首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aimed to investigate whether tonic cutaneous pain exerts any effect on the cortical processing of nociceptive input and if this effect may involve only body parts in pain. Tonic cutaneous pain was obtained in nine healthy human subjects by infusion of a hypertonic saline (5%) in the s.c. tissue over the hypothenar muscles (10 ml/h for 20 min). Nociceptive cutaneous CO2 laser-evoked potentials were recorded after stimulation of the right hand dorsum, which was adjacent to the painful area, and the right perioral region, corresponding to the adjacent cortical sensory area. Laser-evoked potentials were obtained before saline injection, at the peak pain and 20 min after pain disappeared. During saline infusion, the laser-evoked pain to right hand stimulation was reduced and the vertex laser-evoked potentials (N2a-P2, mean latency 181 ms and 319 ms for the N2a and the P2 potentials, respectively), which are generated in the anterior cingulate cortex, were significantly decreased in amplitude compared with the baseline. Moreover, the topography of these potentials was modified by cutaneous pain, shifting from the central toward the parietal region. Dipolar modeling showed that the dipolar source in the anterior cingulate cortex moved backward during saline infusion. This result suggests that cutaneous pain may modify the relative activities of the anterior and posterior anterior cingulate cortex parts, which are thought to be devoted to encode different aspects of pain sensation. No laser-evoked potential change was observed after stimulation of the right perioral region, suggesting that functional changes in the nociceptive system are selective for the painful regions and not for areas with cortical proximity.  相似文献   

2.
We recently showed that cutaneous reflexes evoked by stimulating the superficial peroneal (SP; innervates foot dorsum) nerve are modulated according to the level of postural threat. Context-related modulation was observed mainly in contralateral (c) responses but not in the ipsilateral responses. This lack of effect on ipsilateral (i) cutaneous reflexes might have been caused by the general nature of the whole body perturbation. We therefore hypothesized that context-relevant mechanical perturbations applied to the dorsum of the foot by an instrumented rod at early swing during walking would produce differences in ipsilateral cutaneous reflex amplitudes, consistent with the functional relevance of the SP nerve in stumble correction responses. Subjects walked on a motorized treadmill under four conditions: 1) normal, 2) normal with mechanical perturbations at the foot dorsum, 3) arms crossed, and 4) arms crossed with mechanical perturbations at the foot dorsum. Electrical stimulation of the SP nerve was delivered at five phases of the step cycle, and cutaneous reflexes were compared between all conditions for each phase of the step cycle. Reflex responses were generally found to be modulated in amplitude during walking conditions in which mechanical perturbations were delivered, particularly in ipsilateral tibialis anterior (iTA), which showed a marked reduction in inhibition. The results indicated cutaneous reflexes in iTA and contralateral medial gastrocnemius (cMG) were influenced by the threat of a trip, induced by applying mechanical perturbations to the foot dorsum during walking. This task-related gating of cutaneous reflexes was not generalized to all muscles, thus suggesting a functional role in the maintenance of stability during locomotion.  相似文献   

3.
Wang X  Inui K  Qiu Y  Kakigi R 《Neuroscience》2004,128(1):177-186
We used magnetoencephalography to study effects of sleep on cortical responses to noxious stimuli and to clarify the mechanisms underlying pain perception. For a noxious stimulus, painful intra-epidermal electrical stimulation, which selectively activates A-delta fibers, was applied to the dorsum of the left hand. While awake, subjects were asked to count the number of stimuli silently (Attention) or ignore the stimuli (Control). During sleep, magnetic fields recorded in stage 1 sleep and stage 2 sleep were analyzed. One main component at a latency around 140-160 ms was identified in the awake condition. Multiple source analysis indicated that this main component was generated by activities in the contralateral primary somatosensory cortex (SI), bilateral secondary somatosensory cortex (SII) and insular cortex. The medial temporal area (MT) and cingulate cortex were activated later than the main component. Cortical responses in the contralateral SI, ipsilateral SII and MT, bilateral insula and cingulate cortex were significantly enhanced in Attention as compared with Control. The main component 1 M as well as later magnetic fields were markedly attenuated during sleep, suggesting that all these cortical areas are involved in pain cognition.  相似文献   

