首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In the present study, we have investigated the effects of prolonged inhibition of NMDA receptor by infusion of subtoxic dose of MK-801 to examine the modulation of GABAA receptor binding and GABAA receptor subunit mRNA level in rat brain. It has been reported that NMDA-selective glutamate receptor stimulation alters GABAA receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunit. However, we have investigated the effect of NMDA antagonist, MK-801, on GABAA receptor binding characteristics in discrete brain regions by using autoradiographic and in situ hybridization techniques. The GABAA receptor bindings were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam, and [35S]TBPS in rat brain slices. Rats were infused with MK-801 (1 pmol/10 μl per h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML). The levels of [3H]muscimol binding were highly elevated in almost all of brain regions including cortex, caudate putamen, thalamus, hippocampus, and cerebellum. However, the [3H]flunitrazepam binding and [35S]TBPS binding were increased only in specific regions; the former level was increased in parts of the cortex, thalamus, and hippocampus, while the latter binding sites were only slightly elevated in parts of thalamus. The levels of β2-subunit were elevated in the frontal cortex, thalamus, hippocampus, brainstem, and cerebellar granule layers while the levels of β3-subunit were significantly decreased in the cortex, hippocampus, and cerebellar granule layers in MK-801-infused rats. The levels of α6- and δ-subunits, which are highly localized in the cerebellum, were increased in the cerebellar granule layer after MK-801 treatment. These results show that the prolonged suppression of NMDA receptor function by MK-801-infusion strongly elevates [3H]muscimol binding throughout the brain, increases regional [3H]flunitrazepam and [35S]TBPS binding, and alters GABAA receptor subunit mRNA levels in different directions. The chronic MK-801 treatment has differential effect on various GABAA receptor subunits, which suggests involvement of differential regulatory mechanisms in interaction of NMDA receptor with the GABA receptors.  相似文献   

2.
Kim HS  Choi HS  Lee SY  Oh S 《Brain research》2000,880(1-2):28-37
In the present study, we have investigated the effects of prolonged inhibition of NMDA receptor by infusion of subtoxic dose of MK-801 to examine the modulation of GABAA receptor binding and GABAA receptor subunit mRNA level in rat brain. It has been reported that NMDA-selective glutamate receptor stimulation alters GABAA receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunit. However, we have investigated the effect of NMDA antagonist, MK-801, on GABAA receptor binding characteristics in discrete brain regions by using autoradiographic and in situ hybridization techniques. The GABAA receptor bindings were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam, and [35S]TBPS in rat brain slices. Rats were infused with MK-801 (1 pmol/10 μl per h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML). The levels of [3H]muscimol binding were highly elevated in almost all of brain regions including cortex, caudate putamen, thalamus, hippocampus, and cerebellum. However, the [3H]flunitrazepam binding and [35S]TBPS binding were increased only in specific regions; the former level was increased in parts of the cortex, thalamus, and hippocampus, while the latter binding sites were only slightly elevated in parts of thalamus. The levels of β2-subunit were elevated in the frontal cortex, thalamus, hippocampus, brainstem, and cerebellar granule layers while the levels of β3-subunit were significantly decreased in the cortex, hippocampus, and cerebellar granule layers in MK-801-infused rats. The levels of 6- and δ-subunits, which are highly localized in the cerebellum, were increased in the cerebellar granule layer after MK-801 treatment. These results show that the prolonged suppression of NMDA receptor function by MK-801-infusion strongly elevates [3H]muscimol binding throughout the brain, increases regional [3H]flunitrazepam and [35S]TBPS binding, and alters GABAA receptor subunit mRNA levels in different directions. The chronic MK-801 treatment has differential effect on various GABAA receptor subunits, which suggests involvement of differential regulatory mechanisms in interaction of NMDA receptor with the GABA receptors.  相似文献   

