首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats fed a galactose-rich diet have been used for several years as a model for diabetes to study, particularly in the eye, the effects of excess blood hexoses. This study sought to determine the utility of galactosemia as a model for oxidative stress in extraocular tissues by examining biomarkers of oxidative stress in galactose-fed rats and experimentally-induced diabetic rats. Sprague-Dawley rats were divided into four groups: experimental control; streptozotocin-induced diabetic; insulin-treated diabetic; and galactose-fed. The rats were maintained on these regimens for 30 days, at which point the activities of catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, as well as levels of lipid peroxidation and reduced and oxidized glutathione were determined in heart, liver, and kidney. This study indicates that while there are some similarities between galactosemic and diabetic rats in these measured indices of oxidative stress (hepatic catalase activity levels and hepatic and renal levels of oxidized glutathione in both diabetic and galactosemic rats were significantly decreased when compared to normal), overall the galactosemic rat model is not closely parallel to the diabetic rat model in extra-ocular tissues. In addition, several effects of diabetes (increased hepatic glutathione peroxidase activity, increased superoxide dismutase activity in kidney and heart, decreased renal and increased cardiac catalase activity) were not mimicked in galactosemic rats, and glutathione concentration in both liver and heart was affected in opposite ways in diabetic rats and galactose-fed rats. Insulin treatment reversed/prevented the activity changes in renal and cardiac superoxide dismutase, renal and cardiac catalase, and hepatic glutathione peroxidase as well as the hepatic changes in lipid peroxidation and reduced and oxidized glutathione, and the increase in cardiac glutathione. Thus, prudence should be exercised in the use of experimentally galactosemic rats as a model for diabetes until the correspondence of the models has been more fully characterized.  相似文献   

2.
Free radicals, hydroxyperoxides and H(2)O(2) are all known to damage cell components. This study was designed to compare the concentrations of hydroxyperoxide and free radical scavengers in the cardiac muscles of old rats in the hyper- or hypothyroid condition, to determine whether rates of peroxidation would differ with age, thyroid status, or both. Rats were rendered hyper- or hypothyroid by administration of l-thyroxine or methimazole for 4 weeks. Among the old rats, the lipid peroxide (LPO) concentrations, measured as thiobarbituric acid (TBA) reactants, were significantly greater in the hyperthyroid than in the euthyroid state and the LPO concentrations measured as TBA+Fe(3+) reactants, which may be precursors of LPO, were significantly greater in the hyperthyroid state, whereas in young rats, the LPO concentrations measured by TBA or TBA+Fe(3+) methods did not differ significantly in the hyperthyroid state. In the euthyroid state, the concentration of LPO measured as TBA+Fe(3+) reactants was significantly reduced with age. Xanthine oxidase (XOD) activity also was markedly increased with age, being more pronounced in the hyperthyroid than in the euthyroid state. The Mn and Cu/Zn superoxide dismutase activities were greater in the hyperthyroid than in the euthyroid state. Glutathione peroxidase activity decreased with age in the euthyroid and, particularly, in the hyperthyroid state. Catalase activity was not affected in the old rats. Concentrations of alpha-tocopherol in the old rats were high in the hyperthyroid state and low in the hypothyroid state, whereas the levels of beta- and gamma-tocopherols in these rats were unchanged in both conditions as compared with the euthyroid state findings. Data suggest that the site of free radical generation differs in older rats, with additional shifts in the location of intracellular lipid peroxidation being noted during hyperthyroidism. Thus, as rats age, the reduction of the free radical scavenger system and the increase in LPO and XOD activities might induce myocardial dysfunction.  相似文献   

3.
The aims of our study were to assess whether the increased oxidative stress in inflamed joints is reflected by serum lipid peroxidation and also to check alterations in the levels of extracellular antioxidants and antioxidant enzyme activities in patients with rheumatoid arthritis. Serum malondialdehyde and ceruloplasmin levels and the activity of CuZn superoxide dismutase were higher, while transferrin levels and the activities of glutathione peroxidase and catalase were lower in patients (n = 37) than in healthy controls (n = 30). Disease activity score correlated positively with serum malondialdehyde level and CuZn superoxide dismutase activity. Probably, superoxide radicals in serum could be dismutated to produce hydrogen peroxide by increased CuZn superoxide dismutase activity, but hydrogen peroxide could not have been detoxified due to decreased activities of serum glutathione peroxidase and catalase. Hydrogen peroxide possibly converted to hydroxyl radical by iron due to lower transferrin level might have led to increased serum lipid peroxidation in patients with rheumatoid arthritis.  相似文献   

