首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Comprehensive Survey of Wireless Body Area Networks   总被引:1,自引:0,他引:1  
Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted.  相似文献   

2.
Wireless Body Area Network (WBAN) consists of low-power, miniaturized, and autonomous wireless sensor nodes that enable physicians to remotely monitor vital signs of patients and provide real-time feedback with medical diagnosis and consultations. It is the most reliable and cheaper way to take care of patients suffering from chronic diseases such as asthma, diabetes and cardiovascular diseases. Some of the most important attributes of WBAN is low-power consumption and delay. This can be achieved by introducing flexible duty cycling techniques on the energy constraint sensor nodes. Stated otherwise, low duty cycle nodes should not receive frequent synchronization and control packets if they have no data to send/receive. In this paper, we introduce a Traffic-adaptive MAC protocol (TaMAC) by taking into account the traffic information of the sensor nodes. The protocol dynamically adjusts the duty cycle of the sensor nodes according to their traffic-patterns, thus solving the idle listening and overhearing problems. The traffic-patterns of all sensor nodes are organized and maintained by the coordinator. The TaMAC protocol is supported by a wakeup radio that is used to accommodate emergency and on-demand events in a reliable manner. The wakeup radio uses a separate control channel along with the data channel and therefore it has considerably low power consumption requirements. Analytical expressions are derived to analyze and compare the performance of the TaMAC protocol with the well-known beacon-enabled IEEE 802.15.4 MAC, WiseMAC, and SMAC protocols. The analytical derivations are further validated by simulation results. It is shown that the TaMAC protocol outperforms all other protocols in terms of power consumption and delay.  相似文献   

3.
A Wireless Body Area Network (WBAN) is expected to play a significant role in future healthcare system. It interconnects low-cost and intelligent sensor nodes in, on, or around a human body to serve a variety of medical applications. It can be used to diagnose and treat patients with chronic diseases such as hypertensions, diabetes, and cardiovascular diseases. The lightweight sensor nodes integrated in WBAN require low-power operation, which can be achieved using different optimization techniques. We introduce a Traffic-adaptive MAC protocol (TaMAC) for WBAN that supports dual wakeup mechanisms for normal, emergency, and on-demand traffic. In this letter, the TaMAC protocol is simulated using a well-known Network Simulator 2 (NS-2). The problem of multiple emergency nodes is solved using both wakeup radio and CSMA/CA protocol. The power consumption, delay, and throughput performance are closely compared with beacon-enabled IEEE 802.15.4 MAC protocol using extensive simulations.  相似文献   

4.
In this study, Random Contention-based Resource Allocation (RACOON) medium access control (MAC) protocol is proposed to support the quality of service (QoS) for multi-user mobile wireless body area networks (WBANs). Different from existing QoS designs that focus on a single WBAN, a multiuser WBAN QoS should further consider both inter-WBAN interference and inter-WBAN priorities. Similar problems have been studied in both overlapped wireless local area networks (WLANs) and Bluetooth piconets that need QoS supports. However, these solutions are designed for non-medical transmissions that do not consider any priority scheme for medical applications. Most importantly, these studies focus on only static or low mobility networks. Network mobility of WBANs will introduce unnecessary inter-network collisions and energy waste, which are not considered by these solutions. The proposed multiuser-QoS protocol, RACOON, simultaneously satisfies the inter WBAN QoS requirements and overcomes the performance degradation caused by WBAN mobility. Simulation results verify that RACOON provides better latency and energy control, as compared with WBAN QoS protocols without considering the inter-WBAN requirements.  相似文献   

5.
为解决各级医疗机构楼宇自控系统中不同环境下温度监测布线困难、维护不易的缺点,设计了一种基于ANT协议的无线温度采集网络。方案采用STC12LE4052AD微处理器、NRF24AP2无线网络模块和单总线数字温度传感器DS18B20等搭建硬件平台,并用Visual Studio2010 C++编写温度监测软件实时显示温度和采集记录温度。试验表明,该网络运行稳定,采集环境温度准确,具有低能耗、低成本和易组网等优点。  相似文献   

