共查询到20条相似文献,搜索用时 0 毫秒
1.
Zeng GL Gagnon D Matthews CG Kolthammer JA Radachy JD Hawkins WG 《Medical physics》2002,29(7):1406-1412
A slat collimator in single photon emission computed tomography consists of a set of parallel slats. As the collimator spins, the detector measures a one-dimensional projection data set. A complete data set can be obtained by rotating the detector/collimator assembly around the object (patient) while the collimator spins continuously. The measured projection data are assumed to be weighted planar integrals of the object. This paper describes the development of an approximate three-dimensional image reconstruction algorithm for a rotating/spinning slat collimator. This algorithm is in filtered backprojection form. Computer simulations were performed to verify the effectiveness of the algorithm. 相似文献
2.
Hybrid PET gamma cameras with coincidence detection electronics are commonly equipped with parallel slat collimators in order to reduce detection of singles and scattered photons, and create a pseudo-2D imaging geometry. The objective of this work was to survey a broad range of parallel slat collimator designs using a series of Monte Carlo simulated PET acquisitions. Collimator properties including septal height, septal thickness and pitch were independently examined over a wide range of values. Simulations were performed for hybrid PET imaging of a long cylindrical phantom uniformly filled with water and radioactivity. The performance for each collimator design was evaluated in terms of the trues-to-singles ratio, scatter fraction, and noise equivalent count rate for a wide range of camera trigger rates. Results indicate that increasing septal height offers the biggest performance gain. Septal thickness should be at least 0.5 mm, and should be optimized in conjunction with pitch to obtain the best performance. This survey provides the groundwork necessary for optimizing slat collimators, and provides a starting point for investigating new slat collimator designs. 相似文献
3.
The physical performance of a prototype slat collimator is described for gamma camera planar imaging at 511 keV. Measurements were made of sensitivity, spatial resolution and a septal penetration index at 511 keV. These measurements were repeated with a commercial parallel hole collimator designed for 511 keV imaging. The slat collimator sensitivity was 22.9 times that of the parallel hole collimator with 10 cm tissue equivalent scatter material, and 16.8 times the parallel hole collimator sensitivity in air. Spatial resolution was also better for the slat collimator than the parallel hole collimator (FWHM at 10 cm in air 17.9 mm and 21.2 mm respectively). Septal penetration was compared by a single value for the counts at 120 mm from the point source profile peak, expressed as a percentage of the peak counts, showing less penetration for the slat collimator than the parallel hole collimator (1.9% versus 3.6% respectively). In conclusion, these results show that the slat collimator may have advantages over the parallel hole collimator for 511 keV imaging, though the greater complexity of operation of the slat collimator and potential sources of artefact in slat collimator imaging are recognized. 相似文献
4.
A single photon emission computed tomography (SPECT) rotating slat collimator with strip detector acquires distance-weighted plane integral data, along with the attenuation factor and distance-dependent detector response. In order to image a 3D object, the slat collimator device has first to spin around its axis and then rotate around the object to produce 3D projection measurements. Compared to the slice-by-slice 2D reconstruction for the parallel-hole collimator and line integral data, a more complex 3D reconstruction is needed for the slat collimator and plane integral data. In this paper, we propose a 3D RBI-EM reconstruction algorithm with spherically-symmetric basis function, also called 'blobs', for the slat collimator. It has a closed and spherically symmetric analytical expression for the 3D Radon transform, which makes it easier to compute the plane integral than the voxel. It is completely localized in the spatial domain and nearly band-limited in the frequency domain. Its size and shape can be controlled by several parameters to have desired reconstructed image quality. A mathematical lesion phantom study has demonstrated that the blob reconstruction can achieve better contrast-noise trade-offs than the voxel reconstruction without greatly degrading the image resolution. A real lesion phantom study further confirmed this and showed that a slat collimator with CZT detector has better image quality than the conventional parallel-hole collimator with NaI detector. The improvement might be due to both the slat collimation and the better energy resolution of the CZT detector. 相似文献
5.
