in the presence or absence of FSH (2.3-2350 mIU/ml), and in the presence of pachytene spermatocytes, round spermatids or cytoplasts of elongated spermatids purified from adult rat testis by elutriation and density gradient separation. Sertoli cell secretion of inhibin alpha-subunit and inhibin B, as measured by immunoassay, was dose-dependently stimulated by FSH (maximal stimulation 13- and 2-fold, respectively). Round spermatids or cytoplasts co-cultured with Sertoli cells had no effect on basal or FSH-induced secretion of inhibin alpha-subunit or inhibin B. When Sertoli cells were co-cultured with pachytene spermatocytes, inhibin alpha-subunit secretion was unaltered, while inhibin B secretion was suppressed in a cell concentration-dependent manner to reach a maximal suppression of 45% compared with Sertoli cells alone (P<0.01). A similar suppression in inhibin B was still observed (64% of Sertoli cells alone) when the pachytene spermatocytes were separated from Sertoli cells by a 0.45 microm pore membrane barrier in bicameral chambers. Pachytene spermatocytes also suppressed FSH-induced inhibin B levels in Sertoli cell co-cultures and this suppression was attributed to a decrease in basal inhibin B production rather than a change in FSH responsiveness. Quantitation of Sertoli cell inhibin alpha- and beta B-subunit mRNA by quantitative (real-time) PCR demonstrated that pachytene spermatocytes did not alter Sertoli cell alpha-subunit mRNA expression, but significantly (P<0.01) suppressed basal and FSH-induced beta B-subunit mRNA expression to a similar degree to that seen with inhibin B protein levels. It is concluded that pachytene spermatocytes in vitro suppress Sertoli cell inhibin B secretion via factor-mediated suppression of inhibin beta B-subunit expression. These findings support the hypothesis that specific germ cell types can influence inhibin B secretion by the testis independent of FSH regulation.  相似文献   

10.
By using cultured rat Sertoli cells as a model, both the action of basic fibroblast growth factor (bFGF) on lactate production and the site of this action were studied. bFGF stimulated Sertoli cell lactate production in a dose-dependent manner (basal: 7.3+/-0.5; 0.1 ng/ml bFGF: 7.5+/-0.5; 1 ng/ml bFGF: 7.5+/-0.6; 10 ng/ml bFGF: 10.3+/-1.0; 30 ng/ml bFGF: 15.2+/-1.5; 50 ng/ml bFGF: 15.4+/-1.6 microg/microg DNA). Two major sites for the action of this growth factor were identified. First, bFGF was shown to exert short- and long-term stimulatory effects on glucose transport (basal: 1170+/-102; 30 ng/ml bFGF for 120 min: 1718+/-152 and basal: 718+/-64; 30 ng/ml bFGF for 48 h: 1069+/-69 d.p.m./microg DNA respectively). Short-term bFGF stimulation of glucose transport was not inhibited by the protein synthesis inhibitor cycloheximide. These results indicate that short-term bFGF stimulation of glucose uptake does not involve an increase in the number of glucose transporters. On the other hand, stimulation with bFGF for periods of time longer than 12 h increased glucose transporter 1 (GLUT1) mRNA levels. These increased mRNA levels were probably ultimately responsible for the increments in glucose uptake that are observed in long-term treated cultures. Secondly, bFGF increased lactate dehydrogenase (LDH) activity (basal: 31.0+/-1.4; 30 ng/ml bFGF: 45.7+/- 2.4 mIU/microg DNA). The principal subunit component of those LDH isozymes that favors the transformation of pyruvate to lactate is subunit A. bFGF increased LDH A mRNA levels in a dose- and time-dependent manner. In summary, the results presented herein show that glucose transport, LDH activity and GLUT1 and LDH A mRNA levels are regulated by bFGF to achieve an increase in lactate production. These observed regulatory actions provide unequivocal evidence of the participation of bFGF in Sertoli cell lactate production which may be related to normal germ cell development.  相似文献   