4.
Oxidative stress in the kidney of reproductive male rats during aging   总被引:1,自引:0,他引:1  
Reproduction alters the male physiology. We performed a comprehensive examination of oxidative stress in the kidneys of male rats with (experienced) or without (naïve) reproductive activity during aging. Oxidative stress was assessed by measuring the activity of catalase, glutathione peroxidase, glutathione S-transferase, and superoxide dismutase, and by measuring protein carbonylation, lipid peroxidation, nitrite and nitrate levels, vitamin C levels, and glutathione (total, reduced, and oxidized forms) levels, and metabolism was accessed by aconitase activity in kidney tissue, as well as testosterone and estradiol levels in serum. Reproductively active animals exhibited increased testosterone levels and altered metabolism. Aging affects tissues and organs and contributes to their functional decline. Elderly naïve rats showed high nitrite and nitrate levels. The experienced rats had less damage in elderly ages, probably because they had higher antioxidant amount and antioxidant enzyme activities at earlier ages, which would have avoided oxidative damage seen in naïve group, and because of the metabolism decline. Glutathione increase in naïve elder rats probably was induced for direct protection against oxidative damage and indirect protection by higher glutathione peroxidase and glutathione S-transferase activities. Linear regression shows that lipid peroxidation levels explained vitamin C levels (B standardized value of 0.42), indicating that vitamin C was properly produced or recruited into kidneys to combat lipid peroxidation. Catalase activity reflected the protein carbonylation and lipid peroxidation levels (B standardized values of 0.28 and 0.48). These results add comprehensive data regarding changes in oxidative stress during aging, and suggest an explanation for the costs of reproduction.  相似文献   

5.
Citrullinemia is an inborn error of the urea cycle caused by deficient argininosuccinate synthetase, which leads to accumulation of L-citrulline and ammonia in tissues and body fluids. The main symptoms include convulsions, tremor, seizures, coma, and brain edema. The pathophysiology of the neurological signs of citrullinemia remains unclear. In this context, we investigated the in vitro effects of L-citrulline and ammonia in cerebral cortex from 30-day-old rats on oxidative stress parameters, namely thiobarbituric acid-reactive substances (TBA-RS), chemiluminescence, mitochondrial membrane protein thiol content, intracellular content of hydrogen peroxide, total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR) as well as on the activities of the antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase). L-Citrulline significantly diminished TRAP (26%) and TAR (37%), while ammonia decreased TAR (30%). Ammonia increased SOD activity (65%) and L-citrulline did not affect the activities of any antioxidant enzymes. We also observed that L-citrulline and ammonia did not alter lipid peroxidation parameters, levels of hydrogen peroxide, and mitochondrial membrane protein thiol content. Taken together, these results may indicate that L-citrulline and ammonia decreased the antioxidant capacity of the brain, which may reflect a possible involvement of oxidative stress in the neuropathology of citrullinemia.  相似文献   

6.
Citrullinemia is an inborn error of the urea cycle caused by deficient argininosuccinate synthetase, which leads to accumulation of L-citrulline and ammonia in tissues and body fluids. The main symptoms include convulsions, tremor, seizures, coma, and brain edema. The pathophysiology of the neurological signs of citrullinemia remains unclear. In this context, we investigated the in vitro effects of L-citrulline and ammonia in cerebral cortex from 30-day-old rats on oxidative stress parameters, namely thiobarbituric acid-reactive substances (TBA-RS), chemiluminescence, mitochondrial membrane protein thiol content, intracellular content of hydrogen peroxide, total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR) as well as on the activities of the antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase). L-Citrulline significantly diminished TRAP (26%) and TAR (37%), while ammonia decreased TAR (30%). Ammonia increased SOD activity (65%) and L-citrulline did not affect the activities of any antioxidant enzymes. We also observed that L-citrulline and ammonia did not alter lipid peroxidation parameters, levels of hydrogen peroxide, and mitochondrial membrane protein thiol content. Taken together, these results may indicate that L-citrulline and ammonia decreased the antioxidant capacity of the brain, which may reflect a possible involvement of oxidative stress in the neuropathology of citrullinemia.  相似文献   