6.
The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.  相似文献   

7.
路智静  黄如  孙俊峰  张磊 《医学教育探索》2017,43(2):234-240,291
由于无线传感器能量受限,最大化网络生命周期成为优化网络拓扑首要考虑的问题。基于BA无标度理论,提出了一种WSNs拓扑优化模型(WTOM)。在网络中引入超级节点,结合粒子群算法合理地划分整个网络;在节点间建立多因素为导向的虚拟力场,利用虚拟力调整超级节点的部署位置,实现网络能量的均衡消耗,通过对关键节点的保护,提高网络的抗毁鲁棒性。经理论分析和实验证明,该网络不仅继承了BA无标度网络的特征还具有小世界特性;同时该动态拓扑延长了网络的生命周期,提高了网络面向数据收集的节能性。  相似文献   

8.
Wireless body area network (WBAN) provide a mechanism of transmitting a persons physiological data to application providers e.g. hospital. Given the limited range of connectivity associated with WBAN, an intermediate portable device e.g. smartphone, placed within WBAN’s connectivity, forwards the data to a remote server. This data, if not protected from an unauthorized access and modification may be lead to poor diagnosis. In order to ensure security and privacy between WBAN and a server at the application provider, several authentication schemes have been proposed. Recently, Wang and Zhang proposed an authentication scheme for WBAN using bilinear pairing. However, in their scheme, an application provider could easily impersonate a client. In order to overcome this weakness, we propose an efficient remote authentication scheme for WBAN. In terms of performance, our scheme can not only provide a malicious insider security, but also reduce running time of WBAN (client) by 51 % as compared to Wang and Zhang scheme.  相似文献   

9.
In this study, a flexible wireless body area network (WBAN) node platform has been designed and implemented based on the Zigbee technology. In order to provide wide range WBAN for health monitoring, a Zigbee/Internet Gateway (ZiGW) has also been developed rather than using a PDA or a host PC to connect different WBANs by using the Internet as the communication infrastructure. The proposed body sensor node platform promises a cost-effective, flexible platform for developing physical sensor node in real-time health monitoring. The ZiGW can provide an effective method to connect WBAN with the Internet. In this work, we present the implementation of an Electroencephalogram (EEG) monitoring system using the proposed methods. In this proposed system, real-time EEG signals can be remotely monitored by physicians via Internet, and the collected EEG data is stored in the online EEG database which can be shared with physicians or researchers for further analysis.  相似文献   

10.
In the wireless sensor network(WSN) security is a major issue. There are several network security schemes proposed in research. In the network, malicious nodes obstruct the performance of the network. The network can be vulnerable by Sybil attack. When a node illicitly assertions multiple identities or claims fake IDs, the WSN grieves from an attack named Sybil attack. This attack threatens wireless sensor network in data aggregation, synchronizing system, routing, fair resource allocation and misbehavior detection. Henceforth, the research is carried out to prevent the Sybil attack and increase the performance of the network. This paper presents the novel security mechanism and Fujisaki Okamoto algorithm and also application of the work. The Fujisaki-Okamoto (FO) algorithm is ID based cryptographic scheme and gives strong authentication against Sybil attack. By using Network simulator2 (NS2) the scheme is simulated. In this proposed scheme broadcasting key, time taken for different key sizes, energy consumption, Packet delivery ratio, Throughput were analyzed.  相似文献   

11.
12.
In recent years interest in the application of Wireless Body Area Network (WBAN) for patient monitoring applications has grown significantly. A WBAN can be used to develop patient monitoring systems which offer flexibility to medical staff and mobility to patients. Patients monitoring could involve a range of activities including data collection from various body sensors for storage and diagnosis, transmitting data to remote medical databases, and controlling medical appliances, etc. Also, WBANs could operate in an interconnected mode to enable remote patient monitoring using telehealth/e-health applications. A WBAN can also be used to monitor athletes’ performance and assist them in training activities. For such applications it is very important that a WBAN collects and transmits data reliably, and in a timely manner to a monitoring entity. In order to address these issues, this paper presents WBAN design techniques for medical applications. We examine the WBAN design issues with particular emphasis on the design of MAC protocols and power consumption profiles of WBAN. Some simulation results are presented to further illustrate the performances of various WBAN design techniques.  相似文献   

