首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most tissues IGF2 is expressed from the paternal allele while H19 is expressed from the maternal allele. We have previously shown that in some Wilms tumors the maternal IGF2 imprint is relaxed such that the gene is expressed biallelically. We have now investigated this subset of tumors further and found that biallelic expression of IGF2 was associated with undetectable or very low levels of H19 expression. The relaxation of IGF2 imprinting in Wilms tumors also involved a concomitant reversal in the patterns of DNA methylation of the maternally inherited IGF2 and H19 alleles. Furthermore, the only specific methylation changes that occurred in tumors with relaxation of IGF2 imprinting were solely restricted to the maternal IGF2 and H19 alleles. These data suggest that there has been an acquisition of a paternal epigenotype in these tumors as the result of a pathologic disruption in the normal imprinting of the IGF2 and H19 genes.  相似文献   

2.
It is thought that the H19 imprinting control region (ICR) directs the silencing of the maternally inherited Igf2 allele through a CTCF-dependent chromatin insulator. The ICR has been shown to interact physically with a silencer region in Igf2, differentially methylated region (DMR)1, but the role of CTCF in this chromatin loop and whether it restricts the physical access of distal enhancers to Igf2 is not known. We performed systematic chromosome conformation capture analyses in the Igf2/H19 region over >160 kb, identifying sequences that interact physically with the distal enhancers and the ICR. We found that, on the paternal chromosome, enhancers interact with the Igf2 promoters but that, on the maternal allele, this is prevented by CTCF binding within the H19 ICR. CTCF binding in the maternal ICR regulates its interaction with matrix attachment region (MAR)3 and DMR1 at Igf2, thus forming a tight loop around the maternal Igf2 locus, which may contribute to its silencing. Mutation of CTCF binding sites in the H19 ICR leads to loss of CTCF binding and de novo methylation of a CTCF target site within Igf2 DMR1, showing that CTCF can coordinate regional epigenetic marks. This systematic chromosome conformation capture analysis of an imprinting cluster reveals that CTCF has a critical role in the epigenetic regulation of higher-order chromatin structure and gene silencing over considerable distances in the genome.  相似文献   

3.
4.
The H19 locus acts in vivo as a tumor suppressor   总被引:2,自引:0,他引:2  
The H19 locus belongs to a cluster of imprinted genes that is linked to the human Beckwith-Wiedemann syndrome. The expression of H19 and its closely associated IGF2 gene is frequently deregulated in some human tumors, such as Wilms' tumors. In these cases, biallelic IGF2 expression and lack of expression of H19 are associated with hypermethylation of the imprinting center of this locus. These observations and others have suggested a potential tumor suppressor effect of the H19 locus. Some studies have also suggested that H19 is an oncogene, based on tissue culture systems. We show, using in vivo murine models of tumorigenesis, that the H19 locus controls the size of experimental teratocarcinomas, the number of polyps in the Apc murine model of colorectal cancer and the timing of appearance of SV40-induced hepatocarcinomas. The H19 locus thus clearly displays a tumor suppressor effect in mice.  相似文献   

5.
We have analyzed several cases of Beckwith-Wiedemann syndrome (BWS) with Wilms' tumor in a familial setting, which give insight into the complex controls of imprinting and gene expression in the chromosome 11p15 region. We describe a 2.2-kbp microdeletion in the H19/insulin-like growth factor 2 (IGF2)-imprinting center eliminating three target sites of the chromatin insulator protein CTCF that we believe here is necessary, but not sufficient, to cause BWS and Wilms' tumor. Maternal inheritance of the deletion is associated with IGF2 loss of imprinting and up-regulation of IGF2 mRNA. However, in at least one affected family member a second genetic lesion (a duplication of maternal 11p15) was identified and accompanied by a further increase in IGF2 mRNA levels 35-fold higher than control values. Our results suggest that the combined effects of the H19/IGF2-imprinting center microdeletion and 11p15 chromosome duplication were necessary for manifestation of BWS.  相似文献   