4.
In ferret cortex, the rostral portion of the suprasylvian sulcus separates primary somatosensory cortex (SI) from the anterior auditory fields. The boundary of the SI extends to this sulcus, but the adjoining medial sulcal bank has been described as “unresponsive.” Given its location between the representations of two different sensory modalities, it seems possible that the medial bank of the rostral suprasylvian sulcus (MRSS) might be multisensory in nature and contains neurons responsive to stimuli not examined by previous studies. The aim of this investigation was to determine if the MRSS contained tactile, auditory and/or multisensory neurons and to evaluate if its anatomical connections were consistent with these properties. The MRSS was found to be primarily responsive to low-threshold cutaneous stimulation, with regions of the head, neck and upper trunk represented somatotopically that were primarily connected with the SI face representation. Unlike the adjoining SI, the MRSS exhibited a different cytoarchitecture, its cutaneous representation was largely bilateral, and it contained a mixture of somatosensory, auditory and multisensory neurons. Despite the presence of multisensory neurons, however, auditory inputs exerted only modest effects on tactile processing in MRSS neurons and showed no influence on the averaged population response. These results identify the MRSS as a distinct, higher order somatosensory region as well as demonstrate that an area containing multisensory neurons may not necessarily exhibit activity indicative of multisensory processing at the population level.  相似文献   

5.
Warmth and heat are registered by different types of cutaneous receptors. To disentangle the cortical activation patterns of warming and heating, we analyzed the temporal evolution of the electroencephalographic 10 and 20 Hz oscillations with the time resolution of hundreds of milliseconds. Sixty heat (from 32 to 50.5 degrees C, rate of change 6 degrees C/s) and warm (from 32 to 42 degrees C, 6 degrees C/s) stimuli were applied on the right thenar using contact thermode. EEG was recorded from 111 scalp electrodes in 12 healthy subjects, and analyzed using event-related desynchronization and low-resolution electromagnetic tomography methods. During warming, the amplitudes of 10 and 20 Hz oscillations over the contralateral primary sensorimotor (SI/MI) and premotor cortices decreased, and the amplitude of 20 Hz oscillations in the anterior cingulate and ipsilateral premotor cortex increased. Heating was associated with additional profound amplitude decreases of 10 and 20 Hz oscillations over SI/MI and premotor cortex, and by amplitude increase of 20 Hz oscillations originating in the posterior cingulate cortex. Results suggest biphasic amplitude changes of the cortical oscillations during ramp increase of temperature attributable to the periods of warming and heating. The amplitude decreases of 10 and 20 Hz oscillations in SI/MI and premotor cortex possibly aid in preparation of motor withdrawal reaction in an event that temperature should reach intolerable pain. Synchronization of the 20 Hz oscillations in the anterior and especially in the posterior cingulate cortex may aid suppression of unwanted movements.  相似文献   

6.
This study aimed to evaluate whether painful cutaneous stimuli can affect specifically the excitability of the arm proximal muscle motor area. The motor evoked potentials (MEPs), recorded from the right biceps brachii muscle after either transcranial magnetic or electrical anodal stimulation of the left primary motor (MI) cortex, were conditioned by painful CO2 laser stimuli delivered either on the right hand dorsum or on the lateral surface of the right arm. Painful CO2 laser stimuli delivered on the hand skin reduced significantly the amplitude of MEPs evoked by the transcranial magnetic stimulation of the contralateral MI area, while the MEP amplitude was not significantly modified by CO2 laser pulses delivered on the arm skin. The inhibitory effect followed the arrival of the nociceptive inputs to the cerebral cortex. The amplitude of MEPs evoked by anodal electrical stimulation of the motor cortex was not decreased by conditioning painful stimuli delivered on the hand dorsum. Since the magnetic stimulation led to transynaptic activation of pyramidal neurons, while the anodal stimulation activated directly corticospinal axons, our findings suggest that CO2 laser pulses delivered on the hand are able to inhibit the arm proximal muscle motor area. Electronic Publication  相似文献   