13.
Wireless personal area network (WPAN) is an emerging in wireless technology for short range indoor and outdoor communication applications. A more specific category of WPAN is the wireless body area network (WBAN) used for health monitoring. On the other hand, multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) comes with a number of desirable features at the physical layer for wireless communications, for example, very high data rate. One big challenge in adoption of multiband UWB in WBAN is the fact that channel estimation becomes difficult under the constraint of extremely low transmission power. Moreover, the heterogeneous environment of WBAN causes a dense multipath wireless channel. Therefore, effective channel estimation is required in the receiver of WBAN-based healthcare system that uses multiband UWB. In this paper, we first outline the MB-OFDM UWB system. Then, we present an overview of channel estimation techniques proposed/investigated for multiband UWB communications with emphasis on their strengths and weaknesses. Useful suggestions are given to overcome the weaknesses so that these methods can be particularly useful for WBAN channels. Also, we analyze the comparative performances of the techniques using computer simulation in order to find the energy-efficient channel estimation methods for WBAN-based healthcare systems.  相似文献   

14.
Wireless body area network (WBANs) is composed of sensors that collect and transmit a person’s physiological data to health-care providers in real-time. In order to guarantee security of this data over open networks, a secure data transmission mechanism between WBAN and application provider’s servers is of necessity. Modified medical data does not provide a true reflection of an individuals state of health and its subsequent use for diagnosis could lead to an irreversible medical condition. In this paper, we propose a lightweight certificateless signcryption scheme for secure transmission of data between WBAN and servers. Our proposed scheme not only provides confidentiality of data and authentication in a single logical step, it is lightweight and resistant to key escrow attacks. We further provide security proof that our scheme provides indistinguishability against adaptive chosen ciphertext attack and unforgeability against adaptive chosen message attack in random oracle model. Compared with two other Diffie-Hellman based signcryption schemes proposed by Barbosa and Farshim (BF) and another by Yin and Liang (YL), our scheme consumes 46 % and 8 % less energy during signcryption than BF and YL scheme respectively.  相似文献   

15.
Recent advances in medical treatment and emergency applications, the need of integrating wireless body area network (WBAN) with cloud computing can be motivated by providing useful and real time information about patients’ health state to the doctors and emergency staffs. WBAN is a set of body sensors carried by the patient to collect and transmit numerous health items to medical clouds via wireless and public communication channels. Therefore, a cloud-assisted WBAN facilitates response in case of emergency which can save patients’ lives. Since the patient’s data is sensitive and private, it is important to provide strong security and protection on the patient’s medical data over public and insecure communication channels. In this paper, we address the challenge of participant authentication in mobile emergency medical care systems for patients supervision and propose a secure cloud-assisted architecture for accessing and monitoring health items collected by WBAN. For ensuring a high level of security and providing a mutual authentication property, chaotic maps based authentication and key agreement mechanisms are designed according to the concept of Diffie-Hellman key exchange, which depends on the CMBDLP and CMBDHP problems. Security and performance analyses show how the proposed system guaranteed the patient privacy and the system confidentiality of sensitive medical data while preserving the low computation property in medical treatment and remote medical monitoring.  相似文献   

16.
为满足工业应用低成本、易扩展应用范畴等特殊需求,运用我国自主知识产权无线WIA网络,基于无线模块设计了一种全输入无线温度变送器。该变送器根据传感器类型用模拟开关选择测温电路,设计Pt100作为热电偶的冷端温度补偿,并且通过对模数转换单元、电源电路和接口等硬件设计,对主程序、通信和模数采集程序的软件设计,实现了温度数据的无线传输。该变送器支持Modbus协议传输,测试结果表明该变送器通信稳定、功耗较低,符合产品设计要求。  相似文献   