3.
Several studies have shown that sleep deprivation produces deficits in learning tasks, but mechanisms underlying these effects remain unclear. Other lines of evidence indicate an involvement of brain GABA systems in cognitive processes. Here, we investigated the possibility that alterations in GABA(A) or benzodiazepine (BDZ) receptor binding might underlie avoidance deficits induced by sleep deprivation. Rats were deprived of sleep for 96 h using the platform method and then trained in a step-through inhibitory avoidance task, or allowed to recover sleep for 24 h before training (sleep rebound group). Thirty minutes after training, animals were given a retention test. Both sleep-deprived and sleep-recovered animals showed a significant impairment in avoidance responding compared to cage controls, and the sleep-deprived group performed significant worse than the sleep-recovered group. A separate group of animals was sacrificed either immediately after 96 h of sleep deprivation or after 96 h of sleep deprivation followed by 24 h of sleep recovery. [(3)H]muscimol and [(3)H]flunitrazepam binding were examined by quantitative autoradiography in 42 brain regions, including areas involved in cognitive processes. No significant differences among groups were found in any brain region, except for a reduction in [(3)H]flunitrazepam binding in the frontal cortex of sleep-recovered animals. These results confirm the deleterious effects of sleep loss on inhibitory avoidance learning, but suggest that such deficits cannot be attributed to altered GABA(A) or BDZ binding in brain.  相似文献   

4.
Postpartum female rats exhibit a suppression of anxiety-related behaviors when compared to diestrous virgin females, pregnant females, and males. This blunted anxiety promotes optimal maternal care and involves elevated GABA neurotransmission, possibly including greater density of GABA(A) and benzodiazepine receptors in the postpartum brain. We here examined autoradiographic binding of [(3)H]muscimol to measure the total population of GABA(A) receptors and [(3)H]flunitrazepam to assess density of benzodiazepine sites in the medial prefrontal cortex, bed nucleus of the stria terminalis, amygdala, hippocampus, and periaqueductal gray of female rats sacrificed on day 7 postpartum, day 10 of pregnancy, or as diestrous virgins. A group of sexually na?ve male rats was also included. We found that [(3)H]muscimol binding did not differ among groups in any site but that diestrous virgin females had greater [(3)H]flunitrazepam binding in the CA1 and dentate gyrus of the hippocampus compared to mid-pregnant females and males. Notably, postpartum and diestrous virgin females did not significantly differ in binding of either ligand in any site examined. This is the first study to evaluate the densities of GABA(A) and benzodiazepine binding sites simultaneously across three female reproductive states and sex with a focus on brain sites influencing anxiety-related behaviors. The results suggest that changes in other GABA(A) receptor characteristics such as subunit composition, or increased presynaptic GABA release during interactions with offspring, must instead play a greater role in the postpartum suppression of anxiety in laboratory rats.  相似文献   

5.
Gamma-ainobutyric acid type A (GABA(A)) receptor ionophore ligand t-[35S]butylbicyclophosphorothionate ([35S]TBPS) was used in an autoradiographic assay on brain cryostat sections to visualize and characterize atypical GABA-insensitive [35S]TBPS binding previously described in certain recombinant GABA(A) receptors and the cerebellar granule cell layer. Picrotoxinin-sensitive but 1-mM GABA-insensitive [35S]TBPS binding was present in the rat cerebellar granule cell layer, many thalamic nuclei, subiculum and the internal rim of the cerebral cortex, amounting in these regions up to 6% of the basal binding determined in the absence of exogenous GABA. Similar binding properties were detected also in human and chicken brain sections. Like the GABA-sensitive [35S]TBPS binding, GABA-insensitive binding was profoundly decreased by pentobarbital, pregnanolone, loreclezole and Mg2+. The binding was reversible and apparently dependent on Cl- ions. Localization of the GABA-insensitive [35S]TBPS binding was not identical to that of high-affinity [3H]muscimol binding and diazepam-insensitive [3H]Ro 15-4513 binding, two previously established receptor subtype-dependent binding heterogeneities in the rat brain. The present study reveals a component of the GABA-ionophore enriched in the thalamus and cerebellar granule cells, possibly representing poorly desensitized or desensitizing receptors.  相似文献   