7.
Summary The cortical afferents to the cortex of the anterior ectosylvian sulcus (SEsA) were studied in the cat, using the retrograde axonal transport of horseradish peroxidase technique. Following injections of the enzyme in the cortex of both banks, fundus and both ends (postero-dorsal and anteroventral) of the anterior ectosylvian sulcus, retrograde labeling was found in: the primary, secondary, and tertiary somatosensory areas (SI, SII and SIII); the motor and premotor cortices; the primary, secondary, anterior and suprasylvian fringe auditory areas; the lateral suprasylvian (LS) area, area 20 and posterior suprasylvian visual area; the insular cortex and cortex of posterior half of the sulcus sylvius; in area 36 of the perirhinal cortex; and in the medial bank of the presylvian sulcus in the prefrontal cortex. Moreover, these connections are topographically organized. Considering the topographical distribution of the cortical afferents, three sectors may be distinguished in the cortex of the SEsA. 1) The cortex of the rostral two-thirds of the dorsal bank. This sector receives cortical projections from areas SI, SII and SIII, and from the motor cortex. It also receives projections from the anterolateral subdivision of LS, and area 36. 2) The cortex of the posterior third of the dorsal bank and of the posterodorsal end. It receives cortical afferents principally from the primary, secondary and anterior auditory areas, from SI, SII and fourth somatosensory area, from the anterolateral subdivision of LS, vestibular cortex and area 36. 3) The cortex of the ventral bank and fundus. This sulcal sector receives abundant connections from visual areas (LS, 20, posterior suprasylvian, 21 and 19), principally from the lateral posterior and dorsal subdivisions of LS. It also receives abundant connections from the granular insular cortex, caudal part of the cortex of the sylvian sulcus and suprasylvian fringe. Less abundant cortical afferents were found to arise in area 36, second auditory area and prefrontal cortex. The abundant sensory input of different modalities which appears to converge in the cortex of the anterior ectosylvian sulcus, and the consistent projection from this cortex to the deep layers of the superior colliculus, make this cortical region well suited to play a role in the control of the orientation movements of the eyes and head toward different sensory stimuli.Supported by FISSS grants 521/81 and 1250/84  相似文献   

8.
Thermosensory activation of insular cortex   总被引:13,自引:0,他引:13  
Temperature sensation is regarded as a submodality of touch, but evidence suggests involvement of insular cortex rather than parietal somatosensory cortices. Using positron emission tomography (PET), we found contralateral activity correlated with graded cooling stimuli only in the dorsal margin of the middle/posterior insula in humans. This corresponds to the thermoreceptive- and nociceptive-specific lamina I spinothalamocortical pathway in monkeys, and can be considered an enteroceptive area within limbic sensory cortex. Because lesions at this site can produce the post-stroke central pain syndrome, this finding supports the proposal that central pain results from loss of the normal inhibition of pain by cold. Notably, perceived thermal intensity was well correlated with activation in the right (ipsilateral) anterior insular and orbitofrontal cortices.  相似文献   

9.
The primary (SI) and secondary (SII) somatosensory cortices have been shown to participate in human pain processing. However, in humans it is unclear how SI and SII contribute to the encoding of nociceptive stimulus intensity. Using magnetoencephalography (MEG) we recorded responses in SI and SII in eight healthy humans to four different intensities of selectively nociceptive laser stimuli delivered to the dorsum of the right hand. Subjects' pain ratings correlated highly with the applied stimulus intensity. Activation of contralateral SI and bilateral SII showed a significant positive correlation with stimulus intensity. However, the type of dependence on stimulus intensity was different for SI and SII. The relation between SI activity and stimulus intensity resembled an exponential function and matched closely the subjects' pain ratings. In contrast, SII activity showed an S-shaped function with a sharp increase in amplitude only at a stimulus intensity well above pain threshold. The activation pattern of SI suggests participation of SI in the discriminative perception of pain intensity. In contrast, the all-or-none-like activation pattern of SII points against a significant contribution of SII to the sensory-discriminative aspects of pain perception. Instead, SII may subserve recognition of the noxious nature and attention toward painful stimuli.  相似文献   

10.
Recently, functional magnetic resonance imaging has been used as a novel method of evaluating the CNS response to noxious stimuli. In a previous study, a prolonged noxious thermal stimulus applied to the dorsum of the hand produced more than one hemodynamic response that was temporally segregated. The two major responses displayed activation in primary sensory regions (classic pain circuitry) and regions involved in emotion (reward/aversion circuitry), respectively. In the current study, we applied the same thermal stimulus separately to the dorsum of the left foot and the dorsum of the left hand in the same subjects and compared the hemodynamic responses to evaluate the effects of conduction distance on CNS activation within these two segregated systems. After stimulus delivery to the foot, the hemodynamic response in primary sensory networks occurs after a delay of 3.6 +/- 1.3 s as compared with the response after hand stimulation. The relative delay of the hemodynamic response in reward/aversion regions is not significantly different between hand and foot stimulation (0.6 +/- 2.1 s). These results within the primary sensory system are consistent with the greater conduction distance of the peripheral nerves from the hand versus the foot. The observation that the response within the reward/aversion pathways occurs with the same rapid temporal characteristics after either hand or foot stimulation supports the notion that the circuitry involved in the evaluation of aversive stimuli is rapid in onset and probably represents a major protective mechanism for survival.  相似文献   

