首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CD36 and ICAM-1 glycoproteins on vascular endothelial cells have been implicated as cytoadherence receptors for Plasmodium falciparum-infected erythrocytes (IRBC). Adhesion of IRBC from Thai patients with uncomplicated and severe falciparum malaria to purified CD36 or ICAM-1 and to C32 melanoma cells was compared. All malaria isolates bound to solid phase-adsorbed CD36 and to fluid-phase 125I-labeled CD36. IRBC adhesion to purified ICAM-1 varied widely, and no correlation with clinical severity of disease was observed. The cytoadherent phenotype of IRBC was modulated by selective panning on plates coated with purified CD36 or ICAM-1. IRBC selected by panning on CD36+, ICAM-1+ melanoma cells bound to cells that express surface CD36 but not to CD36-deficient cells, indicating that CD36 exerts a strong selective pressure on the IRBC cytoadherent phenotype. IRBC adhesion to CD36 and ICAM-1 suggests that P. falciparum parasites may use these receptors in vivo to promote parasite survival and immune evasion.  相似文献   

2.
Yipp BG  Robbins SM  Resek ME  Baruch DI  Looareesuwan S  Ho M 《Blood》2003,101(7):2850-2857
The pathogenicity of Plasmodium falciparum is due to the unique ability of infected erythrocytes (IRBCs) to adhere to vascular endothelium. We investigated whether adhesion of IRBCs to CD36, the major cytoadherence receptor on human dermal microvascular endothelial cells (HDMECs), induces intracellular signaling and regulates adhesion. A recombinant peptide corresponding to the minimal CD36-binding domain from P falciparum erythrocyte membrane protein 1 (PfEMP1), as well as an anti-CD36 monoclonal antibody (mAb) that inhibits IRBC binding, activated the mitogen-activated protein (MAP) kinase pathway that was dependent on Src-family kinase activity. Treatment of HDMECs with a Src-family kinase-selective inhibitor (PP1) inhibited adhesion of IRBCs in a flow-chamber assay by 72% (P <.001). More importantly, Src-family kinase activity was also required for cytoadherence to intact human microvessels in a human/severe combined immunodeficient (SCID) mouse model in vivo. The effect of PP1 could be mimicked by levamisole, a specific alkaline-phosphatase inhibitor. Firm adhesion to PP1-treated endothelium was restored by exogenous alkaline phosphatase. In contrast, inhibition of the extracellular signal-regulated kinase 1/2 (ERK 1/2) and p38 MAP kinase pathways had no immediate effect on IRBC adhesion. These results suggest a novel mechanism for the modulation of cytoadherence under flow conditions through a signaling pathway involving CD36, Src-family kinases, and an ectoalkaline phosphatase. Targeting endothelial ectoalkaline phosphatases and/or signaling molecules may constitute a novel therapeutic strategy against severe falciparum malaria.  相似文献   

3.
We have recently shown that rosetting of Plasmodium falciparum (MC R+ line)-infected erythrocytes (parasitized red blood cells [PRBCs]) with uninfected erythrocytes (RBCs) is blocked by coating of the RBCs with anti-CD36 monoclonal antibodies (MoAbs; Handunnetti et al, Blood 80:2097, 1992). Adult RBCs have previously been considered negative for CD36. However, using fluorescence-activated cell sorter analysis with the anti-CD36 MoAbs 8A6, OKM5, and OKM8, which reverse rosetting, we consistently detect CD36 on the majority of normal adult RBCs. Absorption of the MoAb solutions with CD36-transfected Chinese hamster ovary (CHO-CD36) cells removed the reactivity against both CHO-CD36 cells and RBCs, whereas absorption with CHO cells had no effect. By comparison with staining for glycophorin A, LFA-3, and CR1, the level of expression of CD36 appeared to be low. Nevertheless, normal RBCs were capable of adhering to plastic coated with anti-CD36 MoAbs. RBCs from one African malaria patient were identified as deficient in CD36 and these RBCs did not rosette with the patient's own P falciparum PRBCs, even though these PRBCs were capable of rosetting with RBCs from a normal donor in a CD36-dependent manner. Therefore, the level of expression of CD36 on normal RBCs is sufficient to be important in cell adherence, and may have a biologic role in normal individuals as well as in the pathology of P falciparum malaria.  相似文献   