6.
Post-mortem studies of the human brain indicate that certain GABA(A) receptor subtypes may be differentially altered in schizophrenia. Increased binding to the total population of GABA(A) receptors using [3H]muscimol is observed in the post-mortem schizophrenic brain, yet a proportion of these receptors which bind benzodiazepines and are labelled with [3H]flunitrazepam, show decreased or unaltered expression. Data from animal studies suggest that antipsychotic drugs alter GABA(A) receptor expression in a subtype selective manner, but in the opposite direction to that observed in schizophrenia. To broaden our understanding of the effects of antipsychotic drugs on GABA(A) receptors, we examined the saturation binding maximum (B(max)) and binding affinity (K(D)) of [3H]muscimol and [3H]flunitrazepam in the prefrontal cortex (PFC), hippocampus and thalamus of male SD rats that received a sucrose solution containing either haloperidol (1.5 mg/kg), olanzapine (6.5 mg/kg) or no drug daily for up to 28 days using quantitative receptor autoradiography. [3H]Muscimol binding density was increased most prominently in the PFC after 7 days, with larger and more prolonged effects being induced by the atypical antipsychotic drug olanzapine in subcortical regions. While no changes were observed in [3H]muscimol binding in any region after 28 days of drug administration, [3H]flunitrazepam binding density (B(max)) was increased for both antipsychotic treatments in the PFC only. These findings confirm that the subset of GABA(A) receptors sensitive to benzodiazepines are regulated differently from other GABA(A) receptor subtypes following antipsychotic drug administration, in a time- and region-dependent manner.  相似文献   

7.
Mehta AK  Ticku MK 《Brain research》2005,1031(1):134-137
Chronic administration of ethanol decreased the immunoprecipitation of the [(3)H]flunitrazepam binding activity for GABA(A) receptor assemblies derived from alpha(2)-, alpha(3)- and gamma(2)-subunits in the rat cerebral cortex. However, the [(3)H]muscimol binding sites derived from these subunits were not affected. Thus, chronic ethanol causes the down-regulation of the benzodiazepine sites derived from the alpha(2)-, alpha(3)- and gamma(2)-subunits without affecting the GABA binding sites.  相似文献   

8.
Effects of protein kinase C (PKC) activation on the function of the GABA/benzodiazepine receptor-chloride complex were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam and [35S]TBPS in rat brain slices. The density of [3H]muscimol binding was highest in cerebellar granular layers and high in both the frontal cortex and thalamus, but binding levels in the hippocampus were low. After activation of PKC by 100 nM phorbol-12,13-dibutyrate (PDBu), [3H]muscimol binding was decreased in the frontal cortex, striatum and thalamus, but binding levels were not changed in the hippocampus or cerebellum. The density of [3H]flunitrazepam binding was high in the cortex, hippocampus and molecular layers of cerebellum but was low in thalamus. PDBu increased the [3H]flunitrazepam binding only in the striatum and in part of the cortex and thalamus after activation of PKC. After activation of PKC by PDBu, [35S]TBPS binding was increased in most areas, but binding levels were not changed in the brainstem or cerebellum. The receptor binding was markedly decreased in almost all areas by the addition of 2.5 mM Mg2+. Elevated [35S]TBPS binding produced by PDBu was significantly inhibited by the addition of Mg2+. These results suggest that the activation of PKC potentiates benzodiazepine and TBPS binding, but decreases muscimol binding in a region-specific manner in the rat brain.  相似文献   

9.
Postmortem CNS studies have suggested an uncoupling of the gamma-aminobutyric acid (GABA) and benzodiazepine binding sites on the hippocampal GABA(A) receptor in schizophrenia. The GABA(A) receptor is an assembly of discrete subunits that form a ligand-gated ion channel, the binding characteristics of which are defined by receptor subunit composition. Thus, a likely explanation for an uncoupling between the GABA and benzodiazepine binding sites on the GABA(A) receptor would be a change in receptor subunit composition. To test this hypothesis we measured the density of GABA ([(3)H]muscimol) and benzodiazepine ([(3)H]flumazenil) binding sites on the GABA(A) receptor in hippocampi, obtained postmortem, from schizophrenic, bipolar I disorder and control subjects. In addition, we measured the amount of [(3)H]flumazenil binding that could be displaced with zolpidem and clonazepam. Levels of both [(3)H]muscimol and [(3)H]flumazenil binding were significantly decreased in part of the CA2 from subjects with schizophrenia; the decrease in [(3)H]flumazenil being due to decreases in both zolpidem-sensitive and -insensitive radioligand binding. There were complex regionally specific changes in [(3)H]muscimol binding in the hippocampus from subjects with bipolar I disorder but there were no significant changes in the overall levels of [(3)H]flumazenil binding. There were significant decreases in zolpidem-sensitive and increases in zolpidem-insensitive [(3)H]flumazenil binding in most regions of the sections of the hippocampal formation studied in bipolar I disorder. Unlike [(3)H]flumazenil, zolpidem does not bind to the alpha5 subunit of the GABA(A) receptor; therefore, we postulate that there is an increase in GABA(A) receptors containing alpha5 subunit in the hippocampus from subjects with bipolar I disorder.  相似文献   

