首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain.  相似文献   

2.
3.
Nogos and the Nogo-66 receptor: factors inhibiting CNS neuron regeneration   总被引:31,自引:0,他引:31  
The recently cloned gene Nogo, whose alternative splice products correspond to the antigenic target of the central nervous system (CNS) regeneration enhancing monoclonal antibody IN-1, codes for membrane proteins enriched in brain, particularly in oligodendrocytes. The 66-amino acid extracellular domain of Nogo (Nogo-66) interacts with a high-affinity receptor (NgR), a glycosylphosphatidylinositol (GPI)-linked protein with multiple leucine-rich repeats. The amino terminal cytoplasmic domain of Nogo appears to have a general cellular growth inhibitory effect. Nogo-66, on the other hand, specifically retards neurite outgrowth and induces growth cone collapse, possibly through its interaction with NgR and as yet unidentified transmembrane coreceptors. Recent results also suggest that Nogo expression may induce apoptosis in tumor cells. Together, these proteins provide new molecular handles for the design of therapeutic interventions for CNS injuries and neurodegenerative diseases, as well as possible leads to anticancer strategies.  相似文献   

4.
Inhibition of neurite growth,which is in large part mediated by the Nogo-66 receptor,affects neural regeneration following bone marrow mesenchymal stem cell transplantation.The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers.The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells,which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats.Simultaneously,rats treated with scaffold only were taken as the control group.Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation,rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced cells plus the poly(D,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only,and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased.At 8 weeks after transplantation,horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers,as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury.These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury.  相似文献   

5.
Myelin is a major obstacle for regenerating nerve fibers of the adult mammalian central nervous system (CNS). Several proteins including Nogo-A, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp) and the chondroitin-sulfate proteoglycan (CSPG) Versican V2 have been identified as inhibitory components present in CNS myelin. MAG, OMgp as well as the Nogo specific domain Nogo-66 exert their inhibitory activity by binding to a neuronal receptor complex containing the Nogo-66 receptor NgR and the neurotrophin receptor p75(NTR). While this suggests a converging role of the p75(NTR)/NgR receptor complex for myelin-derived neurite growth inhibitors, we show here that NgR/p75(NTR) is not required for mediating the inhibitory activity of the two myelin components NiG, unlike Nogo-66 a distinct domain of Nogo-A, and Versican V2. Primary neurons derived from a complete null mutant of p75(NTR) are still sensitive to NiG and Versican V2. In line with this result, neurite growth of p75(NTR) deficient neurons is still significantly blocked on total bovine CNS myelin. Furthermore, modulation of RhoA and Rac1 in p75(NTR)-/- neurons persists with NiG and Versican V2. Finally, we demonstrate that neither NiG nor Versican V2 interact with the p75(NTR)/NgR receptor complex and provide evidence that the binding sites of NiG and Nogo-66 are physically distinct from each other on neural tissue. These results indicate not only the existence of neuronal receptors for myelin inhibitors independent from the p75(NTR)/NgR receptor complex but also establish Rho GTPases as a common point of signal convergence of diverse myelin-induced regeneration inhibitory pathways.  相似文献   

6.
Introduction: Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Methods: Fifty Sprague‐Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit‐8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Results: Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Discussion: Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57 : 821–828, 2018  相似文献   

7.
Altered expression of the PMP22 gene causes Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). We have examined the promoter activity of 8.5 kb upstream of the first coding exon of the rat peripheral myelin protein-22 (rPmp22) gene in transgenic mice. We found that the -8.5 kb rPmp22/chloramphenicol acetyl transferase (CAT)/beta-galactosidase (lacZ) construct directs reporter gene expression in a weakly developmental and tissue-specific pattern, consistent with the expression pattern of the endogenous Pmp22 gene. The -8.5 kb rPmp22/CAT/lacZ transgene responds to loss of axonal signals during Wallerian degeneration but unlike the endogenous Pmp22 gene, the transgene fails to respond to axonal signals during nerve regeneration after a sciatic nerve crush injury. In conclusion, the function of the -8.5 kb rPmp22/CAT/lacZ transgene suggests that there are separable regulatory elements in the rPmp22 gene that respond differently to axonal signals received by Schwann cells during nerve development, and during remyelination.  相似文献   