4.
The pathogenicity of Plasmodium falciparum is due largely to the parasite's unique ability to adhere to capillary and postcapillary venular endothelium during the second-half of the 48-hour life cycle. The resulting sequestration of infected erythrocytes (IRBC) in deep vascular beds leads to tissue hypoxia, metabolic disturbances, and organ dysfunction which characterize severe falciparum malaria. Several endothelial receptors of cytoadherence have been identified, but their clinical relevance remains controversial. In the present report, the receptor specificity of 60 clinical P falciparum isolates was determined using transfectants each expressing one of CD36, intercellular adhesion molecule-1 (ICAM-1), E-selectin, and vascular cell adhesion molecule-1 (VCAM-1). All isolates tested adhered to CD36 and ICAM-1, but the adherence to CD36 was at least 10-fold higher. Seven isolates adhered to E-selectin whereas none of 19 isolates adhered to VCAM-1. From a population standpoint, about 30% of IRBC in each isolate adhered to CD36, and 2% to 3% adhered to ICAM-1. The percentage adherent to E-selectin and VCAM-1 was negligible. IRBC selected on CD36 adhered almost exclusively to CD36 whereas 80% to 90% of IRBC selected on ICAM-1 could also adhere to CD36. Selected IRBC did not adhere to E-selectin or VCAM-1. These findings indicate that cytoadherence to multiple endothelial receptors is a rare occurrence with natural P falciparum isolates, but do not exclude a role for the adhesion molecules in promoting other IRBC-endothelial interactions such as rolling under flow conditions. Receptor specificity in vivo may be dictated by the ligand-receptor combination which provides the best survival potential for the parasite.  相似文献   

5.
Severe malaria is characterized by the sequestration of Plasmodium falciparum-infected erythrocytes (IEs). Because platelets can affect tumor necrosis factor (TNF)-activated endothelial cells (ECs), we investigated their role in the sequestration of IEs, using IEs that were selected because they can adhere to endothelial CD36 (IE(CD36)), a P. falciparum receptor that is expressed on platelets. The results of coincubation studies indicated that platelets can induce IE(CD36) binding to CD36-deficient brain microvascular ECs. This induced cytoadhesion resisted physiological shear stress, was increased by EC stimulation with TNF, and was abolished by anti-CD36 monoclonal antibody. Immunofluorescence and scanning electron microscopy results showed that platelets serve as a bridge between IEs and the surface of ECs and may therefore provide receptors for adhesion to microvascular beds that otherwise lack adhesion receptors. This novel mechanism of cytoadhesion may reorient the sequestration of different parasite phenotypes and play an important role in the pathogenesis of severe malaria.  相似文献   

6.
P. falciparum-infected red blood cells (IRBC) can adhere to endothelial host receptors through parasite-encoded, clonally variant surface antigens (VSA). The VSA-mediated IRBC adhesion and the acquired VSA-specific antibody response have both been linked to IRBC organ tropism and disease severity. Parasites isolated from young children with severe malaria (SM) tend to express a limited and conserved set of VSA (VSASM) that are both stronger and more commonly recognized by IgG in the plasma of malaria-exposed individuals than VSA (VSAUM) expressed by parasites causing uncomplicated malaria (UM) in older semi-immune children. Establishment of the genetic mechanism underlying changes in VSA expression in response to in vitro selective pressure is now possible because of the availability of the entire genomic sequence of the P. falciparum clone 3D7. As a first step towards direct molecular identification of VSASM-encoding genes in 3D7, we report here a method of enforcing expression of VSASM-like antigens in this parasite clone by a novel selection method using plasma from semi-immune children with low VSAUM-specific, but high VSASM-specific, IgG reactivity. In addition to the resulting increase in VSA-specific IgG recognition, VSASM-expressing 3D7(3D7-Dodowa1) showed reduced adhesion to CD36. Finally, levels of IgG specific for the VSA expressed by 3D7-Dodowa1 were uniformly higher than those of IgG with specificity for VSA expressed by the unselected 3D7 in plasma samples from geographically and epidemiologically diverse areas of endemic parasite transmission. The described selection method appears a useful tool in the identification of genes encoding VSA involved in severe and life-threatening P. falciparum malaria.  相似文献   