10.
Oh S  Jang CG  Ma T  Ho IK 《Brain research》1999,850(1-2):158-165
Effects of protein kinase C (PKC) activation on the function of the GABA/benzodiazepine receptor-chloride complex were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam and [35S]TBPS in rat brain slices. The density of [3H]muscimol binding was highest in cerebellar granular layers and high in both the frontal cortex and thalamus, but binding levels in the hippocampus were low. After activation of PKC by 100 nM phorbol-12,13-dibutyrate (PDBu), [3H]muscimol binding was decreased in the frontal cortex, striatum and thalamus, but binding levels were not changed in the hippocampus or cerebellum. The density of [3H]flunitrazepam binding was high in the cortex, hippocampus and molecular layers of cerebellum but was low in thalamus. PDBu increased the [3H]flunitrazepam binding only in the striatum and in part of the cortex and thalamus after activation of PKC. After activation of PKC by PDBu, [35S]TBPS binding was increased in most areas, but binding levels were not changed in the brainstem or cerebellum. The receptor binding was markedly decreased in almost all areas by the addition of 2.5 mM Mg2+. Elevated [35S]TBPS binding produced by PDBu was significantly inhibited by the addition of Mg2+. These results suggest that the activation of PKC potentiates benzodiazepine and TBPS binding, but decreases muscimol binding in a region-specific manner in the rat brain.  相似文献   

11.
Hollis DM  Boyd SK 《Brain research》2003,992(1):69-75
Little is known about the properties of GABA receptors in the amphibian brain. The GABA(A) receptor is widespread in the mammalian brain, and can be specifically labeled with the receptor agonist [3H]muscimol. The binding of [3H]muscimol to membrane preparations from the brain of the bullfrog, Rana catesbeiana, was investigated in kinetic, saturation, and inhibition experiments to determine whether this species possessed a GABA(A)-like receptor. Binding of 20 nM [3H]muscimol to membranes was specific and could be displaced by 1 mM GABA. Association binding curves showed that steady state occurred rapidly, within 2 min, and dissociation occurred within 5 min. The receptor was saturable with a single, high-affinity binding site (K(D)=19.2 nM; B(max)=1.8 pmol/mg protein). Binding of [3H]muscimol was inhibited in a dose-dependent fashion by muscimol, GABA, bicuculline methiodide, and bicuculline (in order of potency). Baclofen (at doses from 10(-9) to 10(-3) M) failed to displace [3H]muscimol. The binding characteristics and ligand specificity of [3H]muscimol binding sites in the bullfrog brain support the hypothesis that this amphibian possesses a GABA(A)-like receptor protein similar to the GABA(A) receptor characterized in mammals.  相似文献   

