首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Relaxin (Rln), a polypeptide hormone of the insulin superfamily, is an ovarian peptide hormone that is involved in a diverse range of physiological and pathological reactions. In this study, we investigated the effect of Rln on bone morphogenetic protein 2 (BMP‐2)‐induced osteoblast differentiation and bone formation. Expression of Rln receptors was examined in the primary mouse bone marrow stem cells (BMSCs) and mouse embryonic fibroblast cell line C3H/10T1/2 cells by RT‐PCR and Western blot during BMP‐2–induced osteoblast differentiation. The effect of Rln on osteoblast differentiation and mineralization was evaluated by measuring the alkaline phosphatase activity, osteocalcin production, and Alizarin red S staining. For the in vivo evaluation, BMP‐2 and/or Rln were administered with type I collagen into the back of mice, and after 3 weeks, bone formation was analyzed by micro–computed tomography (µCT). Western blot was performed to determine the effect of Rln on osteoblast differentiation‐related signaling pathway. Expression of Rxfp 1 in BMSCs and C3H/10T1/2 cells was significantly increased by BMP‐2. In vitro, Rln augmented BMP‐2–induced alkaline phosphatase expression, osteocalcin production, and matrix mineralization in BMSCs and C3H/10T1/2 cells. In addition, in vivo administration of Rln enhanced BMP‐2–induced bone formation in a dose‐dependent manner. Interestingly, Rln synergistically increased and sustained BMP‐2–induced Smad, p38, and transforming growth factor‐β activated kinase (TAK) 1 phosphorylation. BMP‐2–induced Runx 2 expression and activity were also significantly augmented by Rln. These results show that Rln enhanced synergistically BMP‐2–induced osteoblast differentiation and bone formation through its receptor, Rxfp 1, by augmenting and sustaining BMP‐2–induced Smad and p38 phosphorylation, which upregulate Runx 2 expression and activity. These results suggest that Rln might be useful for therapeutic application in destructive bone diseases. © 2014 American Society for Bone and Mineral Research.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Bone morphogenetic proteins (BMPs) exert an important role in skeletal development, adult bone homeostasis, and fracture healing and have demonstrated clinical utility for bone regeneration. However, BMPs fall short as regenerative agents because high doses need to be used to obtain therapeutic effects. Determining the molecular mechanisms controlling BMP‐induced bone formation may lead to the development of more effective BMP‐based therapies. To identify kinases mediating BMP‐induced osteoblast differentiation, we performed an siRNA screen to find kinases modulating BMP‐6‐induced alkaline phosphatase (ALP) activity. Surprisingly, although transforming growth factor β (TGF‐β) generally is considered to antagonize BMP‐induced osteoblast differentiation, C2C12 cells transfected with siRNAs targeting TGF‐β receptors displayed reduced BMP‐6‐induced ALP activity. Furthermore, pharmacologic inhibitors blocking the TGF‐β type I receptor impaired BMP‐induced ALP activity in KS483 and C2C12 cells and mineralization of KS483 cells. Consistently, costimulation with BMPs and TGF‐β further increased expression of osteoblast‐specific genes, ALP activity, and mineralization of KS483 cells and primary mesenchymal stem cells compared with BMPs alone. The stimulatory and inhibitory effects of TGF‐β were found to depend on timing and duration of the costimulation. TGF‐β inhibited BMP‐induced activation of a BMP‐Smad‐dependent luciferase reporter, suggesting that the stimulatory effect of TGF‐β is not due to increased BMP‐Smad activity. TGF‐β also inhibited the BMP‐induced expression of the BMP antagonist noggin and prolonged BMP activity. In conclusion, TGF‐β, besides acting as an inhibitor, also can, by dampening the noggin‐mediated negative‐feedback loop, enhance BMP‐induced osteoblast differentiation, which might be beneficial in fracture healing. © 2011 American Society for Bone and Mineral Research.  相似文献   

16.
17.
18.
19.
20.
Runx2 plays a crucial role in osteoblastic differentiation, which can be upregulated by bone morphogenetic proteins 2 (BMP2). Mitogen-activated protein kinase (MAPK) cascades, such as extracellular signal-regulated kinase (ERK) and p38, have been reported to be activated by BMP2 to increase Runx2 activity. The role of cjun-N-terminal kinase (JNK), the other kinase of MAPK, in osteoblastic differentiation has not been well elucidated. In this study, we first showed that JNK1 is activated by BMP2 in multipotent C2C12 and preosteoblastic MC3T3-E1 cell lines. We then showed that early and late osteoblastic differentiation, represented by ALP expression and mineralization, respectively, are significantly enhanced by JNK1 loss-of-function, such as treatment of JNK inhibitor, knockdown of JNK1 and ectopic expression of a dominant negative JNK1 (DN-JNK1). Consistently, BMP2-induced osteoblastic differentiation is reduced by JNK1 gain-of-function, such as enforced expression of a constitutively active JNK1 (CA-JNK1). Most importantly, we showed that Runx2 is required for JNK1-mediated inhibition of osteoblastic differentiation, and identified Ser104 of Runx2 is the site phosphorylated by JNK1 upon BMP2 stimulation. Finally, we found that overexpression of the mutant Runx2 (Ser104Ala) stimulates osteoblastic differentiation of C2C12 and MC3T3-E1 cells to the extent similar to that achieved by overexpression of wild-type (WT) Runx2 plus JNK inhibitor treatment. Taken together, these data indicate that JNK1 negatively regulates BMP2-induced osteoblastic differentiation through phosphorylation of Runx2 at Ser104. In addition, unraveling these mechanisms may help to develop new strategies in enhancing osteoblastic differentiation and bone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号