7.
Plasmodium falciparum-infected erythrocytes (parasitized red blood cells [PRBCs]) can adhere to uninfected erythrocytes (RBCs) to form rosettes, and adhere to the endothelial cell (EC) surface antigen CD36. These adherence phenomena have previously been considered quite different. We show that anti-CD36 monoclonal antibodies (MoAbs) reverse rosetting of PRBCs from both a culture-adapted line (Malayan Camp [MC] strain) and a natural isolate, GAM425. Three MoAbs that block adherence of PRBCs to ECs or C32 melanoma cells also reversed rosetting by greater than 50% at levels of less than 1 microgram/mL (OKM5, OKM8, and 8A6). Two other MoAbs that react with purified CD36 (1D3 and 1B1), but do not react with the surface of C32 cells, failed to reverse rosetting. When rosettes were disrupted and the RBCs and PRBCs were pretreated separately with antibodies before mixing to allow rosette reformation, only pretreatment of RBCs had an effect. MoAb 8A6 pretreatment of RBCs blocked rosette reformation, while MoAb 1B1 pretreatment did not. Rosetting was also reversed by purified human platelet CD36. In conjunction with evidence that CD36 is expressed on normal human erythrocytes (van Schravendijk et al, Blood 80:2105, 1992), we conclude that this CD36 is able to act as a host receptor for rosetting in the MC strain and some natural isolates of P falciparum.  相似文献   

8.
Adherence of mature Plasmodium falciparum parasitized erythrocytes (PRBCs) to microvascular endothelium contributes directly to acute malaria pathology. We affinity purified molecules from detergent extracts of surface-radioiodinated PRBCs using several endothelial cell receptors known to support PRBC adherence, including CD36, thrombospondin (TSP), and intercellular adhesion molecule 1 (ICAM-1). All three host receptors affinity purified P. falciparum erythrocyte membrane protein 1 (PfEMP1), a very large malarial protein expressed on the surface of adherent PRBCs. Binding of PfEMP1 to particular host cell receptors correlated with the binding phenotype of the PRBCs from which PfEMP1 was extracted. Preadsorption of PRBC extracts with anti-PfEMP1 antibodies, CD36, or TSP markedly reduced PfEMP1 binding to CD36 or TSP. Mild trypsinization of intact PRBCs of P. falciparum strains shown to express antigenically different PfEMP1 released different (125)I-labeled tryptic fragments of PfEMP1 that bound specifically to CD36 and TSP. In clone C5 and strain MC, these activities resided on different tryptic fragments, but a single tryptic fragment from clone ItG-ICAM bound to both CD36 and TSP. Hence, the CD36- and TSP-binding domains are distinct entities located on a single PfEMP1 molecule. PfEMP1, the malarial variant antigen on infected erythrocytes, is therefore a receptor for CD36, TSP, and ICAM-1. A therapeutic approach to block or reverse adherence of PRBCs to host cell receptors can now be pursued with the identification of PfEMP1 as a malarial receptor for PRBC adherence to host proteins.  相似文献   