Tai C Chatziioannou A Siegel S Young J Newport D Goble RN Nutt RE Cherry SR 《Physics in medicine and biology》2001,46(7):1845-1862
The microPET Primate 4-ring system (P4) is an animal PET tomograph with a 7.8 cm axial extent, a 19 cm diameter transaxial field of view (FOV) and a 22 cm animal port. The system is composed of 168 detector modules, each with an 8 x 8 array of 2.2 x 2.2 x 10 mm3 lutetium oxyorthosilicate crystals, arranged as 32 crystal rings 26 cm in diameter. The detector crystals are coupled to a Hamamatsu R5900-C8 PS-PMT via a 10 cm long optical fibre bundle. The detectors have a timing resolution of 3.2 ns, an average energy resolution of 26%, and an average intrinsic spatial resolution of 1.75 mm. The system operates in 3D mode without inter-plane septa, acquiring data in list mode. The reconstructed image spatial resolution ranges from 1.8 mm at the centre to 3 mm at 4 cm radial offset. The tomograph has a peak system sensitivity of 2.25% at the centre of the FOV with a 250-750 keV energy window. The noise equivalent count rate peaks at 100-290 kcps for representative object sizes. Images from two phantoms and three different types of laboratory animal demonstrate the advantage of the P4 system over the original prototype microPET. including its threefold improvement in sensitivity and a large axial FOV sufficient to image an entire mouse in a single bed position. 相似文献
6.
This paper discusses the use of small pixels in a spinning CdZnTe single photon emission computed tomography (SPECT) camera that is mounted with a parallel slat collimator. In a conventional slat collimation configuration, there is a detector pixel between two adjacent collimator slats. In our design, the pixel size is halved. That is, there are two smaller pixels to replace a regular pixel between two adjacent slats while the collimator remains unchanged. It has an advantage over our older design that uses tilted slats. In order to acquire a complete data set the tilted-slat collimator must spin 360 degrees at each SPECT view while the proposed design requires only 180 degrees at each SPECT view. Computer simulations and phantom experiments have been carried out to investigate the performance of the small-pixel configuration. It is observed that this design has the potential to increase the spatial resolution of the detector while keeping photon counts the same. 相似文献
7.
This article considers a hypothetical imaging device with a spinning slat collimator that measures parallel-planar-integral data from an object. This device rotates around the object 180 degrees and stops at N positions uniformly distributed over this 180 degrees. At each stop, the device spins on its own axis 180 degrees and acquires measurements at M positions uniformly distributed over this 180 degrees. For a fixed total imaging time, an optimal distribution of the scanning time among the data measurement locations is searched by a nonlinear programming method: Nelder-Mead's simplex method. The optimal dwell time is approximately proportional to the weighting factor in the backprojector of the reconstruction algorithm. By using an optimal dwell-time profile, the reconstruction signal-to-noise ratio has a gain of 23%-24% for the filtered backprojection algorithm and a gain of 10%-18% for the iterative algorithms, compared with the situation when a constant dwell-time profile is used. 相似文献
8.
A submillimeter resolution fluorescence molecular imaging system for small animal imaging 总被引:8,自引:0,他引:8
Most current imaging systems developed for tomographic investigations of intact tissues using diffuse photons suffer from a limited number of sources and detectors. In this paper we describe the construction and evaluation of a large dataset, low noise tomographic system for fluorescence imaging in small animals. The system consists of a parallel plate-imaging chamber and a lens coupled CCD camera, which enables conventional planar imaging as well as fluorescence tomography. The planar imaging data are used to guide the acquisition of a Fluorescence Molecular Tomography (FMT) dataset containing more than 106 measurements, and to superimpose anatomical features with tomographic results for improved visual representation. Experimental measurements exhibited good agreement with the diffusion theory models used to predict light propagation within the chamber. Tests of the instrument's capacity to quantitatively reconstruct fluorochrome distributions in three dimensions showed less than 5% errors between actual fluorochrome concentrations and FMT findings, and suggested a detection threshold of approximately 100 femptomoles for small localized objects. Experiments to assess the instrument's spatial resolution demonstrated the ability of the system to resolve objects placed at clear distances of less than 1 mm. This is a significant resolution increase over previously developed systems for animal imaging, and is primarily due to the large dataset employed and the use of inversion methods. Finally, the in vivo imaging capacity is showcased. It is expected that the large dataset collected can enable superior imaging of molecular probes in vivo and improve quantification of fluorescence signatures. 相似文献
9.