7.
OBJECTIVE: To determine the mechanisms underlying the obesity-induced increase in myocardial lipid peroxidation in the fa/fa rat. We hypothesized that elevated heart work (ie rate-pressure product), an increased rate of superoxide (O2*-)) production, total myocardial lipid content, and/or insufficient antioxidant defenses are potential contributors to myocardial lipid peroxidation in obesity. DESIGN: Comparative, experimental study of myocardial tissue in 16-week-old lean control (Fa/?, normal diet), obese high-fat fed (Fa/?, 45% dietary fat), and obese fatty (fa/fa, normal diet) Zucker rats. MEASUREMENTS: Myocardial work (heart rate x systolic blood pressure), myocardial lipid content, oxidative and antioxidant enzyme activities (citrate synthase (CS), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD)), the rate of papillary muscle superoxide radical production in vitro, thiol content, basal and post-oxidative challenge myocardial lipid peroxidation levels using thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides (PEROX) as indices of lipid peroxidation. RESULTS: Compared to lean controls, the high-fat fed and fatty animals had similar elevations (P<0.05) in myocardial TBARS and PEROX (23%, 25% and 29% 45%, respectively; P<0.05), and elevated susceptibilities to oxidative stress in vitro following exposure to oxidizing agents (P<0.05). Resting heart work was slightly higher (P<0.05) in both the high-fat fed and fatty animals compared to controls. Myocardial lipid content, SOD activities and non-protein thiol (glutathione) levels were elevated (P<0.05) in high-fat fed and fatty animals compared to controls. The rate of superoxide formation by isolated papillary muscles in vitro did not differ among groups (P<0.05). Regression analysis revealed that the myocardial lipid content contributed most to myocardial lipid peroxidation (R2=0.76, P<0.05). CONCLUSIONS: Myocardial oxidative injury is closely associated with myocardial lipid content, but is not closely correlated with heart work, insufficient antioxidant defenses or a greater rate of superoxide production.  相似文献   

8.
Age related mitochondrial impairments are considered to be contributors of cardiovascular disease. This study was designed to examine whether early life exposure to lead (Pb) would lead to the Pb induced age related hematological and cardiac mitochondrial changes in rats, and to further examine the protective effect of nutrient metal mixture containing zinc, iron and calcium. Male albino rats were lactationally exposed to 0.2 % Pb-acetate or 0.2 % Pb-acetate together nutrient metal mixture (0.02 %) in drinking water of the mother from postnatal day 1 (PND1) to PND 21. The hemoglobin level, the activities of serum ceruloplasmin oxidase, cardiac mitochondrial enzymes catalase, manganese superoxide dismutase, copper zinc superoxide dismutase, glutathione peroxidase, succinate dehydrogenase, lipid peroxidation and Pb levels were analyzed at PND 45, 12 and 24 months age. The hematological parameters, and the cardiac TCA cycle and antioxidant enzyme markers and lipid peroxidation levels were significantly altered following Pb exposure in young rats (PND 45). These Pb induced changes persisted, though at much lower level in the aged rats. The Pb levels in blood and heart were also significantly higher in PND 45 and remained at detectable levels in older rats. The nutrient metal mixture containing iron, calcium and zinc significantly reversed these changes in all the chosen markers except lipid peroxidation in which the reversal effect was not significant. These data are supportive of age-related cardiac mitochondrial impairments and further provide evidence for the protective efficacy of nutrient metal mixture against Pb-toxicity.  相似文献   

9.
Myocardial infarction affects a large population in the world. Lipid peroxide metabolism plays an important role in the pathology of myocardial infarction. This study aims to evaluate the preventive effect of caffeic acid on lipid peroxides, antioxidants, cardiac marker enzymes, and histopathological findings in isoproterenol (ISO)-induced myocardial-infarcted male Wistar rats. Myocardial infarction was induced in rats by subcutaneous injection of ISO (100 mg/kg) at an interval of 24 hours for 2 days. The ISO-induced rats showed significant increase in the levels of thiobarbituric acid reactive substances, lipid hydroperoxides in the heart, plasma uric acid, and serum cardiac marker enzymes, and significant decrease in the activities of heart superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and the levels of reduced glutathione, vitamin E, and vitamin C in the plasma and heart. Oral pretreatment with caffeic acid (15 mg/kg) daily for 10 days showed significant decrease in the levels of serum cardiac marker enzymes, heart lipid peroxidation products and plasma uric acid and significant increase in the levels of antioxidant system. Histopathology of myocardium also confirmed the protective effect of caffeic acid in myocardial-infarcted rats. In vitro study on total antioxidant activity (2,2'-azinobis-[3-ethylbenzothiazoline-6-sulfonic acid]+ assay) confirmed the strong antioxidant action of caffeic acid. Thus, the present study revealed that caffeic acid ameliorates cardiac damage in ISO-induced myocardial infarction by maintaining lipid peroxide metabolism due to its free radical scavenging and antioxidant effects. A diet containing caffeic acid may be beneficial to myocardial infarction.  相似文献   