9.
McCormick CJ  Newbold CI  Berendt AR 《Blood》2000,96(1):327-333
A novel adhesive pathway that enhances the adhesion of Plasmodium falciparum-infected erythrocytes (IEs) to endothelial cells has been identified. The sulfated glycoconjugates heparin, fucoidan, dextran sulfate 5000, and dextran sulfate 500 000 caused a dramatic increase in adhesion of IEs to human dermal microvascular endothelial cells. The same sulfated glycoconjugates had little effect on IE adhesion to human umbilical vein endothelial cells, a CD36-negative cell line. The effect was abolished by a monoclonal antibody directed against CD36, suggesting that enhanced adhesion to endothelium is dependent on CD36. No effect was observed on adhesion to purified platelet CD36 cells immobilized on plastic. The same sulfated glycoconjugates enhanced adhesion of infected erythrocytes to COS cells transfected with CD36, and this was inhibited by the CD36 monoclonal antibody. These findings demonstrate a role for sulfated glycoconjugates in endothelial adherence that may be important in determining the location and magnitude of sequestration through endogenous carbohydrates. In addition, they highlight possible difficulties that may be encountered from the proposed use of sulfated glycoconjugates as antiadhesive agents in patients with severe malaria.  相似文献   

10.
Gamain B  Smith JD  Miller LH  Baruch DI 《Blood》2001,97(10):3268-3274
Adhesion of mature Plasmodium falciparum parasitized erythrocytes to microvascular endothelial cells or to placenta contributes directly to the virulence and severe pathology of P falciparum malaria. Whereas CD36 is the major endothelial receptor for microvasculature sequestration, infected erythrocytes adhering in the placenta bind chondroitin sulfate A (CSA) but not CD36. Binding to both receptors is mediated by different members of the large and diverse protein family P falciparum erythrocyte membrane protein-1 (PfEMP-1) and involves different regions of the molecule. The PfEMP-1-binding domain for CD36 resides in the cysteine-rich interdomain region 1 (CIDR-1). To explore why CSA-binding parasites do not bind CD36, CIDR-1 domains from CD36- or CSA-binding parasites were expressed in mammalian cells and tested for adhesion. Although CIDR-1 domains from CD36-adherent strains strongly bound CD36, those from CSA-adherent parasites did not. The CIDR-1 domain has also been reported to bind CSA. However, none of the CIDR-1 domains tested bound CSA. Chimeric proteins between CIDR-1 domains that bind or do not bind CD36 and mutagenesis experiments revealed that modifications in the minimal CD36-binding region (M2 region) are responsible for the inability of CSA-selected parasites to bind CD36. One of these modifications, mapped to a 3-amino acid substitution in the M2 region, ablated binding in one variant and largely reduced binding of another. These findings provide a molecular explanation for the inability of placental sequestered parasites to bind CD36 and provide additional insight into critical residues for the CIDR-1/CD36 interaction.  相似文献   

11.
Plasmodium falciparum is the most lethal form of malaria and is increasing both in incidence and in its resistance to antimalarial agents. An improved understanding of the mechanisms of malarial clearance may facilitate the development of new therapeutic interventions. We postulated that the scavenger receptor CD36, an important factor in cytoadherence of P falciparum-parasitized erythrocytes (PEs), might also play a role in monocyte- and macrophage-mediated malarial clearance. Exposure of nonopsonized PEs to Fc receptor-blocked monocytes resulted in significant PE phagocytosis, accompanied by intense clustering of CD36 around the PEs. Phagocytosis was blocked 60% to 70% by monocyte pretreatment with monoclonal anti-CD36 antibodies but not by antibodies to alpha(v)beta(3), thrombospondin, intercellular adhesion molecule-1, or platelet/endothelial cell adhesion molecule-1. Antibody-induced CD36 cross-linking did result in the early increase of surface CD11b expression, but there was no increase in, or priming for, tumor necrosis factor (TNF)-alpha secretion following either CD36 cross-linking or PE phagocytosis. CD36 clustering does support intracellular signaling: Antibody-induced cross-linking initiated intracellular tyrosine phosphorylation as well as extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Both broad-spectrum tyrosine kinase inhibition (genistein) and selective ERK and p38 MAPK inhibition (PD98059 and SB203580, respectively) reduced PE uptake to almost the same extent as CD36 blockade. Thus, CD36-dependent binding and signaling appears to be crucial for the nonopsonic clearance of PEs and does not appear to contribute to the increase in TNF-alpha that is prognostic of poor outcome in clinical malaria.  相似文献   