8.
Impaired nerve regeneration in reeler mice after peripheral nerve injury   总被引:1,自引:0,他引:1  
Reelin, an extracellular matrix protein, plays an important role in the regulation of neuronal migration and cortical lamination in the developing brain. Little is known, however, about the role of this protein in axonal regeneration. We have previously shown that Reelin is secreted by Schwann cells in the peripheral nerve compartment during postnatal development and that it is up-regulated following nerve injury in adult mice. In this work, we generated mice deficient in Reelin ( reeler ) that express yellow fluorescent protein (YFP) in a subset of neurons and examined the axonal regeneration following nerve crush. We found that axonal regeneration was significantly altered compared with wild-type mice. By contrast, retrograde tracing with Fluorogold dye after sciatic nerve crush was unaffected in these mutants, being comparable with normal axonal transport observed in wild-type. These results indicate that the absence of Reelin impairs axonal regeneration following injury and support a role for this protein in the process of peripheral nerve regeneration.  相似文献   

9.
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.  相似文献   

10.
The aim of this study was to examine the effects of LY117018, a selective estrogen receptor modulator, on peripheral nerve regeneration, using a model of sciatic nerve crush injury in mice. Sciatic functional index, an index of functional recovery, was significantly higher in LY117018 treated mice throughout regeneration. Analysis of semi-thin sections revealed a significant increase in both the total number of regenerating nerve fibers at day 7, and the mean axonal area of myelinated fibers at 7, 14, and 21 days after injury, in LY117018 treated mice. Analysis of axonal transport through retrograde labeling of motor neurons showed that LY117018 increased transport, and ICI 182,780 blocked the effects of LY117018, delineating estrogen receptors as its target. Our study suggests that LY117018 may markedly accelerate peripheral nerve regeneration and functional recovery through activation of estrogen receptors.  相似文献   

11.
Nogo, also known as Reticulon-4, is a protein that is specific to the central nervous system (CNS), and has been identified as an inhibitor of neurite outgrowth. Nogo-A is the largest member of the Nogo family and is responsible for inhibition of CNS regeneration. The structural information and biological functions of Nogo family members are reviewed in this study. The Nogo-66 receptor (NgR), a membrane protein which binds to Nogo, may play an important role in signal transduction for several myelin-associated inhibitors. The discovery of the Nogo family and the NgR provides an opportunity to develop interventions to promote axonal regeneration in the CNS after brain injury. Basic and clinical research of Nogo has increased our understanding of the mechanisms underlying spinal cord injury, multiple sclerosis, and neuroregenerative diseases. Understanding the biological functions of Nogo family members may open up a new avenue for the development of therapeutic agents. The anatomical and biological plastic changes are reviewed in animal models of injuries in the adult CNS. The role of Nogo A in neuroregeneration, and the mechanisms underlying functional recovery after CNS injury, are also detailed in this review.  相似文献   