Gamelin J Aguirre A Maurudis A Huang F Castillo D Wang LV Zhu Q 《Journal of biomedical optics》2008,13(2):024007
We present systematic characterization of a photoacoustic imaging system optimized for rapid, high-resolution tomographic imaging of small animals. The system is based on a 128-element ultrasonic transducer array with a 5-MHz center frequency and 80% bandwidth shaped to a quarter circle of 25 mm radius. A 16-channel data-acquisition module and dedicated channel detection electronics enable capture of a 90-deg field-of-view image in less than 1 s and a complete 360-deg scan using sample rotation within 15 s. Measurements on cylindrical phantom targets demonstrate a resolution of better than 200 microm and high-sensitivity detection of 580-microm blood tubing to depths greater than 3 cm in a turbid medium with reduced scattering coefficient mu(s) (')=7.8 cm(-1). The system is used to systematically investigate the effects of target size, orientation, and geometry on tomographic imaging. As a demonstration of these effects and the system imaging capabilities, we present tomographic photoacoustic images of the brain vasculature of an ex vivo mouse with varying measurement aperture. For the first time, according to our knowledge, resolution of sub-200-microm vessels with an overlying turbid medium of greater than 2 cm depth is demonstrated using only intrinsic biological contrast. 相似文献
10.
11.
A microPET/CT system for in vivo small animal imaging 总被引:1,自引:0,他引:1
Liang H Yang Y Yang K Wu Y Boone JM Cherry SR 《Physics in medicine and biology》2007,52(13):3881-3894
A microCT scanner was designed, fabricated and integrated with a previously reported microPET II scanner (Tai et al 2003 Phys. Med. Biol. 48 1519, Yang et al 2004 Phys. Med. Biol. 49 2527), forming a dual modality system for in vivo anatomic and molecular imaging of the mouse. The system was designed to achieve high-spatial-resolution and high-sensitivity PET images with adequate CT image quality for anatomic localization and attenuation correction with low x-ray dose. The system also has relatively high throughput for screening, and a flexible gantry and user interface. X-rays were produced by a 50 kVp, 1.5 mA fixed tungsten anode tube, with a focal spot size of 70 microm. The detector was a 5 x 5 cm(2) photodiode detector incorporating 48 microm pixels on a CMOS array and a fast gadolinium oxysulfide (GOS) intensifying screen. The microCT system has a flexible C-arm gantry design with adjustable detector positioning, which acquires CT projection images around the common microPET/CT bed. The design and the initial characterization of the microCT system is described, and images of the first mouse scans with microPET/CT scanning protocols are shown. 相似文献
12.