10.
The effect of L-carnitine on lipid peroxidation and enzymatic antioxidants, such as superoxide dismutase, catalase, and glutathione peroxidase, was evaluated in brain regions of young and old rats. In all brain regions except the hypothalamus, lipid peroxidation was higher for old rats than for young control rats. The activity of superoxide dismutase, glutathione peroxidase, and catalase was lower in the striatum, cerebral cortex, and hippocampus, but no difference was observed in the hypothalamus and cerebellum. L-Carnitine administration (intraperitoneally) prevented thiobarbituric acid-reactive substance formation in the cerebral cortex, cerebellum, hypothalamus, hippocampus, and striatum of 24-month-old rats. Administration of L-carnitine reversed the age-associated changes in a duration-dependent manner. Results suggest that the neuroprotective effect on the brains in old rats was achieved by the elevation of antioxidants with L-carnitine.  相似文献   

11.
Role of oxygen radicals in cardiac injury due to reoxygenation   总被引:10,自引:0,他引:10  
The ability of oxygen derived free radicals to induce irreversible cellular injuries during reoxygenation was studied on isolated potassium-arrested heart preparation. Enzymatic scavengers of hydrogen peroxide (H2O2) and superoxide anion (O-2), catalase and superoxide dismutase, were not effective in reversing the cardiac alterations induced by hypoxia. Cellular injuries induced by reoxygenation, 'Oxygen paradox', were partially prevented by scavengers of H2O2 (glutathione reduced form, catalase) and O-2 (superoxide dismutase). The 'oxygen paradox' was associated with a release of malonaldehyde. The inhibition of lipid peroxidation by alpha-tocopherol prevented the toxic effect of molecular oxygen on hypoxic hearts. The specific quenchers of singlet oxygen (histidine) and hydroxyl radical (mannitol) reduced the peroxidation of unsaturated lipids and the intensity of the 'oxygen paradox' phenomenon. The results indicate that in cardiac muscle (i) oxygen derived free radicals are important byproducts of abnormal oxidative metabolism present during the post hypoxic period; (ii) the 'oxygen paradox' phenomenon is related to the formation of lipid hydroperoxides leading to the cellular membrane disruption and to the irreversible alteration of cardiac integrity.  相似文献   

12.
The relative importance in vivo of catalase and the selenoenzyme glutathione peroxidase for protection against peroxidation was assessed in the rat heart. Each of these enzymes was modulated by feeding animals a low selenium diet either unsupplemented or supplemented with 0.5 parts per million of selenium, with or without the catalase inhibitor, 3-amino-1,2,4-triazole, in their drinking water. After 8 weeks, selenium deficient rats had 88% reductions in cytosolic and mitochondrial glutathione peroxidase activities. These reductions were accompanied by increased peroxidation in heart homogenates and mitochondrial suspensions. Since increased mitochondrial peroxidation only occurred when both the cytosolic and mitochondrial glutathione peroxidase activities were compromised, these selenoenzymes appear to work in tandem and reductions in both are a prerequisite for increased peroxidation in this organ. Peroxidation did not occur in aminotriazole treated animals even though cytosolic catalase activity was inhibited by 65-80%. Moreover, inhibition of catalase activity did not exacerbate the level of peroxidation in selenium deficient animals depleted of glutathione peroxidase activity. Because increased peroxidation was only associated with reductions in glutathione peroxidase activity irrespective of catalase activity, the selenoenzyme appears to be more important for detoxification of hydrogen peroxide in the heart.  相似文献   