12.
Extracellular matrix changes are thought to be essential to the regeneration of peripheral nerves. The production of this matrix is believed to be regulated by interactions between axons and their supporting cells. In this study matrix production and cell proliferation were studied during rat sciatic nerve regeneration after a crush injury, and compared to that after rat sciatic nerve transection. Expression of proalpha1(I) and proalpha1(III) collagen and laminin beta1 mRNAs was followed in isolated endoneuria by Northern and in situ hybridization both proximally and distally to the site of either a crush injury or transection of rat sciatic nerve up to 18 weeks. Changes in the Schwann cell and fibroblast populations were monitored by morphometric analysis of endoneurial cross-sections immunostained for S-100 protein. The process of axonal regeneration was followed by Bielschowsky's silver staining. A crush injury initially resulted in increased expression of all mRNAs studied in the endoneurial cells. However, with progressing axonal regeneration the amount of collagen mRNAs returned to control levels, whereas the amount of laminin beta1 mRNA in the distal site of the crush remained elevated throughout the study period. The expression of type I collagen mRNA was enhanced after nerve transection injury compared to that after the crush injury. The epineurial fibroblasts actively expressed both type I and III collagen mRNAs after the injury. The proliferation of Schwann cells and the expression of collagen mRNAs are not, at least directly, related to the axonal regeneration. However, the long-lasting and strong expression of laminin beta1 mRNA after a nerve crush injury may be related to good axonal regeneration. The expression of type I collagen in the epineurium may lead to clinically well-recognized epineurial scarring and thus impede axonal regeneration.  相似文献   

13.
Glial cells are a key element to the process of axonal regeneration, either promoting or inhibiting axonal growth. The study of glial derived factors induced by injury is important to understand the processes that allow or preclude regeneration, and can explain why the PNS has a remarkable ability to regenerate, while the CNS does not. In this work we focus on Apolipoprotein D (ApoD), a Lipocalin expressed by glial cells in the PNS and CNS. ApoD expression is strongly induced upon PNS injury, but its role has not been elucidated. Here we show that ApoD is required for: (1) the maintenance of peripheral nerve function and tissue homeostasis with age, and (2) an adequate and timely response to injury. We study crushed sciatic nerves at two ages using ApoD knock‐out and transgenic mice over‐expressing human ApoD. The lack of ApoD decreases motor nerve conduction velocity and the thickness of myelin sheath in intact nerves. Following injury, we analyze the functional recovery, the cellular processes, and the protein and mRNA expression profiles of a group of injury‐induced genes. ApoD helps to recover locomotor function after injury, promoting myelin clearance, and regulating the extent of angiogenesis and the number of macrophages recruited to the injury site. Axon regeneration and remyelination are delayed without ApoD and stimulated by excess ApoD. The mRNA and protein expression profiles reveal that ApoD is functionally connected in an age‐dependent manner to specific molecular programs triggered by injury. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Pathophysiologic hypotheses for Alzheimer's disease (AD) are centered on the role of the amyloid plaque Abeta peptide and the mechanism of its derivation from the amyloid precursor protein (APP). As part of the disease process, an aberrant axonal sprouting response is known to occur near Abeta deposits. A Nogo to Nogo-66 receptor (NgR) pathway contributes to determining the ability of adult CNS axons to extend after traumatic injuries. Here, we consider the potential role of NgR mechanisms in AD. Both Nogo and NgR are mislocalized in AD brain samples. APP physically associates with the NgR. Overexpression of NgR decreases Abeta production in neuroblastoma culture, and targeted disruption of NgR expression increases transgenic mouse brain Abeta levels, plaque deposition, and dystrophic neurites. Infusion of a soluble NgR fragment reduces Abeta levels, amyloid plaque deposits, and dystrophic neurites in a mouse transgenic AD model. Changes in NgR level produce parallel changes in secreted APP and AB, implicating NgR as a blocker of secretase processing of APP. The NgR provides a novel site for modifying the course of AD and highlights the role of axonal dysfunction in the disease.  相似文献   