Van Holen R Vandenberghe S Staelens S Lemahieu I 《Physics in medicine and biology》2008,53(7):1989-2002
The main remaining challenge for a gamma camera is to overcome the existing trade-off between collimator spatial resolution and system sensitivity. This problem, strongly limiting the performance of parallel hole collimated gamma cameras, can be overcome by applying new collimator designs such as rotating slat (RS) collimators which have a much higher photon collection efficiency. The drawback of a RS collimated gamma camera is that, even for obtaining planar images, image reconstruction is needed, resulting in noise accumulation. However, nowadays iterative reconstruction techniques with accurate system modeling can provide better image quality. Because the impact of this modeling on image quality differs from one system to another, an objective assessment of the image quality obtained with a RS collimator is needed in comparison to classical projection images obtained using a parallel hole (PH) collimator. In this paper, a comparative study of image quality, achieved with system modeling, is presented. RS data are reconstructed to planar images using maximum likelihood expectation maximization (MLEM) with an accurate Monte Carlo derived system matrix while PH projections are deconvolved using a Monte Carlo derived point-spread function. Contrast-to-noise characteristics are used to show image quality for cold and hot spots of varying size. Influence of the object size and contrast is investigated using the optimal contrast-to-noise ratio (CNR(o)). For a typical phantom setup, results show that cold spot imaging is slightly better for a PH collimator. For hot spot imaging, the CNR(o) of the RS images is found to increase with increasing lesion diameter and lesion contrast while it decreases when background dimensions become larger. Only for very large background dimensions in combination with low contrast lesions, the use of a PH collimator could be beneficial for hot spot imaging. In all other cases, the RS collimator scores better. Finally, the simulation of a planar bone scan on a RS collimator revealed a hot spot contrast improvement up to 54% compared to a classical PH bone scan. 相似文献
13.
A needle-positioning robot has been developed for image-guided interventions in small animal research models. The device is designed to position a needle with an error < or =100 microm. The robot has two rotational axes (pitch and roll) to control needle orientation, and one linear axis to perform needle insertion. The three axes intersect at a single point to create a remote centre of motion (RCM) that acts as a fulcrum for the orientation of the needle. The RCM corresponds to the skin-entry point of the needle into the animal. The robot was calibrated to ensure that the three axes intersected at a single point defining an RCM and that the needle tip was positioned at the RCM. Needle-positioning accuracy and precision were quantified in Cartesian coordinates at ten target locations in the plane of each rotational axis. The measured needle-positioning accuracy in free space was 54 +/- 12 microm for the pitch axis plane and 91 +/- 21 microm for the roll axis plane. The measured needle-positioning precision was 15 and 17 microm for the pitch and roll axes planes, respectively. The robot's ability to insert a needle into a tumour in a euthanized mouse was demonstrated. 相似文献
14.
Parallel and converging hole collimators are most frequently used in nuclear medicine. Less common is the use of rotating slat collimators for single photon emission computed tomography (SPECT). The higher photon collection efficiency, inherent to the geometry of rotating slat collimators, results in much lower noise in the data. However, plane integrals contain spatial information in only one direction, whereas line integrals provide two-dimensional information. It is not a trivial question whether the initial gain in efficiency will compensate for the lower information content in the plane integrals. Therefore, a comparison of the performance of parallel hole and rotating slat collimation is needed. This study compares SPECT with rotating slat and parallel hole collimation in combination with MLEM reconstruction with accurate system modeling and correction for scatter and attenuation. A contrast-to-noise study revealed an improvement of a factor 2-3 for hot lesions and more than a factor of 4 for cold lesion. Furthermore, a clinically relevant case of heart lesion detection is simulated for rotating slat and parallel hole collimators. In this case, rotating slat collimators outperform the traditional parallel hole collimators. We conclude that rotating slat collimators are a valuable alternative for parallel hole collimators. 相似文献
15.