12.
Some properties of solubilized GABA receptor   总被引:7,自引:0,他引:7  
gamma-Aminobutyric acid (GABA) receptor was solubilized from synaptic membrane of the rat brain by various detergents. Nonidet P-40, a non-ionic detergent, was found to be an effective solubilizing agent, since it caused no interference on the receptor binding assay, yielded a [3H]muscimol binding protein with a high specific activity and no aggregation, and preserved good stability of the solubilized fraction. Ammonium sulfate precipitation of the solubilized supernatant significantly increased the binding of [3H]muscimol to GABA receptor, possibly by removing heat-stable and small molecular inhibitory substances. The specific [3H]muscimol binding to the soluble fraction obtained by Nonidet P-40 treatment and subsequent ammonium sulfate precipitation, was saturable with KD 13 and 64 nM, and Bmax 3.4 and 1.8 pmol/mg protein, respectively. The enhancement of the [3H]muscimol binding by diazepam as found in synaptic membrane was also detected in the soluble fraction. Molecular weight of the [3H]muscimol binding site was determined by gel filtration on Sephadex G-200 and was calculated to be 270,000 daltons. This value was identical with that of the [3H]flunitrazepam binding site which appeared in the same solubilized fraction. These results indicate that the properties of solubilized GABA receptor are identical to those of membrane-bound GABA receptor. Furthermore, the present results suggest that both GABA and benzodiazepine receptors may reside on the same macromolecule in synaptic membrane.  相似文献   

13.
The anti-alpha1 antibody elicited higher immunoprecipitation (%) values of the [3H]flunitrazepam and [3H]muscimol binding activity in the rat cerebellum vs. cerebral cortex, whereas immunoprecipitation values for [3H]Ro 15-4513 and [3H]zolpidem were comparable in these brain regions. Chronic ethanol administration neither changed the radioligand binding to the immunoprecipitated pellet nor the percentage immunoprecip-itation values, thereby indicating that chronic ethanol did not result in down-regulation of the GABAA receptor assemblies containing alpha1-subunit.  相似文献   

14.
The regional distribution of binding sites on the GABAA receptor and their kinetic parameters were measured by quantitative autoradiography in brains from normal rats and rats with a portacaval shunt, a model of portal systemic encephalopathy in which GABA neurotransmission may be altered. The ligands used were [3H]flunitrazepam (a benzodiazepine-site agonist), [3H]-Ro15-1788 (a benzodiazepine-site antagonist), [3H]muscimol (a GABA-site agonist), and [35S]t-butylbicyclophosphorothionate (35S-TBPS, a convulsant that binds to a site near the chloride channel). Some brains were analyzed by computerized image analysis and three-dimensional reconstruction. The regional distribution of binding of the benzodiazepines was very similar, but the patterns obtained with [3H]muscimol and [35S]TBPS were different in many areas, suggesting a heterogeneous distribution of several subtypes of the GABAA receptor. The kinetic parameters were determined in brain regions for [3H]flunitrazepam, [3H]Ro15-1788, and [3H]muscimol. For each ligand, the Kd showed a significant heterogeneity among brain regions (at least threefold), contrary to conclusions drawn from earlier studies. In portacaval shunted rats, binding of all four ligands was essentially unchanged from that in control rats, indicating that, if there was an abnormality in GABA neurotransmission during portal systemic shunting, it was not reflected by altered binding to the main sites on the GABAA receptor.  相似文献   

15.
Quantitative radiohistochemistry was utilized to study alterations of gamma-aminobutyric acid (GABA) and benzodiazepine receptors in the kindling model of epilepsy. The radioligands used for GABA and benzodiazepine receptors were [3H] muscimol and [3H]flunitrazepam, respectively. GABA receptor binding was increased by 22% in fascia dentata of the hippocampal formation but not in neocortex or substantia nigra of kindled rats. Within fascia dentata, GABA receptor binding was increased to an equivalent extent in stratum granulosum and throughout stratum moleculare; no increase was found in dentate hilus or stratum lacunosummoleculare or stratum radiatum of CA1. The increased binding was present at 24 hr but not at 28 days after the last kindled seizure. The direction, anatomic distribution, and time course of the increased GABA receptor binding were paralleled by increased benzodiazepine receptor binding. Unexpectedly, GABA receptor-mediated enhancement of benzodiazepine receptor binding was slightly attenuated in fascia dentata of kindled compared to control rats. The anatomic distribution of the increased GABA receptor binding is consistent with a localization to somata and dendritic trees of dentate granule cells. We suggest that increased GABA and benzodiazepine receptor binding may contribute to enhanced inhibition of dentate granule cells demonstrated electrophysiologically in kindled animals.  相似文献   