11.
It is the objective of the experiments reported herein to examine the possible relevance of transforming growth factor-beta (TGF beta) to theca-interstitial cell function, and to further characterize the established interaction of TGF beta with the granulosa cell. In examining the interaction of TGF beta (10 ng/ml) with murine theca-interstitial cells, no significant effect was observed on either basal or human chorionic gonadotropin (hCG)-stimulated androsterone accumulation. In contrast, given murine granulosa cells, TGF beta (10 ng/ml) produced dose- and time-dependent augmentation of follicle-stimulating hormone (FSH)-supported aromatase activity with a minimal and median effective doses of 20 +/- 3 and 123 +/- 24 pg/ml, respectively and a minimal time requirement of less than or equal to 48 h. The ability of TGF beta to augment FSH hormonal action could not be accounted for by alteration(s) of specific FSH binding (13965 +/- 298 and 12614 +/- 694 cpm/4 X 10(5) cells for FSH and FSH + TGF beta). However, TGF beta proved capable of exerting a direct upregulatory effect on stimulatable adenylate cyclase activity, further enhancement occurring at site(s) distal to cAMP generation (dibutyryl cyclic AMP (Bt2cAMP) = 1.4 +/- 0.2 ng/culture; Bt2cAMP + TGF beta = 4.1 +/- 0.6 ng/culture). Taken together, our findings are in keeping with the notion that TGF beta, possibly of intraovarian origin, comprises the central signal of autocrine or paracrine loop(s) capable of amplifying gonadotropin action at the level of the granulosa, but not theca-interstitial cell.  相似文献   

12.
Evidence that transforming growth factor-beta (TGF beta) is produced by porcine thecal cells and acts upon porcine granulosa cells suggests that this peptide may be a local regulator of follicular function in this species. The objective of the present study was to investigate the effects of TGF beta on steroidogenesis in thecal cells from 4-6 mm follicles of prepubertal gilts. In this culture system, cells undergo functional luteinization such that production of androstenedione, the major steroid product in 24 h incubations, declines, and in the presence of luteinizing hormone (LH) (250 ng/ml) and insulin (1 micrograms/ml), progesterone production increases over a 3-day culture period. TGF beta (0.1-10 ng/ml) had no effect on production of androstenedione from endogenous precursors in the presence or absence of LH, although there was a slight inhibition of androstenedione production in the presence of exogenous progesterone (up to 23%). As the cells luteinized in culture, the increase in progesterone production in response to LH increased (day 1, 4.4-fold; day 3, 13-fold). TGF beta at concentrations as low as 0.1 ng/ml caused marked (up to 90%) inhibition of LH-stimulated progesterone production in day 3 cultures. In the presence of TGF beta (10 ng/ml), the response to LH was completely abolished, and the response to dibutyryl cAMP was considerably attenuated (25% of controls). Since the primary site of action of TGF beta appeared to be distal to cAMP formation, the effect of TGF beta on conversion of exogenous 22-hydroxy-cholesterol and pregnenolone to progesterone was determined in day 3 cultures. 22-Hydroxycholesterol and pregnenolone restored progesterone production to at least 80% and 89% of controls, respectively. While the primary inhibitory action of TGF beta appears to be exerted distal to cAMP formation, neither cholesterol sidechain cleavage nor the 3 beta-hydroxysteroid dehydrogenase: delta 5-delta 4 isomerase reactions are primary targets of this factor. Together with evidence of thecal production of TGF beta, the results of this study indicate that this peptide may be an autocrine regulator of thecal steroidogenesis.  相似文献   

