首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human malignant autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder caused by reduced bone resorption by osteoclasts. Biallelic mutations in the TCIRG1 gene, encoding the a3 subunit of the vacuolar proton pump, are responsible for more than one half of ARO patients. However, a few patients with monoallelic mutations have been described, raising the possibility of a dominant‐like TCIRG1‐dependent osteopetrosis, of a digenic disease, or of peculiar mutations difficult to detect with standard methods. We describe here a novel genomic deletion in the TCIRG1 gene explaining why, in some patients, mutations in only one allele have previously been found. The analysis of a proband from a consanguineous Turkish family allowed us to define the deletion boundaries encompassing introns 10 and 13 and occurring within AluSx repeat sequences, suggesting Alu‐mediated homologous recombination as a mechanism. An identical genomic deletion at the heterozygous level was found in four unrelated Italian families in whom only a single mutated allele has previously been found. TCIRG1 haplotype analysis in these five families suggests a possible common ancestral origin for this large deletion. In summary, we describe the identification of a novel genomic deletion in the TCIRG1 gene that is of clinical relevance, especially in prenatal diagnosis.  相似文献   

2.
Primary hyperparathyroidism (PHPT) is a common endocrine disease that is associated with multiple endocrine neoplasia type 1 (MEN1) in ~2% of PHPT cases. Lack of a family history and other specific expressions may lead to underestimated MEN1 prevalence in PHPT. The aim of this study was to identify clinical or biochemical features predictive of MEN1 and to compare the severity of the disease in MEN1‐related versus sporadic PHPT (sPHPT). We performed a 36‐mo cross‐sectional observational study in three tertiary referral centers on an outpatient basis on 469 consecutive patients with sporadic PHPT and 64 with MEN1‐related PHPT. Serum calcium, phosphate, PTH, 25(OH)D3, and creatinine clearance were measured, and ultrasound examination of the urinary tract/urography was performed in all patients. In 432 patients, BMD was measured at the lumbar spine (LS) and femoral neck (FN). MEN1 patients showed lower BMD Z‐scores at the LS (?1.33 ± 1.23 versus ?0.74 ± 1.4, p = 0.008) and FN (?1.13 ± 0.96 versus ?0.6 ± 1.07, p = 0.002) and lower phosphate (2.38 ± 0.52 versus 2.56 ± 0.45 mg/dl, p = 0.003) and PTH (113.8 ± 69.5 versus 173.7 ± 135 pg/ml, p = 0.001) levels than sPHPT patients. Considering probands only, the presence of MEN1 was more frequently associated with PTH values in the normal range (OR, 3.01; 95% CI, 1.07–8.50; p = 0.037) and younger age (OR, 1.61; 95% CI, 1.28–2.02; p = 0.0001). A combination of PTH values in the normal range plus age <50 yr was strongly associated with MEN1 presence (OR, 13.51; 95% CI, 3.62–50.00; p = 0.0001). In conclusion, MEN1‐related PHPT patients show more severe bone but similar kidney involvement despite a milder biochemical presentation compared with their sPHPT counterparts. Normal PTH levels and young age are associated with MEN1 presence.  相似文献   

3.
In osteopetrosis, osteoclast dysfunction can lead to deafness, blindness, bone marrow failure, and death. Hematopoietic cell transplantation (HCT) is currently the only curative treatment, but outcome remains disappointing. Although a rapid progression toward HCT is detrimental to prevent further progress of disease manifestations, 70% of cases lack an HLA‐matched sibling and require alternative stem cell sources. We present two cases of osteopetrosis that successfully received an HCT with haploidentical TcRαβ‐depleted cells from one of the parents. These cases showed no further disease progression, had restoration of functional osteoclasts, and illustrate this approach to enable prompt HCT with ready available parental donors and rapid and sustained hematological, including osteoclast, recovery. © 2016 American Society for Bone and Mineral Research.  相似文献   