12.
Stable human hybridomas were generated that produced inhibitory anti-Plasmodium falciparum monoclonal antibodies. Peripheral blood lymphocytes, obtained from adults in Liberia, a malaria endemic area, were immortalized with Epstein-Barr virus and then fused with KR4, a human, lymphoblastoid cell line. Stable hybridomas that produced anti-P. falciparum monoclonal antibody were identified by an ELISA assay that used the trophozoite and schizont antigens of both the Honduras I and FCR3 parasite strains. Monoclonal antibodies produced by selected hybridomas derived from lymphocytes of two individuals were subsequently studied. The anti-parasite antibodies were produced at 1-3 micrograms/ml in culture supernatants. All of the monoclonal antibodies bound specifically to trophozoites and schizonts of both strains of parasite in an indirect immunofluorescence assay and inhibited production of ring stage parasites by more than 90% when added to trophozoite or schizont containing erythrocytes in culture. Western immunoblot analysis of antigens obtained from trophozoites and schizonts (parasite age span of 36 to 48 h) was performed using either affinity purified or ammonium sulfate-concentrated monoclonal antibody. Antibody from three hybridomas which bound primarily to antigens of the Honduras 1 strain had Mr of approximately 140,000, 130,000 and 123,000.  相似文献   

13.
Glycoprotein (GP) IIIb (also termed GPIV or CD36) is an integral platelet membrane protein, and has been identified as a binding site for thrombospondin, collagen, and malaria-infected erythrocytes. PAS-IV is an integral membrane protein found in lactating mammary epithelial cells and capillary endothelial cells. The N-terminal sequence of PAS-IV is nearly identical to that of GPIIIb and monospecific anti-PAS-IV antibody reacts with GPIIIb, indicating that PAS-IV is structurally related to GPIIIb. In this study, human platelet GPIIIb and bovine epithelial PAS-IV were compared in terms of structural, immunologic, and functional characteristics. The two-dimensional tryptic peptide map of both intact and deglycosylated PAS-IV was highly similar but not identical to that of GPIIIb. PAS-IV and GPIIIb reacted to an equal extent with monoclonal antibodies OKM5 and OKM8 by enzyme-linked immunosorbent assay. GPIIIb bound to surface immobilized thrombospondin (TSP) in a concentration-dependent and saturable manner, with approximately 60% reduction in binding in the presence of EDTA. PAS-IV bound to TSP with similar characteristics except that maximum binding was consistently approximately 50% of that of GPIIIb and binding was not inhibited by EDTA. GPIIIb supported adhesion of Plasmodium falciparum-infected erythrocytes (PRBC) in a dose-dependent manner while no significant adhesion of PRBC to PAS-IV was observed. Our data demonstrate that while epithelial PAS-IV and platelet GPIIIb are structurally and immunologically related, there are significant differences in their functional properties. Whether this result is due to different posttranslational glycosylation modifications or that PAS-IV and GPIIIb represent a family of related cell adhesive protein receptors remains to be determined.  相似文献   

14.
A monoclonal anti-idiotypic (anti-Id) antibody, HF1.7, was generated against anti-Leu-3a, a mouse monoclonal antibody (mAb) specific for the CD4 molecule on human helper/inducer T lymphocytes. The anti-Id nature of HF1.7 was demonstrated by the following properties. (i) It reacted in a solid-phase immunoassay with anti-Leu-3a and not with a panel of irrelevant mouse mAbs. (ii) It partially inhibited the binding of anti-Leu-3a to CD4+ T cells. (iii) It detected a common idiotype present on various anti-CD4 mAbs. Because the CD4 molecule represents the receptor site for human immunodeficiency virus (HIV), the etiologic viral agent of acquired immunodeficiency syndrome, we examined the ability of the anti-mAb HF1.7 to mimic CD4 and bind HIV. This anti-Id mAb reacted with HIV antigens in commercial HIV ELISAs and recognized HIV-infected human T cells but not uninfected cells when analyzed by flow cytofluorometry. Attesting further to the HIV specificity, the anti-Id mAb reacted with a recombinant gp160 peptide and a molecule of Mr 110,000-120,000 in immunoblot analysis of HIV-infected cell lysates. The anti-Id mAb also partially neutralized HIV infection of human T cells in vitro. These results strongly suggest that this anti-Id mAb mimics the CD4 antigenic determinants involved in binding to HIV.  相似文献   