6.
7.
目的了解胰岛素生长因子2(1GF2)和H19基因在糖尿病与非糖尿病孕妇胎盘中表达水平以及印迹状态的变化。方法选取2009年2月至9月在北京大学第一医院分娩的糖尿病孕妇33例为病例组,其中妊娠期糖尿病(GDM)患者23例,糖尿病合并妊娠患者10例,同期分娩的无妊娠合并症的非糖尿病孕妇31名为对照组。提取胎盘组织中的RNA和DNA,采用实时定量聚合酶链反应(real—timePCR)方法比较病例组和对照组中IGF2和H19基因表达量的变化,采用限制性片段长度多态性(RELP)方法比较2者印迹状态的变化。统计学方法采用非配对样本t检验。结果(1),G砣基因在病例组胎盘中表达量高于对照组,差异具有统计学意义(分别为2.4±1.2、1.94-0.8,t:-2.2,P〈0.05);H19基因在病例组胎盘中表达量高于对照组,但差异无统计学意义(分别为7.2±3.6、6.14-2.7,t=-1.5,P〉0.05);(2)IGF2基因Apal位点的杂合率为60.9%(39/64),H19基因Rsal位点的杂合率为34.4%(22/64);(3),GF2基因Apal位点和H19基因Rsal位点在病例组和对照组杂合子胎盘中均无印迹丢失。结论(1)IGF2基因在糖尿病孕妇胎盘中表达量增加;(2)IGF2基因和H19基因在糖尿病孕妇胎盘中无印迹丢失发生,是否发生其他位点或DMR区的甲基化变化仍有待于进一步研究。  相似文献   

8.
Imprinting is an epigenetic modification leading to monoallelic expression of some genes, and disrupted imprinting is believed to be a barrier to human stem cell transplantation, based on studies that suggest that epigenetic marks are unstable in mouse embryonic germ (EG) and embryonic stem (ES) cells. However, stem cell imprinting has not previously been examined directly in humans. We found that three imprinted genes, TSSC5, H19, and SNRPN, show monoallelic expression in in vitro differentiated human EG-derived cells, and a fourth gene, IGF2, shows partially relaxed imprinting at a ratio from 4:1 to 5:1, comparable to that found in normal somatic cells. In addition, we found normal methylation of an imprinting control region (ICR) that regulates H19 and IGF2 imprinting, suggesting that imprinting may not be a significant epigenetic barrier to human EG cell transplantation. Finally, we were able to construct an in vitro mouse model of genomic imprinting, by generating EG cells from 8.5-day embryos of an interspecific cross, in which undifferentiated cells show biallelic expression and acquire preferential parental allele expression after differentiation. This model should allow experimental manipulation of epigenetic modifications of cultured EG cells that may not be possible in human stem cell studies.  相似文献   

9.
We have previously linked aging, carcinogenesis, and de novo methylation within the promoter of the estrogen receptor (ER) gene in human colon. We now examine the dynamics of this process for the imprinted gene for insulin-like growth factor II (IGF2). In young individuals, the P2-4 promoters of IGF2 are methylated exclusively on the silenced maternal allele. During aging, this promoter methylation becomes more extensive and involves the originally unmethylated allele. Most adult human tumors, including colon, breast, lung, and leukemias, exhibit increased methylation at the P2-4 IGF2 promoters, suggesting further spreading during the neoplastic process. In tumors, this methylation is associated with diminished or absent IGF2 expression from the methylated P3 promoter but maintained expression from P1, an upstream promoter that is not contained within the IGF2 CpG island. Our results demonstrate a remarkable evolution of methylation patterns in the imprinted promoter of the IGF2 gene during aging and carcinogenesis, and provide further evidence for a potential link between aberrant methylation and diseases of aging.  相似文献   

10.
11.
《Annales d'endocrinologie》2017,78(2):112-113
Fetal growth is a complex process. Its restriction is associated with morbidity and long-term metabolic consequences. Imprinted genes have a critical role in mammalian fetal growth. Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS) are two imprinting disorders with opposite fetal growth disturbance. SRS is leading to severe fetal and postnatal growth retardation with severe feeding difficulties during early childhood and long-term metabolic consequences and BWS is an overgrowth syndrome with an enhanced risk of tumors during childhood. Epigenetic (abnormal methylation at the imprinting center regions) or genetic (mutations, duplications, uniparental disomy [UPD]) including defects of imprinted genes on chromosome 11 (BWS and SRS), 7 (SRS) and more recently 14 (SRS) have been identified in these two syndromes. In humans, the 11p15 region contains genes important for the regulation of fetal and postnatal growth. This region includes two imprinted domains: the IGF2/H19 domain regulated by imprinting center region 1 (ICR1 or H19/IGF2:IG-DMR) and the CDKN1C/KCNQ1OT1 domain regulated by ICR2 (or KCNQ1OT1: TSS DMR).  相似文献   