4.
The purpose of this study was to investigate the anti‐inflammatory effect of platelet‐rich plasma (PRP) with collagen matrix on human nucleus pulposus (NP) cell in response to pro‐inflammatory cytokines such as tumor necrosis factor‐alpha (TNF‐α) and interleukin‐1 (IL‐1). NP cells from human disks were cultured in a monolayer and maintained in the collagen matrix prior to the addition of recombinant human IL‐1 and TNF‐α. After applying IL‐1 and TNF‐α, PRP prepared by using a commercially available platelet concentration system was added. The response was investigated using real‐time PCR for mRNA expression of type II collagen, aggrecan, matrix metalloproteinase‐3 (MMP‐3), and cyclooxygenase‐2 (COX‐2). The combination of IL‐1β and TNF‐α led to decrease of matrix synthesis gene expression such as collagen type II and aggrecan and increase of the degradation gene expression of COX‐2 and MMP‐3, compared to the control. Consecutive PRP exposure significantly recovered the down‐regulated gene expression of collagen type II and aggrecan and significantly reduced the increased MMP‐3 and COX‐2 gene expression, compared to that of control groups with pro‐inflammatory cytokines. The administration of PRP with collagen matrix markedly suppressed cytokine‐induced pro‐inflammatory degrading enzymes and mediators in the NP cell. It also rescued gene expression concerning matrix synthesis, thereby stabilizing NP cell differentiation. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:551–556, 2014.  相似文献   

5.
6.
We studied phenotypic and cellular aspects in a patient with a heterozygous mutation of the PLEKHM1 gene and obtained some indications regarding the role of the protein in bone cell function. Plekhm1 is involved in osteoclast endosomal vesicle acidification and TRACP exocytosis, contributing to events involved in osteoclast–osteoblast cross‐talk. Introduction: The gene PLEKHM1 encodes a nonsecretory adaptor protein that localizes to endosomal vesicles. A highly truncated Plekhm1 protein was previously found in a patient with intermediate autosomal recessive osteopetrosis. Materials and Methods: We describe a new heterozygous mutation in the PLEKHM1 gene in a patient presenting with low vertebral and femoral T‐scores and areas of focal sclerosis. Clinical evaluation, mutational analysis, assessment of in vitro osteoclast morphology and activity, transfection studies, and evaluation of osteoclast–osteoblast cross‐talk were carried out. Results: Direct DNA sequencing showed a heterozygous C to T substitution on cDNA position 2140 of the PLEKHM1 gene, predicted to lead to an R714C mutant protein. The mutation was not found in 104 control chromosomes. In vitro, patient's osteoclasts showed normal formation rate, morphology, number of nuclei, and actin rings but lower TRACP activity and higher endosomal pH than control osteoclasts. The patient had high serum PTH and TRACP, despite low TRACP activity in osteoclasts in vitro. HEK293 cells overexpressing either wildtype or Plekhm1‐R714C showed no difference in localization of the variants, and co‐transfection with a TRACP vector confirmed low TRACP activity in cells carrying the R714C mutation. RAW 264.7 osteoclast‐like cells expressing the Plekhm1‐R714C variant also showed low TRACP activity and reduced ability to acidify endosomal compartments compared with cells expressing the wildtype protein. Reduced intracellular TRACP was caused by increased protein secretion rather than reduced expression. TRACP‐containing conditioned medium was able to increase osteoblast alkaline phosphatase, suggesting the focal osteosclerosis is a result of increased osteoclast–osteoblast coupling. Conclusions: We provide further evidence for a role of Plekhm‐1 in osteoclasts by showing that a novel mutation in PLEKHM1 is associated with a complex bone phenotype of generalized osteopenia combined with “focal osteosclerosis.” Our data suggest that the mutation affects endosomal acidification/maturation and TRACP exocytosis, with implications for osteoclast–osteoblast cross‐talk.  相似文献   