13.
14.
AIM: To study the role of N-acetylcysteine (NAC) as a protective agent in rifampicin (RMP)-induced oxidative hepatic injury of young rats. METHODS: Hepatic injury was produced by giving 50mg/kg body weight/day of RMP for 3 wk. A dose of NAC (100 mg/kg body weight/day) was given in combination with RMP intraperitoneally. Analysis of lipid peroxidation, thiol levels, cytochrome P450, superoxide dismutase (SOD), catalase, glutathione peroxidase, reductase and transferase were estimated in liver along with the body weight, liver weight and histological observations. RESULTS: RMP exposure resulted in no change in body and liver weight while antioxidative enzymes were altered but the non protein thiol (GSH) status was well preserved. Cytochrome P450 system and peroxidation of lipids were induced by RMP exposure. Partial protection was observed with NAC against RMP-induced changes in liver, which was evidenced from the prevention of increase in lipid peroxidation and the reduction in SOD and catalase enzyme levels. CONCLUSION: NAC protects young rats against RMP-induced oxidative hepatic injury.  相似文献   

15.
A relative deficit in antioxidant reserve may contribute in cardiac failure   总被引:3,自引:0,他引:3  
Antioxidant enzyme activities, including superoxide dismutase, glutathione peroxidase and catalase, are known to be altered under various physiological and pathophysiological conditions. There is a significant increase in some of these activities in the myocardium during stable hyperfunctional heart hypertrophy subsequent to pressure overload, as well as after exercise training in rats. Hearts with increased antioxidant capacity have been reported to be more resistant to in vivo and in vitro oxidative stress. On the other hand, cardiomyopathy and heart failure under a variety of conditions are accompanied by increased free radicals and lipid peroxidation. These data lead to the hypothesis that maintained or improved function during compensated heart hypertrophy may be supported by an increased antioxidant capacity, and a relative deficit in this 'antioxidant reserve' may contribute in the decompensated state.  相似文献   

16.
This study investigated the age effect on antioxidant adaptation to muscle disuse. Adult and old rats were randomized into 4 groups: weight bearing (control), 3 days of hind-limb unloading (HU), 7 days of HU, and 14 days of HU. Activities of Cu-Zn superoxide dismutase (SOD), catalase, and glutathione (GSH), as well as GSH peroxidase levels were measured in the soleus. Neither disuse nor aging changed the activity of Cu-Zn SOD. The old rats had greater GSH peroxidase activity, whereas the activity of catalase had a compensatory increase with disuse, independent of age. Reduced GSH level and total glutathione (tGSH) level had age-related change with disuse. In old rats, the GSH and tGSH levels were lower with disuse, whereas the levels remained stable with disuse in adult rats. The depletion of intracellular GSH and tGSH levels of muscles from aged animals with disuse may make aged muscles more susceptible to oxidative damage.  相似文献   

17.
The roles of active oxygen, lipid peroxidation, and the antioxidative defence mechanism in gastric mucosal injury induced by treatment with indomethacin in rats were investigated. The total area of gastric erosions and concentration of lipid peroxides in the gastric mucosa increased with time after administration of indomethacin (20 mg/kg, orally). The alpha-tocopherol:total cholesterol ratio in serum was significantly decreased and the activity of glutathione peroxidase, an important enzyme to scavenger of lipid peroxides, was inhibited by the administration of indomethacin. Treatments with superoxide dismutase and catalase inhibited the increases in gastric mucosal erosions and lipid peroxides in the gastric mucosa, and the reduction of serum alpha-tocopherol. Treatment with these scavengers did not improve the decreased glutathione peroxidase activity. These findings suggest that active oxygen species and lipid peroxidation play an important part in the pathogenesis of gastric mucosal injury induced by indomethacin, and that the decreased glutathione peroxidase activity aggravated the injury due to accelerated accumulation of hydrogen peroxide and lipid peroxides in the gastric mucosal cell.  相似文献   

