共查询到20条相似文献,搜索用时 124 毫秒
1.
Kakudo N Shimotsuma A Miyake S Kushida S Kusumoto K 《Journal of biomedical materials research. Part A》2008,84(1):191-197
Human adipose-derived stem cells (ASCs) have the capacity to regenerate and the potential to differentiate into multiple lineages of mesenchymal cells. The aim of this study was to investigate the possibility of using honeycomb collagen scaffold to culture ASCs in bone tissue engineering. The osteogenic capacity of ASCs in vitro, was confirmed by histology and measuring the expression of cbfa-1. After that, ASCs were cultured for up to 14 days in the honeycomb scaffold to allow a high density, three-dimensional culture. Scanning electron microscopy data showed that the scaffold was filled with the grown ASCs, and calcification, stained black with von Kossa, was confirmed. Furthermore, The ASC-loaded honeycomb collagen scaffolds cultured for 14 days were subcutaneously transplanted into nude mice, and excised after 8 weeks. Bone formation in vivo was examined using HE stain, von Kossa stain, and osteocalcin immunostain. Those histological views showed significant positive stains in the samples of osteogenic medium in the three types of stain. These results suggest that this carrier is a suitable scaffold for ASCs and will be useful as a three-dimensional bone tissue engineering scaffold in vitro and in vivo. 相似文献
2.
Zeugolis DI Paul GR Attenburrow G 《Journal of biomedical materials research. Part A》2009,89(4):895-908
The repair of tissue defects remains a challenging clinical problem. Extruded collagen fibers comprise a promising scaffold for anterior cruciate ligament and tendon reconstruction; however the engineering of these fibers has still to be improved to bring this material to clinical practice. In this study, for the first time we investigated the influence of a wide range of cross-linking approaches (chemical, physical, and biological) on the properties of these fibers. Ultrastructural evaluation revealed a closely packed interfiber structure independent of the cross-linking method employed. The thermal properties were dependent on the cross-linking method employed and closely matched native tissues. The stress-strain curves were found to depend on the water content of the fibers, which was influenced by the cross-linking method. An inversely proportional relationship between both dry and wet fiber diameter and stress at break was found, which indicates that tailored-made biomaterials can be produced. Overall, the chemical stabilizations were more potent than both physical and biological approaches. Bifunctional agents such as hexamethylene diisocyanate and ethylene glycol diglycidyl ether or agents that promote matrix formation such as glutaraldehyde produced fibers with properties similar to those of native or synthetic fibers to suit a wide range of tissue engineering applications. 相似文献
3.
Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering 总被引:1,自引:0,他引:1
Rnjak-Kovacina J Wise SG Li Z Maitz PK Young CJ Wang Y Weiss AS 《Acta biomaterialia》2012,8(10):3714-3722
We present an electrospun synthetic human elastin:collagen composite scaffold aimed at dermal tissue engineering. The panel of electrospun human tropoelastin and ovine type I collagen blends comprised 80% tropoelastin+20% collagen, 60% tropoelastin+40% collagen and 50% tropoelastin+50% collagen. Electrospinning efficiency decreased with increasing collagen content under the conditions used. Physical and mechanical characterization encompassed fiber morphology, porosity, pore size and modulus, which were prioritized to identify the optimal candidate for dermal tissue regeneration. Scaffolds containing 80% tropoelastin and 20% collagen (80T20C) were selected on this basis for further cell interaction and animal implantation studies. 80T20C enhanced proliferation and migration rates of dermal fibroblasts in vitro and were well tolerated in a mouse subcutaneous implantation study where they persisted over 6weeks. The 80T20C scaffolds supported fibroblast infiltration, de novo collagen deposition and new capillary formation. 相似文献
4.
Human skin equivalents (HSEs) were engineered using biodegradable-segmented copolymer PEGT/PBT as a dermal scaffold. As control groups, fibroblast-populated de-epidermized dermis, collagen, fibrin and hybrid PEGT/PBT-collagen matrices were used. Two different approaches were used to generate full-thickness HSE. In the 1-step approach, keratinocytes were seeded onto the fibroblast-populated scaffolds and cultured at the air-liquid (A/L) interface. In the 2-step approach, fully differentiated epidermal sheets were transferred onto fibroblast-populated scaffolds and cultured at the A/L. In a 1-step procedure, keratinocytes migrated into the porous PEGT/PBT scaffold. This was prevented by incorporating fibroblast-populated collagen into the pores of the PEGT/PBT matrix or using the 2-step procedure. Under all experimental conditions, fully differentiated stratified epidermis and basement membrane was formed. Differences in K6, K16, K17, collagen type VII, laminin 5 and nidogen staining were observed. In HSE generated with PEGT/PBT, the expression of these keratins was higher, and the deposition of collagen type VII, laminin 5 and nidogen at the epidermal/matrix junction was retarded compared to control HSEs. Our results illustrate that the copolymer PEGT/PBT is a suitable scaffold for the 2-step procedure, whereas the incorporation of fibroblast-populated collagen or fibrin into the pores of the scaffold is required for the 1-step procedure. 相似文献
5.