7.
In Paget's disease of bone (PDB), a major contributory factor are osteoclasts (OCs) that are larger, more numerous, resistant to apoptosis, and hyperactive. The aim of this human in vitro study was to identify kinase cascades involved in the OC phenotype and to determine their impact on downstream processes. Basal phosphorylation levels of Akt and ERK were found to be elevated in PDB OCs. Given our previous findings that 3‐phosphoinositide‐dependent protein kinase 1 (PDK1) associates with the crucial adaptor p62 in OCs, we hypothesized that PDK1 may play an important role in OC‐related kinome regulation. The increased phosphorylation of Akt and its substrate GSK3β observed in PDB OCs was reduced significantly upon PDK1 inhibition, as well as that of 4EBP1 and Raptor. This suggests a PDK1/Akt‐dependent activation of mammalian target of rapamycin complex 1 (mTORC1) in PDB OCs. The resistance to apoptosis and the bone resorption were also overcome upon PDK1 inhibition. Studying autophagy by LC3B expression, we found a less inducible autophagy compared with control cells, which was reversed by PDK1 inhibition. In addition, PBD OCs exhibited higher LC3B‐II/LC3B‐I ratios and numbers of p62 and LC3B puncta per OC area, which did not further increase in the presence of lysosomal protease inhibitors, suggesting an accumulation of non‐degradative autophagosomes. Together these results indicate a strong potential regulatory role for PDK1 in OC stimulatory pathways (Akt, ERK) and autophagy induction (via mTORC1), which may contribute to the OC phenotype in PDB. We also identified defects in late autophagosome maturation in these cells, the mechanism of which remains to be determined. © 2016 American Society for Bone and Mineral Research.  相似文献   

8.
9.
Chemokines produced by synoviocytes of the subacromial bursa are up‐regulated in subacromial bursitis and rotator cuff disease. We hypothesized that SDF‐1α production in bursal synoviocytes may be induced by local cytokines such as interleukin IL‐1β and IL‐6. Subacromial bursa specimens were obtained from patients undergoing shoulder surgery. Bursal specimens were stained with anti‐human antibodies to IL‐1, IL‐6, and SDF‐1α by immunohistochemistry and compared to normal and rheumatoid controls. Bursal cells were also isolated from specimens and cultured. Early passaged cells were then treated with cytokines (IL‐1β and IL‐6) and SDF‐1α expression was measured by ELISA and RT‐PCR. SDF‐1α, IL‐1β, and IL‐6 were expressed at high levels in bursitis specimens from human subacromial bursa compared to normal controls. In cultured bursal synoviocytes, there was a dose‐dependent increase in SDF‐1α production in the supernatants of cells treated with IL‐1β. SDF‐1α mRNA expression was also increased in bursal cells treated with IL‐1β. IL‐6 caused a minimal but not statistically significant increase in SDF‐1α expression. SDF‐1α, IL‐1β, and IL‐6 are expressed in the inflamed human subacromial bursal tissues in patients with subacromial bursitis. In cultured bursal synoviocytes, SDF‐1α gene expression and protein production are stimulated by IL‐1β. IL‐1β produced by bursal syvoviocytes and inflammatory cells in the human subacromial bursa is an important signal in the inflammatory response that occurs in subacromial bursitis and rotator cuff disease. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29:1695–1699, 2011  相似文献   