18.
OBJECTIVES: To examine whether blocking of the renin-angiotensin system (RAS) at the angiotensin II type 1 (AT1) receptor site is accompanied by changes in the oxidative stress parameters. BACKGROUND: Congestive heart failure in rats after myocardial infarction (MI) has been shown to correlate with a decrease in antioxidant enzyme activities and an increase in oxidative stress. Inhibition of the RAS with captopril improves cardiac function and survival in MI rats with a reduction in oxidative stress. METHODS: Myocardial infarction in rats was produced by ligation of the left coronary artery. At four weeks after surgery, animals from the sham as well as MI groups were treated with losartan (2 mg/ml in drinking water daily). At 16 weeks after surgery, the animals were examined for hemodynamic function and the hearts were analyzed for antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase and catalase) and oxidative stress (lipid hydroperoxides, reduced and oxidized glutathione and redox ratio). RESULTS: Congestive heart failure was characterized by dyspnea, depressed hemodynamic function and presence of lung and liver congestion. This was also associated with a decrease in the myocardial catalase (-25%), glutathione peroxidase (-38%) and superoxide dismutase (-42%) activities. An increase in oxidative stress in these hearts was indicated by an increase in lipid hydroperoxides (+67%) and reduction in the redox ratio (-75%). Hemodynamic function was better maintained and there were no indications of dyspnea or lung or liver congestion in the losartan-treated MI rats. In these animals, myocardial oxidative stress was markedly reduced and glutathione peroxidase and catalase activities were significantly improved compared with the untreated MI group. CONCLUSIONS: Blocking of RAS at the AT1 receptor site without the inhibition of angiotensin-converting enzymes modulates heart failure after MI, and this beneficial effect is associated with a decrease in oxidative stress. This study suggests a newer role for losartan in the treatment of heart failure.  相似文献   

19.
Oxidative stress, that is, overproduction of reactive oxygen species and reduced antioxidant system activity, is implicated in the pathogenesis of diabetic complications; and therefore, superoxide dismutase (SOD) mimetic tempol should be protective in diabetic kidney. However, the effects of tempol in metabolic syndrome-associated renal injury have not been thoroughly examined. In this study, we examined the effects of 9 weeks of treatment with tempol on metabolic status, renal oxidative stress, and kidney function and structure in obese, diabetic, hypertensive ZSF1 rats and their nondiabetic, hypertensive, lean littermates. The obese rats had significantly reduced total SOD and catalase activity, increased peroxidase activity and lipid peroxidation, and higher level of protein oxidation in renal cortical tissue compared with their lean littermates. These changes were accompanied by renal injury (proteinuria; reduced excretory function; and markedly increased glomerular and interstitial inflammation, proliferation, and collagen IV synthesis). Tempol treatment slightly increased total SOD activity, significantly reduced lipid peroxidation and peroxidase activity, but had no effect on catalase and protein oxidation. Tempol had no effects on blood pressure, renal hemodynamics and excretory function, and proteinuria in obese rats, yet improved insulin sensitivity and reduced renal inflammatory, proliferative, and fibrotic changes. Because tempol possesses no catalase activity and, in diabetes, not only SOD but also catalase is inhibited, it is possible that the toxicity of hydrogen peroxide (H2O2) remains unaltered under tempol treatment. This study suggests that superoxide and H2O2 may have distinct roles in the pathogenesis of diabetic renal injury, with superoxide mainly being involved in inflammatory, proliferative, and fibrotic changes, and H2O2 in glomerular hemodynamics and proteinuria.  相似文献   

20.
In the present study, effects of transient hypothyroidism (from birth to 30 days) and persistent hypothyroidism (from birth to 90 days) on testicular antioxidant defence system of mature rats were compared in order to know the role of hypothyroidism induced oxidative stress in testicular development and maturation. Rats were made hypothyroid by feeding lactating mothers and adult rats with 0.05% 6-n-propyl thiouracil (PTU) in drinking water. PTU treatment for 30 days or for 90 days to rats from birth resulted in a decrease in body weight at the age of 90 days in comparison to the controls. The testicular germ cell counts were significantly decreased in persistent hypothyroid rats whereas they were increased in the transient hypothyroid rats. However, a significant reduction in the number of live sperms in epididymis of both 30 day and 90-day PTU treated rats was noticed on 90 days of age. Mitochondrial lipid peroxidation (LPx) levels were decreased in transient hypothyroidism whereas LPx and protein carbonylation were elevated during persistent hypothyroidism in the testis. Reduced testicular superoxide dismutase (SOD), catalase and glutathione reductase (GR) and glutathione peroxidase (GPx) activities were marked during transient hypothyroidism. In contrast, an elevation in SOD (PMF) and catalase activities with a significant decline in GPx and GR activities was found following persistent hypothyroidism. Marked histological changes were observed in the testis of both experimental groups. These results suggest a direct regulatory role of thyroid hormone on testicular physiology and antioxidant defence system during development and maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号