15.
Abortive regeneration in the adult mammalian central nervous system (CNS) is partially mediated through CNS myelin proteins, among which Nogo-A plays an important role. Nogo-66, which is located at the C-terminus of Nogo-A, inhibits axonal regrowth through the Nogo-66/NgR signalling pathway. In this study, two small peptides were tested in a neurite outgrowth assay and spinal cord injury (SCI) model to examine the effects of these molecules on the inhibition of Nogo-66/NgR signalling. PepIV was selected from a phage display peptide library as a Nogo-66 binding molecule. And PepII was synthesized as a potential NgR antagonist. The results indicated that PepIV and PepII decrease the mRNA levels of the small GTPase RhoA and partially neutralize CNS myelin inhibition to cultured cerebellar granule cells (CGCs). Moreover, treatment with both peptides was propitious to maintaining residual axons after SCI, thereby promoting regeneration and locomotion recovery. Because RhoA plays a role in stabilizing the cytoskeleton in growth cones and axons, enhanced neurite outgrowth might reflect a decrease in RhoA expression through PepIV and PepII treatment. Moreover, PepIV induced lower RhoA mRNA expression compared with PepII. Therefore, PepIV could block Nogo-66/NgR signalling and reduce RhoA mRNA level, and then contribute to neuronal survival and axonal regrowth after SCI, showing its ability to reverse CNS myelin inhibition to regeneration. Furthermore, selected small peptide might cover some unknown active sites on CNS myelin proteins, which could be potential targets for improving neurite outgrowth after injury.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by the selective degeneration of upper and lower motor neurons. The lack of a molecular diagnostic marker is of increasing concern in view of the therapeutic strategies in development. Using an unbiased subtractive suppressive hybridization screen we have identified a clone encoding the neurite outgrowth inhibitor Nogo and shown that its isoforms display a characteristic altered expression in ALS. This was first confirmed by analyzing Nogo isoform expression in a transgenic ALS model at early asymptomatic stages where we found increased levels of Nogo-A and decreased Nogo-C and importantly, not following experimentally induced denervation. Furthermore, we confirmed these changes in both post-mortem and biopsy samples from diagnosed ALS patients but not control patients. Thus, the alteration in Nogo expression pattern, common to sporadic and familial ALS, represents a potential diagnosis tool and points strongly to Nogo having a central role in disease.  相似文献   

17.
The non-receptor-type Src tyrosine kinases are key components of intracellular signal transduction that are expressed at high levels in the nervous system. To improve understanding of the cascades of molecular events underlying peripheral nerve regeneration, we analyzed active Src expression in the crushed or cut rat sciatic nerves using a monoclonal antibody (clone 28) that recognizes the active form of Src tyrosine kinases, including c-Src and c-Fyn. Western blots showed that active Src expressed in the normal sciatic nerve transiently increased up to threefolds after both types of injury. Immunohistochemistry using clone 28 showed that axonal components are the primary sites of active Src expression in the normal sciatic nerve. Soon after both types of injury, active Src was abundantly expressed in Schwann cells of the segments distal to the injury site. The expression of active Src in the cells decreased with restoration of the axon-Schwann cell relationship and eventually became depleted to very low levels after crushing, but was sustained at high levels in the cut model until the end of the experiment. Regenerated axons consistently expressed active Src throughout nerve regeneration and these eventually became the major sites of active Src expression in the crushed nerve. Among the Src tyrosine kinases, active c-Src selectively increased after crushing according to immunoprecipitation and immunoblotting analyses. Due to its potent biological activity, the increased amounts of the active form of Src probably enhance axonal regrowth, the Schwann cell response, and axon-Schwann cell contact for peripheral nerve regeneration.  相似文献   

18.
Inflammation near the nerve cell body enhances axonal regeneration   总被引:7,自引:0,他引:7  
Although crushed axons in a dorsal spinal root normally regenerate more slowly than peripheral axons, their regeneration can be accelerated by a conditioning lesion to the corresponding peripheral nerve. These and other observations indicate that injury to peripheral sensory axons triggers changes in their nerve cell bodies that contribute to axonal regeneration. To investigate mechanisms of activating nerve cell bodies, an inflammatory reaction was provoked in rat dorsal root ganglia (DRG) through injection of Corynebacterium parvum. This inflammation enhanced regeneration in the associated dorsal root, increasing 4-fold the number of regenerating fibers 17 d after crushing; peripheral nerve regeneration was not accelerated. A milder stimulation of dorsal root regeneration was detected after direct injection of isogenous macrophages into the ganglion. It is concluded that changes favorable to axonal regeneration can be induced by products of inflammatory cells acting in the vicinity of the nerve cell body. Satellite glial cells and other unidentified cells in lumbar DRG were shown by thymidine radioautography to proliferate after sciatic nerve transection or injection of C. parvum into the ganglia. Intrathecal infusion of mitomycin C suppressed axotomy-induced mitosis of satellite glial cells but did not impede axonal regeneration in the dorsal root or the peripheral nerve. Nevertheless, the similarity in reactions of satellite glial cells during 2 processes that activate neurons adds indirect support to the idea that non-neuronal cells in the DRG might influence regenerative responses of primary sensory neurons.  相似文献   