13.
14.
Rat granulosa cells isolated from the ovaries of diethylstilbestrol-primed immature rats were treated with estrogen, FSH, and growth factors to determine those factors that were required to promote DNA synthesis. Estrogen and FSH, previously shown to stimulate the incorporation of [3H]thymidine into rat granulosa cell DNA in vivo, were ineffective in vitro. Epidermal growth factor, insulin-like growth factor 1 (IGF1), and fibroblast growth factor did not influence DNA synthesis whereas transforming growth factor beta (TGF beta) alone had a significant effect. Neither estradiol-17 beta (5 X 10(-8)-5 X 10(-6) M) nor IGF1 augmented the actions of TGF beta and FSH. FSH did not influence the actions of epidermal growth factor or IGF1 but dramatically augmented the effect of TGF beta on DNA synthesis. FSH and TGF beta also stimulated [3H]thymidine incorporation into the DNA of granulosa cells isolated from immature rats not treated with diethylstilbestrol. The increase in [3H]thymidine incorporation into DNA stimulated by TGF beta and FSH resulted subsequently in an increase in cell number. The response of the cells to TGF beta in the presence of a constant level of FSH (10 ng/ml) was dose dependent, 2.5 ng/ml being the minimal effective concentration. In the presence of antibody specific for TGF beta the bioactivity of the TGF beta was neutralized indicating that the growth promoting activity was due to TGF beta and not due to contaminants. In this paper, we have shown that the combined actions of FSH and TGF beta influence DNA synthesis and the proliferation of rat granulosa cells. Interactions between FSH and TGF beta may be important in regulating aspects of rat granulosa cell growth in addition to exerting pronounced effects on cytodifferentiation.  相似文献   

15.
Purified type beta transforming growth factor from human platelets (TGF beta) radioiodinated with 125I-labeled Bolton and Hunter reagent was found to bind to a variety of cultured cells of both epithelial and mesenchymal origin, including normal human fibroblasts and keratinocytes. TGF beta binding sites have also been found on three mouse embryo-derived fibroblast-like cell lines with lower levels of TGF beta binding on the chemically transformed derivatives of these cell lines. A variety of human tumor cell lines was shown to have an inverse correlation between their level of TGF beta binding and their ability to form colonies in soft agar. The mouse embryo-derived AKR-2B (clone 84A) cells reached maximal binding of 125I-labeled TGF beta after 2 hr at 22 degrees C. Scatchard analysis of the equilibrium binding of TGF beta to AKR-2B (clone 84A) cells gives a Kd of 33 pM with approximately equal to 10,500 binding sites per cell. This Kd for TGF beta binding to AKR-2B (clone 84A) cells agreed well with the ED50 of 40 pM for stimulation of colony formation of these cells by TGF beta. The TGF beta binding sites on the AKR-2B cells were shown to be specific for TGF beta with no significant competition with epidermal growth factor, fibroblast growth factor, or insulin and only a small level of competition with high concentrations of platelet-derived growth factor. Partially purified preparations with TGF beta-like activity from mouse embryos and medium conditioned by mouse embryo-derived cells competed effectively for binding to the TGF beta receptor.  相似文献   

16.
S J Dixon  J X Wilson 《Endocrinology》1992,130(1):484-489
Transforming growth factor-beta (TGF beta) modulates the proliferation and differentiation of a number of cell types, including osteoblasts. TGF beta has been shown to stimulate matrix synthesis by connective tissue cells, but its mechanism of action is poorly understood. Because ascorbate (reduced vitamin C) also influences osteoblastic differentiation and is required as a cofactor for collagen synthesis, the present study examined the effect of TGF beta on osteoblastic ascorbate uptake. Saturable Na(+)-dependent uptake of ascorbate by cultures of UMR-106 rat osteosarcoma cells proceeded linearly with time for at least 10 min at 37 C. Exposure of cultures to TGF beta 1 stimulated initial rates of saturable Na(+)-dependent ascorbate transport, but did not affect nonspecific uptake or binding of the vitamin. Cells pretreated for 24 h with either vehicle or TGF beta 1 (3 ng/ml) and then assayed for transport of L-[14C] ascorbate (10 microM) showed significantly different transport activities (vehicle, 30 +/- 2; TGF beta 1, 44 +/- 3 nmol ascorbate/g protein/min; n = 14; P less than 0.005). Kinetic studies revealed that TGF beta 1 increased the maximum velocity of ascorbate transport without changing the affinity of the transporter for the vitamin, since the apparent maximum velocity increased from 83 to 106 nmol ascorbate/g protein/min; while the apparent Km remained unchanged at 20 microM L-ascorbate. The effect of this growth factor on ascorbate transport appeared to require protein synthesis, because it was completely blocked by cycloheximide. These results are consistent with TGF beta 1 increasing the rate of synthesis of either new Na+ ascorbate cotransporters or a regulatory protein that interacts with existing transporters to increase their turnover number. Enhanced uptake of ascorbate may contribute to the increase in collagen synthesis induced by TGF beta.  相似文献   