Three-dimensional scaffolds play an important role in tissue engineering as an adhesive substrate for implanted cells and
a physical support to guide the formation of new organs. The scaffolds should facilitate cell adhesion, promote cell growth,
allow the retention of differentiated cell functions, and be biocompatible, biodegradable, highly porous with a large surface-to-volume
ratio, mechanically strong, and malleable. A number of biodegradable three-dimensional scaffolds have been developed for tissue
engineering. This paper reviews some of the recent events in the development of these scaffolds.
Received: March 6, 2002 相似文献
6.
Cemile Kilic Bektas Ilgin Kimiz Aylin Sendemir Vasif Hasirci 《Journal of biomaterials science. Polymer edition》2013,24(14):1764-1784
AbstractTreatment of chronic skin wound such as diabetic ulcers, burns, pressure wounds are challenging problems in the medical area. The aim of this study was to design a bilayer skin equivalent mimicking the natural one to be used as a tissue engineered skin graft for use in the treatments of problematic wounds, and also as a model to be used in research related to skin, such as determination of the efficacy of transdermal bioactive agents on skin cells and treatment of acute skin damages that require immediate response. In this study, the top two layers of the skin were mimicked by producing a multilayer construct combining two different porous polymeric scaffolds: as the dermis layer a sodium carboxymethyl cellulose (NaCMC) hydrogel on which fibroblasts were added, and as the epidermis layer collagen (Coll) or chondroitin sulfate-incorporated collagen (CollCS) on which keratinocytes were added. The bilayer construct was designed to allow cross-talk between the two cell populations in the subsequent layers and achieves paracrine signalling. It had interconnected porosity, high water content, appropriate stability and elastic moduli. Expression of vascular endothelial growth factor (VEGF), basic-fibroblast growth factor (bFGF) and Interleukin 8 (IL-8), and the production of collagen I, collagen III, laminin and transglutaminase supported the attachment and proliferation of cells on both layers of the construct. Attachment and proliferation of fibroblasts on NaCMC were lower compared to performance of keratinocyte on collagen where keratinocytes created a dense and a stratified layer similar to epidermis. The resulting constructs succesfully mimicked in vitro the natural skin tissue. They are promising as grafts for use in the treatment of deep wounds and also as models for the study of the efficacy of bioactive agents on the skin. 相似文献
7.
Biodegradable polymeric scaffolds for musculoskeletal tissue engineering 总被引:33,自引:0,他引:33
Biodegradable scaffolds have played an important role in a number of tissue engineering attempts over the past decade. The goal of this review article is to provide a brief overview of some of the important issues related to scaffolds fabricated from synthetic biodegradable polymers. Various types of such materials are available; some are commercialized and others are still in the laboratories. The properties of the most common of these polymers are discussed here. A variety of fabrication techniques were developed to fashion polymeric materials into porous scaffolds, and a selection of these is presented. The very important issue of scaffold architecture, including the topic of porosity and permeability, is discussed. Other areas such as cell growth on scaffolds, surface modification, scaffold mechanics, and the release of growths factors are also reviewed. A summary outlining the common themes in scaffold-related science that are found in the literature is presented. 相似文献
8.
Cellulose-based scaffold materials for cartilage tissue engineering 总被引:17,自引:0,他引:17
Non-woven cellulose II fabrics were used as scaffolds for in vitro cartilage tissue engineering. The scaffolds were activated in a saturated Ca(OH)(2) solution and subsequently coated with a calcium phosphate layer precipitated from a supersaturated physiological solution. Chondrocyte cell response and cartilage development were investigated. The cell adherence was significantly improved compared to untreated cellulose fabrics, and the proliferation and vitality of the adhered chondrocytes were excellent, indicating the biocompatibility of these materials. A homogeneous distribution of the seeded cells was possible and the development of cartilageous tissue could be proved. In contact with a physiological chondrocyte solution, calcium is expected to be leached out from the precipitated layer, which might lead to a microenvironment that triggers the development of cartilage in a way similar to cartilage repair in the vicinity of subchondral bone. 相似文献
9.