11.
Processing of tactile stimuli within somatosensory cortices has been shown to be complex and hierarchically organized. However, the precise organization of nociceptive processing within these cortices has remained largely unknown. We used whole-head magnetoencephalography to directly compare cortical responses to stimulation of tactile and nociceptive afferents of the dorsum of the hand in humans. Within the primary somatosensory cortex (SI), nociceptive stimuli activated a single source whereas tactile stimuli activated two sequentially peaking sources. Along the postcentral gyrus, the nociceptive SI source was located 10 mm more medially than the early tactile SI response arising from cytoarchitectonical area 3b and corresponded spatially to the later tactile SI response. Considering a mediolateral location difference between the hand representations of cytoarchitectonical areas 3b and 1, the present results suggest generation of the single nociceptive response in area 1, whereas tactile stimuli activate sequentially peaking sources in areas 3b and 1. Thus nociceptive processing apparently does not share the complex and hierarchical organization of tactile processing subserving elaborated sensory capacities. This difference in the organization of both modalities may reflect that pain perception rather requires reactions to and avoidance of harmful stimuli than sophisticated sensory capacities.  相似文献   

12.
Differentiation of visceral and cutaneous pain in the human brain   总被引:11,自引:0,他引:11  
The widespread convergence of information from visceral, cutaneous, and muscle tissues onto CNS neurons invites the question of how to identify pain as being from the viscera. Despite referral of visceral pain to cutaneous areas, individuals regularly distinguish cutaneous and visceral pain and commonly have contrasting behavioral reactions to each. Our study addresses this dilemma by directly comparing human neural processing of intensity-equated visceral and cutaneous pain. Seven subjects underwent fMRI scanning during visceral and cutaneous pain produced by balloon distention of the distal esophagus and contact heat on the midline chest. Stimulus intensities producing nonpainful and painful sensations, interleaved with rest periods, were presented in each functional run. Analyses compared painful to nonpainful conditions. A similar neural network, including secondary somatosensory and parietal cortices, thalamus, basal ganglia, and cerebellum, was activated by visceral and cutaneous painful stimuli. However, cutaneous pain evoked higher activation bilaterally in the anterior insular cortex. Further, cutaneous but not esophageal pain activated ventrolateral prefrontal cortex, despite higher affective scores for visceral pain. Visceral but not cutaneous pain activated bilateral inferior primary somatosensory cortex, bilateral primary motor cortex, and a more anterior locus within anterior cingulate cortex. Our results reveal a common cortical network subserving cutaneous and visceral pain that could underlie similarities in the pain experience. However, we also observed differential activation patterns within insular, primary somatosensory, motor, and prefrontal cortices that may account for the ability to distinguish visceral and cutaneous pain as well as the differential emotional, autonomic and motor responses associated with these different sensations.  相似文献   

13.
We recorded somatosensory evoked magnetic fields from ten healthy, right-handed subjects with a 122-channel whole-scalp SQUID magnetometer. The stimuli, exceeding the motor threshold, were delivered alternately to the left and right median nerves at the wrists, with interstimulus intervals of 1, 3, and 5 s. The first responses, peaking around 20 and 35 ms, were explained by activation of the contralateral primary somatosensory cortex (SI) hand area. All subjects showed additional deflections which peaked after 85 ms; the source locations agreed with the sites of the secondary somatosensory cortices (SII) in both hemispheres. The SII responses were typically stronger in the left than the right hemisphere. All subjects had an additional source, not previously reported in human evoked response data, in the contralateral parietal cortex. This source was posterior and medial to the SI hand area, and evidently in the wall of the postcentral sulcus. It was most active at 70–110 ms.  相似文献   