15.
Douki JB  Sterkers Y  Lépolard C  Traoré B  Costa FT  Scherf A  Gysin J 《Blood》2003,101(12):5025-5032
Recent findings have challenged the current view of Plasmodium falciparum (P falciparum) blood-stage biology by demonstrating the cytoadhesion of early ring-stage-infected erythrocytes (rIEs) to host endothelial cells and placental syncytiotrophoblasts. The adhesion of rIEs was observed only in parasites that bind to the placenta via chondroitin sulfate A (CSA). In this work, a panel of mouse monoclonal antibodies (mAbs) that specifically inhibit cytoadhesion of rIEs but not of mature IEs was generated The previously described ring surface protein 2 (RSP-2), a 42-kDa protein, was identified as the target of the ring-stage-specific mAbs. Time course surface fluorescence experiments revealed a short overlap (approximately 4 hours) of expression between RSP-2 and P falciparum erythrocyte membrane protein 1 (PfEMP1). Their consecutive expression enables IEs to adhere to endothelial cells during the entire blood-stage cycle. During this study, a new phenotype was detected in parasite cultures, the adhesion of normal erythrocytes (nEs) to endothelial cells. All adherent nEs were coated with RSP-2. Immunolocalization studies show that RSP-2 is a rhoptry-derived protein that is discharged onto the erythrocyte membrane during contact with merozoites. Our results identify RSP-2 as a key molecule in sequestration of young blood-stage forms and nEs to endothelial cells.  相似文献   

16.
CD36 is a membrane glycoprotein and a putative scavenger receptor expressed by several cell types. In capillary endothelial cells, it mediates the adherence of erythrocytes infected with Plasmodium falciparum. The CD36 sequence contains two hydrophobic domains located at the amino-and carboxyl-termini of the protein, but the topology of this protein and the functional significance of these domains are still not clearly defined. We generated soluble CD36-IgG chimeric molecules by fusion of the extracellular domains of CD36 with human immunoglobulin domains. The construct containing the N-terminal hydrophobic domain of CD36 was completely retained intracellularly as membrane-associated molecule, suggesting that the N-terminal hydrophobic domain of the CD36 is a real transmembrane domain and that CD36 has hairpin topology. A small amount of the CD36-IgG chimeric construct lacking both transmembrane domains escaped retention, was correctly processed, and accumulated in the extracellular medium as a soluble molecule. This CD36-IgG construct failed to bind Plasmodium falciparum-infected erythrocytes. Using monoclonal antibodies specific for either conformational or structural epitopes, we demonstrate that failure of this CD36-IgG construct to bind infected erythrocytes was due to incorrect folding of the soluble chimeric molecule.  相似文献   

17.
Fibrinogen and fibrin serve as adhesive substrates for a variety of cells including platelets, endothelial cells, and leukocytes. Previously, we identified the C terminus of the gamma chain of fibrinogen as the region of the fibrinogen molecule that contains a ligand for CD11b/CD18 (complement receptor 3) on phorbol ester-stimulated polymorphonuclear leukocytes. In contrast, we report here that neutrophils stimulated with tumor necrosis factor adhere to fibrinogen-coated surfaces, but not to human serum albumin-coated surfaces, via the integrin CD11c/CD18 (p150/95). Monoclonal antibodies LeuM5 and 3.9, which are directed against the alpha subunit of CD11c/CD18, but not monoclonal antibodies OKM10 and OKM1, which are directed against the alpha subunit of CD11b/CD18, inhibit the adhesion of tumor necrosis factor-stimulated neutrophils to fibrinogen-coated surfaces. To identify the site on fibrinogen recognized by CD11c/CD18, we have examined the adhesion of tumor necrosis factor-stimulated neutrophils to surfaces coated with various fibrinogen fragments. Stimulated neutrophils adhere to surfaces coated with the N-terminal disulfide knot fragment of fibrinogen or fibrinogen fragment E. Moreover, peptides containing the sequence Gly-Pro-Arg (which corresponds to amino acids 17-19 of the N-terminal region of the A alpha chain of fibrinogen), and monoclonal antibody LeuM5, block tumor necrosis factor-stimulated neutrophil adhesion to fibrinogen and to the N-terminal disulfide knot fragment of fibrinogen. Thus, CD11c/CD18 on tumor necrosis factor-stimulated neutrophils functions as a fibrinogen receptor that recognizes the sequence Gly-Pro-Arg in the N-terminal domain of the A alpha chain of fibrinogen.  相似文献   