16.
In previous studies of experimental and human epilepsy, defects have been shown in the gamma-aminobutyric acid (GABA) receptors. We further investigated the role of the GABA/benzodiazepine/picrotoxinin receptor complex in the epileptic focus and also in other regions of the rat brain. The focus was induced by cobalt implantation to the right motor cortex, and the brains were dissected 16-19 days after the operation. Benzodiazepine (using [3H]flunitrazepam as a ligand; FLU), GABA [3H]muscimol; MUS), and picrotoxinin [( 35S]t-butylbicyclophosphorothionate; TBPS) receptor bindings were measured in different brain areas and the values were compared with glass-implanted controls. In the focal area, the specific receptor binding decreased in the order TBPS greater than FLU greater than MUS. In the perifocal area only TBPS binding decreased, and Scatchard analysis showed a decrease in the number of binding sites (p less than 0.05) without any effect on binding affinity. No change was seen in the binding characteristics of the other areas studied. According to our results, in cobalt-induced epilepsy the GABA/benzodiazepine/picrotoxinin receptor complex is modulated in the focal area; this may lead to a defect in chloride conductance, which in turn induces disturbed control of neuronal activity in the epileptic focus.  相似文献   

17.
Clathrin-coated vesicles are thought to be a vehicle for the sequestration of GABAA receptors. For coated vesicles from bovine cerebrum, we examined the binding properties of [3H]muscimol, a GABAA-specific agonist, [3H]flunitrazepam, a benzodiazepine agonist, and [35S]t-butylbiocyclophosphorthionate (TBPS), a ligand for GABAA receptor channels. Under standard conditions, the binding level of [3H]muscimol, [3H]flunitrazepam, and [35S]TBPS to coated vesicles represented 12.3±1.8%, 7.9±1%, and 10.2±1.8%, respectively, of that in crude synaptic membranes. Coated vesicles showed a single [3H]flunitrazepam binding site with a KD value (12 nM) which was 9-fold that for synaptic membranes. The allosteric coupling between binding sites was measured by the addition of GABA to [3H]flunitrazepam and [35S]TBPS binding assays. For [3H]flunitrazepam binding to synaptic membranes, GABA gave an EC50=2.0 μM and at saturation (100 μM) an enhancement of 122%. This stimulation was completely blocked by the GABA antagonist SR95531. In contrast, neither GABA nor SR95531 had a significant effect on [3H]flunitrazepam binding to CCVs, indicating that the allosteric interaction between GABA and benzodiazepine binding sites is abolished. Likewise, GABA displaced nearly all of the [35S]TBPS binding to synaptic membranes but had no effect on binding to coated vesicles, indicating that coupling between the GABA binding sites and chloride channel is also impaired. Thus GABAA receptors appear to be uncoupled during normal intracellular trafficking via coated vesicles. The presence of major GABAA receptor subunits on these particles was verified by quantitative immunoblotting. Relative to the levels in synaptic membranes, CCVs contained 110±14% and 29.5±3.8%, respectively, of the immunoreactivity for GABAA receptor β2 and α1 subunits. Thus, in comparison to GABAA receptors on synaptic membranes, those on CCVs have a reduced α1/β2-subunit ratio. It may be suggested that a selective decline in the content of α1 subunits in coated vesicles could in part account for GABAA receptor uncoupling.  相似文献   