The rationale for multi-modality imaging is to integrate the strengths of different imaging technologies while reducing the shortcomings of an individual modality. The work presented here proposes a limited-field-of-view (LFOV) SPECT reconstruction technique that can be implemented on a multi-modality MR/SPECT system that can be used to obtain simultaneous MRI and SPECT images for small animal imaging. The reason for using a combined MR/SPECT system in this work is to eliminate any possible misregistration between the two sets of images when MR images are used as a priori information for SPECT. In nuclear imaging the target area is usually smaller than the entire object; thus, focusing the detector on the LFOV results in various advantages including the use of a smaller nuclear detector (less cost), smaller reconstruction region (faster reconstruction) and higher spatial resolution when used in conjunction with pinhole collimators with magnification. The MR/SPECT system can be used to choose a region of interest (ROI) for SPECT. A priori information obtained by the full field-of-view (FOV) MRI combined with the preliminary SPECT image can be used to reduce the dimensions of the SPECT reconstruction by limiting the computation to the smaller FOV while reducing artifacts resulting from the truncated data. Since the technique is based on SPECT imaging within the LFOV it will be called the keyhole SPECT (K-SPECT) method. At first MRI images of the entire object using a larger FOV are obtained to determine the location of the ROI covering the target organ. Once the ROI is determined, the animal is moved inside the radiofrequency (rf) coil to bring the target area inside the LFOV and then simultaneous MRI and SPECT are performed. The spatial resolution of the SPECT image is improved by employing a pinhole collimator with magnification >1 by having carefully calculated acceptance angles for each pinhole to avoid multiplexing. In our design all the pinholes are focused to the center of the LFOV. K-SPECT reconstruction is accomplished by generating an adaptive weighting matrix using a priori information obtained by simultaneously acquired MR images and the radioactivity distribution obtained from the ROI region of the SPECT image that is reconstructed without any a priori input. Preliminary results using simulations with numerical phantoms show that the image resolution of the SPECT image within the LFOV is improved while minimizing artifacts arising from parts of the object outside the LFOV due to the chosen magnification and the new reconstruction technique. The root-mean-square-error (RMSE) in the out-of-field artifacts was reduced by 60% for spherical phantoms using the K-SPECT reconstruction technique and by 48.5-52.6% for the heart in the case with the MOBY phantom. The K-SPECT reconstruction technique significantly improved the spatial resolution and quantification while reducing artifacts from the contributions outside the LFOV as well as reducing the dimension of the reconstruction matrix. 相似文献
16.
Micro-PET imaging and small animal models of disease 总被引:5,自引:0,他引:5
Herschman HR 《Current opinion in immunology》2003,15(4):378-384
Positron emission tomography (PET) has been used clinically to measure enzyme reactions, ligand-receptor interactions, cellular metabolism and cell proliferation. Until recently, however, PET has not been suitable for small animal models because of resolution limitations. Development of micro-PET instrumentation for small animal imaging and the availability of positron-emitting tracers has made this technology accessible for the non-invasive, quantitative and repetitive imaging of biological function in living animals. The development of new probes and positron-imaging based reporter genes has extended micro-PET applications to investigations of metabolism, enzyme activity, receptor-ligand interactions, protein-protein interactions, gene expression, adoptive cell therapy and somatic gene therapy. Because small animal PET is immediately extrapolatable to the clinic, laboratory advances should rapidly be translated to clinical practice. 相似文献
17.
We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ~0.62 s (~0.51 s). Dosimetric accuracy for a highly modulated IMRT beam--assessed through radiographic film dosimetry--improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking. 相似文献
18.
In vivo Cerenkov luminescence imaging is a rapidly growing molecular imaging research field based on the detection of Cerenkov radiation induced by beta particles when traveling though biological tissues. We investigated theoretically the possibility of enhancing the number of the detected Cerenkov photons in the near infrared (NIR) region of the spectrum. The analysis is based on applying a photon propagation diffusion model to Cerenkov photons in the tissue. Results show that despite the smaller number of Cerenkov photons in the NIR region, the fraction exiting the tissues is greater than in the visible range, and thus, a charge-coupled device detector optimized for the NIR range will allow to obtain a higher signal. The comparison was performed considering Cerenkov point sources located at different depths inside the animal. We concluded that the improvement can be up to 35% and is more significant when the Cerenkov source to be imaged is located deeper inside the animal. 相似文献
19.
In this paper, we propose a CdZnTe rotating and spinning gamma camera attached with a slit collimator. This imaging system acquires convergent planar integrals of a radioactive distribution. Two analytical image reconstruction algorithms are proposed. Preliminary phantom studies show that our small CdZnTe camera with a slit collimator outperforms a larger NaI(Tl) camera with a pinhole collimator in terms of spatial resolution in the reconstructed images. The main application of this system is small animal SPECT imaging. 相似文献
20.
Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with (32)P-ATP and (18)F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data. 相似文献