17.
Recently, Wireless Body Area Network (WBAN) has witnessed significant attentions in research and product development due to the growing number of sensor-based applications in healthcare domain. Design of efficient and effective Medium Access Control (MAC) protocol is one of the fundamental research themes in WBAN. Static on-demand slot allocation to patient data is the main approach adopted in the design of MAC protocol in literature, without considering the type of patient data specifically the level of severity on patient data. This leads to the degradation of the performance of MAC protocols considering effectiveness and traffic adjustability in realistic medical environments. In this context, this paper proposes a Traffic Priority-Aware MAC (TraPy-MAC) protocol for WBAN. It classifies patient data into emergency and non-emergency categories based on the severity of patient data. The threshold value aided classification considers a number of parameters including type of sensor, body placement location, and data transmission time for allocating dedicated slots patient data. Emergency data are not required to carry out contention and slots are allocated by giving the due importance to threshold value of vital sign data. The contention for slots is made efficient in case of non-emergency data considering threshold value in slot allocation. Moreover, the slot allocation to emergency and non-emergency data are performed parallel resulting in performance gain in channel assignment. Two algorithms namely, Detection of Severity on Vital Sign data (DSVS), and ETS Slots allocation based on the Severity on Vital Sign (ETS-SVS) are developed for calculating threshold value and resolving the conflicts of channel assignment, respectively. Simulations are performed in ns2 and results are compared with the state-of-the-art MAC techniques. Analysis of results attests the benefit of TraPy-MAC in comparison with the state-of-the-art MAC in channel assignment in realistic medical environments.  相似文献   

18.
It is of utmost importance to conserve battery energy to the maximum possible extent in WBAN nodes while collecting and transferring medical data. The IEEE 802.15.6 WBAN standard does not specify any method to conserve energy. This paper focuses on a method to conserve energy in IEEE 802.15.6 WBAN nodes when using CSMA/CA, while simultaneously restricting data delivery delay to the required value as specified in medical applications. The technique is to allow the nodes to sleep all the times except for receiving beacons and for transmitting data frames whenever a data frame enters an empty buffer. The energy consumed by the nodes and the average latency of data frame for periodical arrival of data are found out analytically. The analytical results are validated and also the proposed method is compared with other energy conserving schemes, using Castalia simulation studies. The proposed method shows superior performance in both device lifetime and latency of emergency medical data.  相似文献   

19.
Wireless body area network (WBAN) provides a medium through which physiological information could be harvested and transmitted to application provider (AP) in real time. Integrating WBAN in a heterogeneous Internet of Things (IoT) ecosystem would enable an AP to monitor patients from anywhere and at anytime. However, the IoT roadmap of interconnected ‘Things’ is still faced with many challenges. One of the challenges in healthcare is security and privacy of streamed medical data from heterogeneously networked devices. In this paper, we first propose a heterogeneous signcryption scheme where a sender is in a certificateless cryptographic (CLC) environment while a receiver is in identity-based cryptographic (IBC) environment. We then use this scheme to design a heterogeneous access control protocol. Formal security proof for indistinguishability against adaptive chosen ciphertext attack and unforgeability against adaptive chosen message attack in random oracle model is presented. In comparison with some of the existing access control schemes, our scheme has lower computation and communication cost.  相似文献   

20.
Internet of Things (IoT) provides the collection of devices in different applications in which Wireless Body Area Network (WBAN) is placed an crucial role. The WBAN is a wireless sensor network consisting of sensor nodes that is collected from IoT which is implanted in the human body to remotely monitor the patient’s physiological signals without affecting their routine work. During emergency situations or life-threatening situations there is a need for a better performance to deliver the actual data with an efficient transmission and there is still a challenge in efficient remote monitoring. So, in this paper an application for cross layer protocol design architecture of Elliptic Curve Digital Signature Algorithm (ECDSA) has been proposed. It replaces the protocol architecture of WBAN (IEEE 802.15.6), WMAN (IEEE 802.16), and 3G, WLAN (IEEE 802.11) or wired networks. The lightweight secure system provides secure data transmission and access control mechanisms by using ECDA-based proxy signature algorithm. The efficiency of the system is implemented using simulation models that were developed using NS-2, and the results obtained shows an optimum solution in terms of delay, PDR, throughput, jitter, packet transmission time, dropping ratio and packet delivery. The viability of the methodology proposed is illustrated by the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号