17.
The testicular paracrine factor PModS is produced by peritubular myoid cells under androgen control and modulates Sertoli cell function and differentiation. The observation that luteinizing hormone (LH) stimulates inhibin production in vivo, but has no effect on isolated Sertoli cells in vitro, suggested an indirect mode of LH action, potentially mediated by PModS. The effects of the testicular paracrine factor PModS and hormones on inhibin secretion by Sertoli cells were investigated to provide insight into the endocrine control of inhibin expression. An inhibin radioimmunoassay was utilized which showed essentially parallel displacement curves with purified bovine follicular fluid inhibin, Sertoli cell conditioned medium and concentrated Sertoli cell secreted proteins. An immunoblot analysis of Sertoli cell secreted proteins with the inhibin antisera consistently detected a 32 kDa protein which is the expected size of the mature of inhibin (alpha beta) and periodically detected a 57 kDa protein which is speculated to be an incomplete processed form of the inhibin precursor (alpha 43 beta). Follicle-stimulating hormone (FSH) was found to stimulate inhibin secretion initially between days 2 and 5 of Sertoli cell culture. Insulin and retinol alone had no significant effect on inhibin secretion; however, together they appeared to enhance the ability of FSH to stimulate inhibin secretion. Testosterone had no effect on inhibin production alone or in combination with other regulatory agents. PModS was found to stimulate inhibin secretion approximately 3-fold, but with a delayed time course of stimulation which did not occur until days 5-7 of Sertoli cell culture. Treatment with a combination of PModS and FSH resulted in an apparent maximal stimulation of inhibin secretion. Both forms of PModS, PModS (A) and PModS (B), were found to have equivalent biological activities in their ability to stimulate inhibin production with an apparent half-maximal effective concentration between 10 and 15 ng/ml. The current study provides evidence for the local testicular control of inhibin production and adds to the complexity of the endocrine control of inhibin expression. The cellular interaction is proposed in which LH acts on Leydig cells to stimulate androgen production which in turn acts on peritubular cells to regulate PModS production which subsequently can act on Sertoli cells to control inhibin production. Testicular control of inhibin production provides a potential short feedback loop for the local regulation of androgen production and an additional regulatory element for the pituitary-gonadal axis.  相似文献   