19.
Neurotrophic factors have been shown to stimulate and support peripheral nerve repair. One of these factors is basic fibroblast growth factor (FGF-2), which is up-regulated after peripheral nerve injury and influences early sciatic nerve regeneration by regulating Schwann cell proliferation. Our previous study on FGF-2 deficient mice indicated that FGF-2 is important for axonal maturation and remyelination one week after sciatic nerve crush (Jungnickel, J., Claus, P., Gransalke, K., Timmer, M. and Grothe, C., 2004. Targeted disruption of the FGF-2 gene affects the response to peripheral nerve injury. Mol. Cell. Neurosci. 25, 444-452). However, the functional impact of these effects on sensory and motor fibers was not clear. After performing pinch test, walking track analysis and rotarod, we found faster recovery of mechanosensory but not of motor function in mutant mice. To elucidate the role of FGF-2 on structural recovery, we analyzed FGF-2 deficient mice and wild-type littermates 2 and 4 weeks after sciatic nerve crush. Two weeks after peripheral nerve injury, regenerating fibers of mutant mice showed both significantly increased axon and myelin size, but no difference in the number of myelinated and unmyelinated fibers. Molecular analysis indicated that the expression level of myelin protein zero was significantly enhanced in lesioned nerves in the absence of FGF-2. These results suggest that loss of FGF-2 could positively influence restoration of mechanosensory function by accelerating structural recovery transiently.  相似文献   

20.
背景:如何促进周围神经损伤修复与再生一直是基础与临床研究的热点。基因治疗有可能成为今后解决该问题的主要手段之一。 目的:观察携带小鼠脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) cDNA表达片段的重组腺病毒载体AxCA-BDNF转染大鼠损伤坐骨神经后BDNF的表达,以及脊髓前角运动神经元的存活和神经生长情况。 方法:切除成年Wistar大鼠股中部10 mm长的坐骨神经,AxCA-BDNF转染组、BDNF组和对照组分别用硅胶管内置AxCA-BDNF原液,BDNF溶液或空白病毒稀释液桥接坐骨神经两断端。术后3,7,14 d,1,2,4个月应用原位杂交和免疫组织化学方法检测损伤坐骨神经及相应脊髓节段BDNF mRNA和蛋白的表达,并观察损伤坐骨神经的组织学及超微结构改变,再生的神经元及有髓神经纤维数目和髓鞘厚度。 结果与结论:术后3,7,14 d及1个月时,AxCA-BDNF转染组损伤坐骨神经近、远端神经干及脊髓(L3~6)中BDNF mRNA和蛋白水平明显高于BDNF组和对照组(P < 0.01)。光、电镜病理组织学检查和图像分析证实,BDNF基因转染后,脊髓前角运动神经元存活数量、新生神经纤维数目及其髓鞘厚度、神经联接的再形成均明显优于对照组(P < 0.01)。说明经腺病毒介导转染的BDNF基因可在大鼠坐骨神经内有效表达,并通过轴突逆行转运到了相应的脊髓神经元,不仅能促进损伤神经纤维再生,也能保护损伤的脊髓神经元。 关键词:坐骨神经损伤;重组腺病毒;脑源性神经营养因子;基因转染;免疫组织化学;原位分子杂交;神经再生  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号