背景:聚乳酸是一种应用广泛的细胞支架材料,但其疏水性和缺乏细胞识别信号影响了在组织工程器官构建中的应用。
目的:探讨Ⅰ型胶原蛋白改良聚乳酸电纺丝支架体外构建组织工程化输尿管的可行性。
方法:用Ⅰ型胶原蛋白醋酸溶液冻干法处理聚乳酸电纺丝,使Ⅰ型胶原蛋白吸附于电纺丝纤维表面,制成胶原改良电纺丝支架。将分离培养的输尿管上皮细胞分别接种于改良聚乳酸电纺丝支架和未处理的聚乳酸电纺丝支架上。
结果与结论:MTT检测显示输尿管上皮细胞在改良支架中生长良好,细胞整体活性在各时间点均明显优于未处理的聚乳酸电纺丝支架上的细胞。扫描电镜观察发现细胞在改良支架表面黏附良好,接种后5 d,支架表面大部分已被增殖的输尿管上皮细胞覆盖。说明胶原改良聚乳酸电纺丝支架能明显提高种子细胞的黏附和增殖活性,可用于体外构建组织工程化输尿管。
关键词:输尿管;电纺丝;聚乳酸;胶原;黏附;增殖;组织工程
doi:10.3969/j.issn.1673-8225.2012.12.002 相似文献
10.
Triply-periodic minimal surfaces are shown to be a more versatile source of biomorphic scaffold designs than currently reported in the tissue engineering literature. A scaffold architecture with sheetlike morphology based on minimal surfaces is discussed, with significant structural and mechanical advantages over conventional designs. These sheet solids are porous solids obtained by inflation of cubic minimal surfaces to sheets of finite thickness, as opposed to the conventional network solids where the minimal surface forms the solid/void interface. Using a finite-element approach, the mechanical stiffness of sheet solids is shown to exceed that of conventional network solids for a wide range of volume fractions and material parameters. We further discuss structure-property relationships for mechanical properties useful for custom-designed fabrication by rapid prototyping. Transport properties of the scaffolds are analyzed using Lattice-Boltzmann computations of the fluid permeability. The large number of different minimal surfaces, each of which can be realized as sheet or network solids and at different volume fractions, provides design flexibility essential for the optimization of competing design targets. 相似文献
11.
Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering 总被引:9,自引:0,他引:9
The mechanism by which the cell synthesizes and secretes extracellular matrix (ECM) and is, in turn, regulated by the ECM is termed dynamic reciprocity. The aim of the present work was to produce a gelatin/chondoitin-6-sulfate/hyaluronan tri-copolymer to mimic natural cartilage matrix for use as a scaffold for cartilage tissue engineering. The scaffold produced had a uniform pore size of about 180 microm and adequate porosity of 75%. Porcine chondrocytes were seeded onto the tri-copolymer scaffold and cultured in Petri dishes or spinner flasks for 2, 3, 4, or 5 weeks. Chondrocytes were uniformly distributed in the scaffold in the spinner flask cultures, but less so in the Petri dish cultures. Secretion of ECM was found under histology examination. In spinner flask cultures, chondrocytes retained their phenotype for at least 5 weeks, as shown immunohistochemically, and synthesized type II collagen. These results show that gelatin/chondroitin sulfate/hyaluronan tri-copolymer has potential for use as a cartilage tissue engineering scaffold. 相似文献
12.
Mi S Khutoryanskiy VV Jones RR Zhu X Hamley IW Connon CJ 《Journal of biomedical materials research. Part A》2011,99(1):1-8
The experiments were designed to use photochemically cross-linked plastically compressed collagen (PCPCC) gel to support corneal epithelial cells. A plastically compressed collagen (PCC) scaffold was photo cross-linked by UVA in the presence of riboflavin to form a biomaterial with optimal mechanical properties. The breaking force, rheology, surgical suture strength, transparency, ultrastructure, and cell-based biocompatibility were compared between PCPCC and PCC gels. The breaking force increased proportionally with an increased concentration of riboflavin. The stress required to reach breaking point of the PCPCC scaffolds was over two times higher compared to the stress necessary to break PCC scaffolds in the presence of 0.1% riboflavin. Rheology results indicated that the structural properties of PCC remain unaltered after UVA cross-linking. The PCC gels were more easily broken than PCPCC gels when sutured on to bovine corneas. The optical density values of PCPCC and PCC showed no significant differences (p > 0.05). SEM analyses showed that the collagen fibres within the PCPCC gels were similar in morphology to PCC gels. No difference in cell-based biocompatibility was seen between the PCPCC and PCC scaffolds in terms of their ability to support the ex vivo expansion of corneal epithelial cells or their subsequent differentiation evidenced by similar levels of cytokeratin 14. In conclusion, PCPCC scaffold is an optimal biomaterial for use in therapeutic tissue engineering of the cornea. 相似文献
13.