14.
In primates, the frontal eye field (FEF) contains separate representations of saccadic and smooth-pursuit eye movements. The smooth-pursuit region (FEFsem) in macaque monkeys lies principally in the fundus and deep posterior wall of the arcuate sulcus, between the FEF saccade region (FEFsac) in the anterior wall and somatomotor areas on the posterior wall and convexity. In this study, cortical afferents to FEFsem were mapped by injecting retrograde tracers (WGA-HRP and fast blue) into electrophysiologically identified FEFsem sites in two monkeys. In the frontal lobe, labeled neurons were found mostly on the ipsilateral side in the (1) supplementary eye field region and lateral area F7; (2) area F2 along the superior limb of the arcuate sulcus; and (3) in the buried cortex of the arcuate sulcus extending along the superior and inferior limbs and including FEFsac and adjacent areas 8, 45, and PMv. Labeled cells were also found in the caudal periprincipal cortex (area 46) in one monkey. Labeled cells were found bilaterally in the frontal lobe in the deep posterior walls of the arcuate sulcus and postarcuate spurs and in cingulate motor areas 24 and 24c. In postcentral cortical areas all labeling was ipsilateral and there were two major foci of labeled cells: (1) the depths of the intraparietal sulcus including areas VIP, LIP, and PEa, and (2) the anterior wall and fundus of the superior temporal sulcus including areas PP and MST. Smaller numbers of labeled cells were found in superior temporal sulcal areas FST, MT, and STP, posterior cingulate area 23b, area 3a within the central sulcus, areas SII, RI, Tpt in the lateral sulcus, and parietal areas 7a, 7b, PEc, MIP, DP, and V3A. Many of these posterior afferent cortical areas code visual-motion (MT, MST, and FST) or visual-motion and vestibular (PP, VIP) signals, consistent with the responses of neurons in FEFsem and with the overall physiology and anatomy of the smooth-pursuit eye movement system.  相似文献   

15.
We investigated cortical functions of two Unverricht-Lundborg disease (ULD) patients suffering from myoclonic jerks, but no generalized tonic-clonic seizures. Somatosensory cortical responses were recorded to median nerve stimuli and coherence was calculated between cortical and muscle signals during isometric contraction of hand muscle. In contrast to ULD patients with generalized tonic-clonic seizures, responses of the primary somatosensory (SI) cortex were only slightly enhanced in the left and normal in the right hemisphere, and no early responses were observed in the ipsilateral SI. Cortex-muscle coherence was remarkably enhanced. We conclude that in ULD patients without generalized tonic-clonic seizures, both the excitability of the SI and transcallosal conduction are relatively normal, probably decreasing susceptibility to generalized seizures. Disturbed cortical control of muscle contraction indicates selective alteration of the motor cortex activation.  相似文献   

16.
Psychological factors are known to play an extremely important role in the maintenance and development of chronic pain conditions. However, it is unclear how such factors relate to the central neural processing of nociceptive transmission in healthy individuals. To investigate this issue, the activation of the brain was studied in 30 healthy volunteers responding to virtual pain stimuli by fMRI. In the first series of the study (non-preconditioned study), 15 participants were shown a digital video demonstrating an injection needle puncturing the right palm. In the second series of the study (pre-conditioned study), same-task paradigms were used for another 15 participants. Prior to the fMRI session, real needle punctuate stimuli were applied to the right palm of participants for pre-conditioning. fMRI analysis revealed that bilateral activations in anterior insula (BA45), parietal operculum (S2: BA40), premotor area, medial globus pallidus, inferior occipital gyrus (BA18), left temporal association cortex, right fusiform gyrus, right parietal association cortex and cerebellum occurred due to the task in the preconditioned group. On the other hand, right parietal operculum (S2: BA40), premotor area, parietal association cortex, left inferior frontal gyrus and bilateral temporal association cortex were activated in the non-preconditioned group. In addition, activation of anterior insula, inferior frontal gyrus, precentral gyrus and cerebellum significantly increased in the preconditioned group compared with the non-preconditioned group. These results suggest that the virtual needle puncture task caused memory retrieval of unpleasant experiences which is possibly related to empathy for pain, resulting in the activation of specific brain areas.  相似文献   