18.
Developmental changes in 5alpha-pregnan-3alpha-ol-20-one (allopregnanolone; 5alpha-3alpha-P) potentiation of muscimol and benzodiazepine binding to the GABAA receptor were studied in the guinea pig cerebral cortex at three prenatal ages (gestational day (GD) 40, GD 50, GD 62), and three postnatal ages (postnatal day (PD) 11, PD 21, PD 61) (term, about GD 68). The number and affinity of [3H]flunitrazepam binding sites, and 5alpha-3alpha-P potentiation of [3H]muscimol and [3H]flunitrazepam binding to the GABAA receptor were determined at each age. There was no age effect on the affinity (Kd) for [3H]flunitrazepam. However, the number (Bmax) of [3H]flunitrazepam binding sites doubled between GD 40 and GD 62, and then declined slightly to reach adult levels by PD 11. 5alpha-3alpha-P produced a concentration-dependent potentiation of [3H]muscimol and [3H]flunitrazepam binding at each developmental age examined. The potency (high-affinity) for 5alpha-3alpha-P potentiation of both [3H]muscimol and [3H]flunitrazepam binding was lowest at GD 40, and increased to adult levels by GD 62. In contrast, the efficacy for 5alpha-3alpha-P potentiation of both [3H]muscimol and [3H]flunitrazepam binding was greatest at GD 40, and decreased to adult levels between GD 50 and GD 62. The percentage of high-affinity zolpidem binding sites increased in an age-dependent manner from 34.2+/-2.2% at GD 40, to reach adult levels by GD 62 (59. 4+/-2.5%). These data suggest that 5alpha-3alpha-P can modulate GABAA receptors in the immature cerebral cortex, and that changes in 5alpha-3alpha-P action are temporally related to changes in GABAA receptor benzodiazepine pharmacology late in gestation in the guinea pig.  相似文献   

19.
Cerebral cortical cultured neurons were characterized for GABA-benzodiazepine (BZ) receptor complex, and the effect of chronic exposure of cortical neurons to GABA on GABA-BZ receptor system was investigated. In the intact cells, the [3H]flunitrazepam binding was rapid and saturable, with an apparent Kd of 4.2 +/- 1.5 nM and Bmax of 776 +/- 54 fmol/mg protein. Specifically bound [3H]flunitrazepam was displaced in a concentration-dependent manner by various BZ receptor ligands such as Ro15-1788, DMCM, Ro15-4513, clonazepam, alprazolam, diazepam and zolpidem, and enhanced by GABA, muscimol and pentobarbital. GABA induced enhancement of 36Cl-influx in a concentration-dependent manner (EC50 = 9 +/- 2 microM). Chronic exposure of the cultured neurons to GABA resulted in a reduced [3H]flunitrazepam, [3H]GABA, [3H]Ro15-1788, [3H]Ro15-4513 and [35S]TBPS binding, a reduced enhancement of [3H]flunitrazepam binding by GABA, and a reduced GABA-induced 36Cl-influx susceptible to reversal by concomitant exposure of the cultures to R 5135, a GABAA-receptor antagonist. These findings indicate that cerebral cortical cultured neurons provide an ideal model to study GABA-BZ receptor complex using binding and 36Cl-influx assays, and chronic exposure of cortical cultures to GABA leads to a down-regulation of GABA-BZ receptor system. It is a GABAA receptor-mediated slow process.  相似文献   

20.
The gonadal steroids estradiol and progesterone have previously been shown to modulate the specific binding of the GABA(A) agonist, [(3) H]muscimol, in the CA1 region of the hippocampus, the ventromedial nucleus of the hypothalamus and the midbrain central gray of ovariectomized female rats. In this report we show a sex difference in the level of binding in the very caudal ventromedial nucleus of the hypothalamus. In contrast to females, there is no steroid modulation of [(3) H]muscimol binding in the ventromedial nucleus of the hypothalamus and midbrain central gray of males. These effects may be functionally related to GABAergic control of female sexual behavior. In contrast, steroid modulation of [(3) H]muscimol binding in the CA1 region of the hippocampus occurred to the same degree in males and females, and there was no difference in the level of binding in any region of the hippocampus between gonadectomized males and females. Incubation of brain slices with progesterone or its metabolite 5α-3α-pregnanolone dissolved in ethanol, produced a significant increase in [(3) H]muscimol binding in most brain regions as compared to control brain slices treated with ethanol alone. Moreover, there was also a marked increase in [(3) H]muscimol binding in all brain areas in the control condition which contained 100 mM ethanol, as compared to brain slices not preincubated with ethanol. The increase in binding after in vitro treatment with either progesterone or 5α-3α-pregnanolone is notably different from that seen after progesterone given in vivo 4 h prior to assay in that it is not site-specific, does not depend on prior treatment with estradiol and shows no sex difference. These results suggest different mechanisms for progesterone effects on the GABA(A) receptor when administered in vivo as compared to in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号