18.
Human cerebral malaria   总被引:17,自引:0,他引:17  
Possible factors contributing to the development of cerebral malaria were discussed based on pathological changes in Burmese patients who died of cerebral malaria. Blockage of cerebral capillaries by Plasmodium falciparum infected erythrocytes appeared to be the principal cause of cerebral malaria. From electron microscopic results, it was concluded that knobs on infected erythrocytes acted as focal junctions which mediated adhesion to endothelial cells. The knobs are, therefore, important contributors to the blockage of the capillary lumen and ensuing pathological changes in cerebral tissues. Host cell molecules such as OKM5 and thrombospondin may function as endothelial cell surface receptors for the attachment of knobs of P. falciparum infected erythrocytes. Immunological events might also play a role in the pathogenesis of cerebral malaria. This was suggested by the presence of IgG, IgM, P. falciparum antigens, and knob proteins in the cerebral capillaries of the people with cerebral malaria. It will be important to assess the candidate malaria vaccines now in development not only for their efficacy in reducing parasitemia but for effects they may have on the sequestration of infected erythrocytes in the brain.  相似文献   

19.
Summary. Adhesion of parasitized erythrocytes to microvascular endothelium is a central event in the pathogenesis of severe falciparum malaria. We have characterized the adhesion of flowing parasitized red blood cells to three of the known endothelial receptors coated on plastic surfaces (CD36, intercellular adhesion molecule-1 (ICAM-1) and thrombospondin (TSP)), and also to cells bearing these receptors (human umbilical vein endothelial cells (HUVEC) and platelets). All of the surfaces could mediate adhesion at wall shear stress within the physiological range. The great majority of adherent parasitized cells formed rolling rather than static attachments to HUVEC and ICAM-1, whereas static attachments predominated for platelets, CD36 and TSP. Studies with monoclonal antibodies verified that binding the HUVEC was mainly via ICAM-1, and to platelets via CD36. Adhesion via ICAM-1 was least sensitive to increasing wall shear stress, but absolute efficiency of adhesion was greatest for CD36, followed by ICAM-1, and least for TSP. TSP did not give long-lasting adhesion under flow, whereas cells remained adherent to CD36 or ICAM-1. We propose that the different receptors may have complementary roles in modulating adhesion in microvessels. Initial interaction at high wall shear stress may be of a rolling type, mediated by ICAM-1 or other receptors, with immobilization and stabilization occurring via CD36 and/or TSP.  相似文献   

20.
Sequestration of malaria-infected erythrocytes in the peripheral circulation has been associated with the virulence of Plasmodium falciparum. Defining the adhesive phenotypes of infected erythrocytes may therefore help us to understand how severe disease is caused and how to prevent or treat it. We have previously shown that malaria-infected erythrocytes may form apparent autoagglutinates of infected erythrocytes. Here we show that such autoagglutination of a laboratory line of P. falciparum is mediated by platelets and that the formation of clumps of infected erythrocytes and platelets requires expression of the platelet surface glycoprotein CD36. Platelet-dependent clumping is a distinct adhesive phenotype, expressed by some but not all CD36-binding parasite lines, and is common in field isolates of P. falciparum. Finally, we have established that platelet-mediated clumping is strongly associated with severe malaria. Precise definition of the molecular basis of this intriguing adhesive phenotype may help to elucidate the complex pathophysiology of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号