10.
11.
12.
Osteoarthritis (OA) is characterized by deterioration of articular cartilage driven by an imbalance of pro‐ and anti‐inflammatory cytokines. To address the cartilage deterioration observed in OA, an autologous protein solution (APS) has been developed which has been shown to inhibit the production of destructive proteases and inflammatory cytokines from chondrocytes and monocytes, respectively. The purpose of this study was to determine the chondroprotective effect of APS on IL‐1α‐ or TNFα‐challenged bovine articular cartilage explants. Cartilage explants were cultured in the presence or absence of recombinant inflammatory cytokines, IL‐1α and TNFα. Explants under equivalent inflammatory conditions were pretreated with recombinant antagonists IL‐1ra, sTNF‐RI, or APS to measure their inhibition of matrix degradation. Explants were further evaluated with Safranin‐O, Masson's Trichrome, and Hematoxylin and Eosin histological staining. APS was more effective than recombinant antagonists in preventing cartilage matrix degradation and inhibited any measurable IL‐1α‐induced collagen release over a 21‐day culture period. APS treatment reduced the degree of Safranin‐O staining loss when cartilage explants were cultured with IL‐1α or TNFα. Micrographs of APS treated cartilage explants showed an increase in observed cellularity and apparent cell division. APS may have the potential to prevent cartilage loss associated with early OA. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1929–1935, 2013  相似文献   

13.
14.
15.
Small GTPase proteins mediate changes in cellular morphology and other cellular functions. The aim of this study was to examine signaling of the small GTPase Cdc42 by stimulating chondrocytes grown in monolayer with long‐ (96 h) or short‐ (2 and 30 min) term exposure to interleukin‐1α (IL‐1α), IL‐6, or IL‐8. Quantitative PCR was used to determine changes in collagen type IIB (COL2A1), aggrecan (AGG), and matrix metalloproteinase‐13 (MMP‐13) gene expression after prolonged cytokine exposure. Effects of short‐term treatment with IL‐α, IL‐6, or IL‐8 on endogenous GTP‐bound Cdc42 levels were assessed using an affinity assay, and on actin filament organization using confocal microscopy. Cytokine treatments significantly decreased COL2A1 and AGG expression and increased MMP‐13 expression. Short exposure to IL‐1α, IL‐6, or IL‐8 decreased endogenous GTP‐Cdc42 and increased stress fibers, which were reversed with cytochalasin D treatment. These results show that IL‐mediated Cdc42 signaling modifies chondrocyte phenotype and morphology. This may lend insight into the altered chondrocyte phenotype in catabolic conditions such as osteoarthritis. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:246–251, 2012  相似文献   

16.
17.
18.
19.
Patients with germline DICER1 mutations are at increased risk of developing a wide range of tumors, most of which are relatively rare in the general population. In the gynecologic tract, these include ovarian sex cord–stromal tumors, particularly Sertoli-Leydig cell tumor, and embryonal rhabdomyosarcoma of the cervix. In some cases, these are the sentinel neoplasms. DICER1-associated tumors may have distinctive morphologic appearances that may prompt the pathologist to consider an underlying tumor predisposition syndrome and therefore consideration of genetic evaluation in the patient and her family.  相似文献   

20.
Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. Necrostatin‐1 (Nec‐1) is a small molecule capable of inhibiting RIP1 kinase activity and attenuates inflammation‐mediated tissue injury. In our study, hearts of C57Bl/6 mice were flushed and stored in cold Bretschneider solution for 8 h and then transplanted into syngeneic recipients. We found that Nec‐1 decreased cardiomyocyte necrosis and recruitment of neutrophils and macrophages. Troponin T (TnT) production on 24 h after myocardial IR injury was reduced by Nec‐1 administration. Cardiac output at 60 mmHg of afterload pressure was significantly increased in hearts with Nec‐1 administration and the cardiac allograft survival in Nec‐1‐treated animals was significantly prolonged (MST = 90 days in IR + Nec‐1 group, P < 0.05 as compared with IR group, MST = 83.5 days). Nec‐1 treatment attenuated ROS generation and increased expression of NOS2 and COX‐2. The expression of Hmgb1, IL‐23, and IL‐17A were also decreased with Nec‐1 administration. Furthermore, the decreased TnT expression induced by Nec‐1 was abrogated with exogenous Hmgb1 administration. In conclusion, Nec‐1 played a protective role in cardiomyocyte IR injury, and this was associated with inhibited Hmgb1‐IL‐23/IL‐17 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号