17.
1. Cats anaesthetized with chloralose were used. Potentials evoked by electrical stimulation of the vestibular, cochlear, facial, trigeminal and chorda tympani nerves were recorded with micro-electrodes in the cortex in the anterior syprasylvian sulcus.2. Negative focal potentials with a latency of 3 msec were evoked by stimulation of the contralateral and ipsilateral vestibular nerves. These potentials were located in the lower and upper banks of the sulcus at a level just caudal to the projection of the Group I muscle afferents to the lower bank.3. The cochlear projections were located mainly in the lower bank partially overlapping the vestibular and the Group I fields.4. Trigeminal responses were recorded in both banks of the sulcus but were of largest amplitude and shortest latency rostrally in the upper bank. The potentials evoked by the chorda tympani had a similar distribution but were of low amplitude.5. The hypothesis is suggested, that the cortex in the anterior suprasylvian sulcus plays a role in the orientation of the body and head towards auditory stimuli.  相似文献   

18.
Visceral and somatic pain perception differs in several aspects: poor localization of visceral pain and the ability of visceral pain to be referred to somatic structures. The perception of pain intensity and affect in visceral and somatic pain syndromes is often different, with visceral pain reported as more unpleasant. To determine whether these behavioral differences are due to differences in the central processing of visceral and somatic pain, non-invasive imaging tools are required to examine the neural correlates of visceral and somatic events when the behavior has been isolated and matched for either unpleasantness or pain intensity. In this study we matched the unpleasantness of somatic and visceral sensations and imaged the neural representation of this perception using functional magnetic resonance imaging in 10 healthy right-handed subjects. Each subject received noxious thermal stimuli to the left foot and midline lower back and balloon distension of the rectum while being scanned. Stimuli were matched to the same unpleasantness rating, producing mild-moderate pain intensity for somatic stimuli but an intensity below the pain threshold for the visceral stimuli. Visceral stimuli induced deactivation of the perigenual cingulate bilaterally with a relatively greater activation of the right anterior insula-i.e. regions encoding affect. Somatic pain induced left dorso-lateral pre-frontal cortex and bilateral inferior parietal cortex activation i.e. regions encoding spatial orientation and assessing perceptual valence of the stimulus. We believe that the observed patterns of activation represent the differences in cortical process of interoceptive (visceral) and exteroceptive (somatic) stimuli when matched for unpleasantness.  相似文献   

19.
目的 揭示踝及足背皮神经的整体分布模式,为皮瓣移植感觉重建提供形态学指导。 方法 成年尸体24具,紧贴肌表面摘取含皮下脂肪的踝及足背皮肤,用改良的Sihler’s染色法显示并观察皮神经整体分布模式。 结果 在Sihler’s染色的标本中,肉眼可见隐神经支配踝前区(40.01±7.6)%、踝后区(30±6.7)%、以及部分足背内侧缘。腓浅神经支配踝前区(60.03±6.8)%,其足背内侧皮神经支配足背内侧区、第1、2趾背及第3趾背内侧半;95.83%的足背中间皮神经分布到第3趾背外侧半、第4、5趾背。腓肠神经支配踝后区(70±5.3)%,其足背外侧皮神经支配足背外侧缘皮肤。腓深神经分布到第1、2趾背相对面。初级神经支密度以踝前区最高,次级及以下神经支密度和总的神经支密度均以足背内侧区最高。 结论 在踝或足背的皮瓣移植中,建议把踝前区或足背内侧区设计为利于感觉重建的首选供区或感觉需求较高的受区。  相似文献   

20.
 We lesioned the right primary somatic sensory (SI) cortex in two monkeys trained to categorize the speed of moving tactile stimuli. Animals performed the task by pressing with the right hand one of two target switches to indicate whether the speed of a probe moving across the glabrous skin of the left hand was low or high. Sensory performance was evaluated with psychometric techniques and motor behavior was monitored by measuring the reaction (RT) and movement (MT) times before the experiment and throughout the 60 days after the ablation of SI cortex. After the lesion, there was a slight increase in the RTs but no change in the MTs, indicating that removal of SI cortex did not affect the animals’ capacity to detect the stimuli. However, monkeys lost their ability to categorize the stimulus speeds. This effect was observed from the 1st day after the lesion until the end of the study. We conclude that somatosensory areas outside SI can by themselves process tactile information in a limited way and that the extraction of higher-order features that takes place during the categorization task requires the intervention of SI cortex. Received: 28 October 1996 / Accepted: 27 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号