18.
The present study was designed to explore the role of gap junctions in follicle-stimulating hormone (FSH) and transforming growth factor beta1 (TGF beta1)-stimulated steroidogenesis in ovarian granulosa cells of gonadotropin-primed immature rats. There were three specific aims. First, we investigated the effect of FSH and TGF beta1 as well as lindane (a general gap junction blocker) on the level of connexin43 (Cx43), the major gap junction constituent in granulosa cells, and on gap junction function. The second aim was to determine the effect of lindane on FSH and TGF beta1-stimulated progesterone production and the levels of two critical players, cytochrome P450 side-chain cleavage (P450scc) enzyme and steroidogenic acute regulatory (StAR) protein. The third aim was to further investigate the specific involvement of Cx43 gap junctions in FSH and TGF beta1-stimulated steroidogenesis using a Cx43 mimetic peptide blocker. Immunoblotting analysis showed that FSH plus TGF beta1 dramatically increased the levels of phosphorylated Cx43 without significantly influencing the level of nonphosphorylated Cx43, and this stimulatory effect was completely suppressed by lindane. Also, immunofluorescence analysis showed that Cx43 immuno-reactivity increased in the FSH plus TGF beta1-treated group and predominantly appeared in a punctate pattern at cell-cell contact sites, and lindane reduced such cell periphery immunostaining. Furthermore, TGF beta1 enhanced the FSH-induced gap junction intercellular communication and lindane completely suppressed this effect. In addition, lindane suppressed the FSH and TGF beta1-stimulated increases in progesterone production and the levels of P450scc enzyme and StAR protein. This study demonstrates a clear temporal association between the Cx43 protein level/gap junction communication and progesterone production in rat ovarian granulosa cells in response to FSH and TGF beta1 as well as lindane. Furthermore, a specific Cx43 gap junction blocker suppressed FSH plus TGF beta1-stimulated progesterone production. In conclusion, this study suggests that Cx43 gap junctions may play a critical role in FSH plus TGF beta1-stimulated progesterone production in rat ovarian granulosa cells.  相似文献   

19.
The in vitro effects of FSH and LH on cAMP generation by unilateral undescended testes and contralateral descended testes were investigated. Biopsy tissue was preincubated at 37 C for 5 min in 1 ml Krebs-Ringer bicarbonate buffer (KRB) containing 10 mM aminophylline. Half of each specimen was frozen in liquid nitrogen to assess basal levels of cAMP. The other half was incubated for 20 min at 37 C in 1 ml fresh KRB containing aminophylline and FSH (10 microgram) or LH (10 microgram). The mean concentration of cAMP in the descended testes was 1.03 +/- 0.04 pmol/mg protein, whereas in the undescended testes the level was 1.98 +/- 0.07 pmol/mg protein (P less than or equal to 0.01). After the 20-min incubation period with FSH the concentrations of cAMP in the descended and undescended testes were 10.85 +/- 0.86 pmol/mg protein and 11.21 +/- 1.1 mol/mg protein, respectively. Incubation with LH resulted in the generation of equivalent levels of cAMP in both the descended (2.76 +/- 0.30 pmol/mg protein) and undescended (3.0 +/- 0.17 pmol/mg protein) testes. Although marked histological differences were observed in the germinal epithelium, the appearance and numbers of Leydig and Sertoli cells were comparable. The data suggest that the Sertoli cell is the primary receptor for FSH. Leydig and Sertoli cell functions of the undescended testes, at least in terms of cAMP generation, are similar to normal descended testes.  相似文献   

20.
Several studies suggest a role of Sertoli cells in the control of Leydig cell steroidogenesis. In order to verify this hypothesis, we have developed a system for the purification of pig Sertoli cells. These cells were then characterized by their morphological appearance in light and electron microscopy, their ability to bind [125I]follicle stimulating hormone (FSH) and their functional capacity as evaluated by adenosine 3',5' monophosphate (cAMP) accumulation and lactate production when in primary culture under basal and FSH-stimulated conditions. Crude Sertoli cell suspensions from immature porcine testes were fractionated on discontinuous Percoll gradients (densities 1.025, 1.039, 1.055, 1.080 g/ml). Highly purified Sertoli cells were contained in the second band (d: 1.039) generated on the gradient. These cells demonstrated morphological and functional integrity as evidenced by binding specifically [125I] FSH and by responding to FSH stimulation (by an increased production of cAMP and lactate after 3 days in primary culture), but not to human chorionic gonadotrophin (hCG). This preparation represents a useful model for the study of Sertoli cell functions and their interation with Leydig cells in the regulation of testicular steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号