Kuikui Hu Hui Shi Ji Zhu Dan Deng Guangdong Zhou Wenjie Zhang Yilin Cao Wei Liu 《Biomedical microdevices》2010,12(4):627-635
Collagen gel scaffolds can potentially be utilized as cell seeded systems for skin tissue engineering. However, its dramatic contraction after being mixed with cells and its mechanical weakness are the drawbacks for its application to skin engineering. In this study, a compressed collagen gel scaffold was fabricated through the rapid expulsion of liquid from reconstituted gels by the application of ‘plastic compression’(PC) technique. Both compressed and uncompressed gels were characterized with their gel contraction rate, morphology, the viability of seeded cells, their mechanical properties and the feasibility as a scaffold for constructing tissue-engineered skin. The results showed that the compression could significantly reduce the contraction of the collagen gel and improve its mechanical property. In addition, seeded dermal fibroblasts survived well in the compressed gel and seeded epidermal cells gradually developed into a stratified epidermal layer, and thus formed tissue engineered skin. This study reveals the potential of using compressed collagen gel as a scaffold for skin engineering. 相似文献
14.
Del Gaudio C Grigioni M Bianco A De Angelis G 《The International journal of artificial organs》2008,31(1):68-75
Currently marketed mechanical or biological prosthetic heart valves are regarded as valid substitutes for native heart valves suffering from degenerative pathologies. These devices require strict follow-up due to dysfunctions or post-surgical complications. Potential drawbacks of these medical devices are calcification, tearing of the cusps, thromboembolism and hemolysis. In this context, a tissue engineering approach offers a promising alternative scenario. In this paper, a trileaflet poly(epsilon-caprolactone) (PCL) heart valve scaffold prototype has been manufactured by electrospinning technique using a custom-made rotating target. Process parameters were selected in order to achieve suitable microstructure and mechanical performance. The electrospun heart valve prototype was functionally characterized by means of a pulse duplicator in order to evaluate the mechanical/hydraulic response to the imposed testing conditions. Leaflets synchronously opened in the ejection phase and the proper apposition of the leaflets prevented high leakage volumes in the diastolic phase. This preliminary study suggests a successful perspective for the proposed approach in designing a novel tissue engineered bioresorbable heart valve. 相似文献
15.
In this study. we investigate the potential for manipulating bone cell mechanotransducers in tissue engineering. Membrane ion channels such as voltage operated calcium channels (VOCC) have been shown to be a critical component of the bone cell transduction pathway with agonists and inhibitors of this pathway having profound effects on the load signal. By encapsulating a calcium channel agonist with slow release within a poly(L-lactide) (PLLA) scaffold, we can generate a 'mechano-active' scaffold for use in skeletal tissue engineering. PLLA scaffolds with and without a calcium channel agonist, BAY K8644, were seeded with primary human bone cells or the human MG63 bone cell line and cultured for 13 weeks followed by mechanical stimulation with a four-point bending model. Our results show that addition of the agonist for slow release is sufficient to enhance the load-related responses in bone cells within the scaffolds. Specifically, collagen type I expression and the ratio of alkaline phosphatase to protein are elevated in response to cyclical mechanical stimulation of approximately 1000 microstr which is then further enhanced in the mechano-active' scaffolds. As the agonists only act when the calcium channels are open by attenuating the calcium flux, the stimulation is specifically targeted to scaffolds subjected to load either in vitro or ultimately in vivo. Our results suggest that manipulating the VOCC and attenuating the opening of the calcium channels may be an effective technique to amplify matrix production via mechanical stimulation which may be applied to bone tissue engineering and potentially engineering of other load-bearing connective tissues. 相似文献
16.
Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor 总被引:14,自引:0,他引:14
A previously reported "grafting and coating" method (J. Biomed. Mater. Res. (Appl. Biomater.) 63 (2002) 838) was modified and used to introduce stable collagen layer and incorporate basic fibroblast growth factor (bFGF) on PLLA scaffold surface to prepare tissue engineering scaffold with improved biocompatibility. To make the modification of the 3-D porous PLLA scaffold possible, grafting of polymethacrylic acid (PMAA) onto the PLLA surface was initiated by the -OOH/Fe2+ system instead of the UV light used in the former method. Water soluble carbodimmide chemistry was applied to graft collagen onto the PLLA scaffold surface, followed by physical coating of the collagen solution with or without basic fibroblast growth factor (bFGF). Surface modification of 2-D PLLA membrane was also done for fundamental understanding of the modification. The -COOH density on/in the PMAA grafted PLLA membrane/scaffold was measured by colorimetric method and the collagen content on/in the collagen immobilized PLLA membrane/scaffold was measured by ninhydrin method. Chondrocyte culturing on the collagen immobilized PLLA surfaces showed significantly improved cell spreading and growth. Incorporation of fibroblast growth factors in the collagen layer further enhanced the cell growth. This convenient and effective method can be used to prepare bioactive scaffolds with extra cellular matrix (ECM)-mimic composition for tissue engineering. 相似文献
17.
Yost MJ Baicu CF Stonerock CE Goodwin RL Price RL Davis JM Evans H Watson PD Gore CM Sweet J Creech L Zile MR Terracio L 《Tissue engineering》2004,10(1-2):273-284
We have developed a counter rotating cone extrusion device to produce the next generation of three-dimensional collagen scaffold for tissue engineering. The device can produce a continuously varying fibril angle from the lumen to the outside of a 5-mm-diameter collagen tube, similar to the pattern of heart muscle cells in the intact heart. Our scaffold is a novel, oriented, type I collagen, tubular scaffold. We selected collagen because we believe there are important signals from the collagen both geometrically and biochemically that elicit the in vivo -like phenotypic response from the cardiomyocytes. We have shown that cardiomyocytes can be cultured in these tubes and resemble an in vivo phenotype. This new model system will provide important information leading to the design and construction of a functional, biologically based assist device. 相似文献
18.
Fibrin has been long used as an effective scaffolding material to grow a variety of cells and tissue constructs. It has been utilized mainly as a hydrogel in varying concentrations to provide an environment in which suspended cells work to rearrange the fibers and lay down their own extracellular matrix. For these fibrin hydrogels to be useful in many tissue-engineering applications, the gels must be cultured for long periods of time in order to increase their mechanical strength to the levels of native tissues. High concentrations of fibrinogen increase the mechanical strength of fibrin hydrogels, but at the same time reduce the ability of cells within the scaffold to spread and survive. We present a method to create a microporous, nanofibriliar fibrin scaffold that has controllable pore size, porosity, and microstructure for applications in tissue engineering. Fibrin has numerous advantages as a scaffolding material as it is normally used by the body as temporary scaffolding for tissue regeneration and healing, and can be autologously sourced. We present here a scaffolding process which enhances the mechanical properties of the fibrin hydrogel by forming it surrounding poly(methyl-methacrylate) beads, then removing the beads with acetone to form an interconnected microporous network. The acetone serves the dual purpose of precipitating and fixing the fibrinogen-based scaffolds as well as adding strength to the network during polymer bead removal. Effects of fibrinogen concentration and time in acetone were examined as well as polymerization with thrombin. A natural crosslinker, genipin, was also used to add strength to the scaffolds, producing a Young's modulus of up to 184+/-5 kPa after 36 h of reaction. Using these methods we were able to produce microporous fibrin scaffolds that support cell growth and have mechanical properties similar to many native tissues. 相似文献
19.
Engineering of the membrane-like tissue structures to be utilized in highly dynamic loading environments such as the cardiovascular system has been a challenge in the past decade. Scaffolds are critical components of the engineered tissue membranes and allow them being formed in vitro and remain secure in vivo when implanted in the body. Several approaches have been taken to develop scaffolds for tissue membranes. However, all methods entail limitations due to structural vulnerability, short-term functionality, and mechanical properties of the resulted membrane constructs. To overcome these issues, we have developed a novel hybrid scaffold made of an extra thin layer of metal mesh tightly enclosed by biological matrix components. This approach retains all the advantages of using biological scaffolds while developing a strong extracellular matrix that can stand various types of loads after implantation inside the body. 相似文献
20.
组织工程支架材料的研究进展 总被引:6,自引:0,他引:6
研究开发具有良好性能的组织工程支架材料是组织工程研究的热点之一。由于组织工程支架材料的研究面较广,文章仅从研究热点中的不同材料间的复合、致孔剂的应用、生长因子的引入三个方面,对组织工程材料的研究状况做一综述,为广大从事组织工程研究的同仁们提供参考。 相似文献