12.
肺癌胰岛素样生长因子-2基因印迹的研究   总被引:1,自引:0,他引:1  
目的探讨胰岛素样生长因子-2(IGF2)基因印迹(genomicimprinting)与肺癌发生发展过程的关系。方法于2003年1月至2004年1月,对大连医科大学附属第一医院胸外科手术切除的标本,根据IGF2基因第9外显子具有ApaI位点多肽性,利用聚合酶链反应(PCR)技术结合限制性片段长度多态性(RFLP)技术,诊断的32例肺癌患者及其对应的癌周正常肺组织进行了IGF2基因印迹的研究。结果12例患者为杂合子信息个体(37·5%),其中10例为IGF2双等位基因表达,即发生了基因印迹缺失(LOI,83·3%),而且这10例病人中有4例的癌周正常肺组织表现为IGF2弱的双等位基因表达。结论IGF2基因的印迹缺失参与了肺癌的发生发展过程。  相似文献   

13.
OBJECTIVE: The human insulin-like growth factor 2 (IGF2) gene was thought to be imprinted and expressed only from the paternal allele in normal tissue. MATERIALS AND METHODS: Initially, we analyzed the imprinting status of IGF2 in bone marrow cells from 49 patients with myelodysplastic syndromes (MDS) utilizing the Apa I polymorphism of IGF2. Thirteen bone marrow and 14 peripheral blood samples from normal individuals served as controls. We utilized normal peripheral blood T lymphocytes to examine the relationship between genomic imprinting and cell proliferation. Expression of IGF2 was quantified by real-time PCR and proliferation of T cells was measured by 3H-thymidine incorporation. Furthermore, methylation status of the imprinting controlling region (ICR) was analyzed by subcloning and sequencing of genomic DNA after sodium bisulfite modification. RESULTS: Among 24 patients who were heterozygous for IGF2, loss of imprinting (LOI) occurred in 22 cases (92%). Surprisingly, LOI of IGF2 occurred in the normal bone marrow cells, but the normal peripheral blood cells showed retention of imprinting (ROI). Unstimulated normal T cells showed ROI. After 24 hours of exposure to PHA, these cells changed their IGF2 imprinting status from ROI to LOI. Concomitantly, their IGF2 RNA levels increased up to sixfold and their proliferation increased 10- to 20-fold. In contrast, normal T cells not stimulated with PHA did not develop LOI of IGF2, had negligible levels of IGF2 RNA, and did not increase their proliferation. In unstimulated T cells, the CpG islands of the ICR were completely methylated on one allele and nearly completely unmethylated on the other allele. After PHA stimulation, the CpG islands at the ICR became completely methylated on both alleles. CONCLUSION: LOI of IGF2 is strongly associated with cell proliferation and is not limited to cancer cells.  相似文献   

14.
15.
Genomic imprinting is a reversible condition that causes parental-specific silencing of maternally or paternally inherited genes. Analysis of DNA and RNA from 52 human hepatocarcinoma samples revealed abnormal imprinting of genes located at chromosome 11p15 in 51% of 37 informative samples. The most frequently detected abnormality was gain of imprinting, which led to loss of expression of genes present on the maternal chromosome. As compared with matched normal liver tissue, hepatocellular carcinomas showed extinction or significant reduction of expression of one of the alleles of the CDKN1C, SLC22A1L, and IGF2 genes. Loss of maternal-specific methylation at the KvDMR1 locus in hepatocarcinoma correlated with abnormal expression of CDKN1C and IGF2, suggesting a function for KvDMR1 as a long-range imprinting center active in adult tissues. These results point to the role of epigenetic mechanisms leading to loss of expression of imprinted genes at chromosome region 11p15 in human tumors.  相似文献   

16.
17.
CTCF physically links cohesin to chromatin   总被引:1,自引:0,他引:1  
Cohesin is required to prevent premature dissociation of sister chromatids after DNA replication. Although its role in chromatid cohesion is well established, the functional significance of cohesin's association with interphase chromatin is not clear. Using a quantitative proteomics approach, we show that the STAG1 (Scc3/SA1) subunit of cohesin interacts with the CCTC-binding factor CTCF bound to the c-myc insulator element. Both allele-specific binding of CTCF and Scc3/SA1 at the imprinted IGF2/H19 gene locus and our analyses of human DM1 alleles containing base substitutions at CTCF-binding motifs indicate that cohesin recruitment to chromosomal sites depends on the presence of CTCF. A large-scale genomic survey using ChIP-Chip demonstrates that Scc3/SA1 binding strongly correlates with the CTCF-binding site distribution in chromosomal arms. However, some chromosomal sites interact exclusively with CTCF, whereas others interact with Scc3/SA1 only. Furthermore, immunofluorescence microscopy and ChIP-Chip experiments demonstrate that CTCF associates with both centromeres and chromosomal arms during metaphase. These results link cohesin to gene regulatory functions and suggest an essential role for CTCF during sister chromatid cohesion. These results have implications for the functional role of cohesin subunits in the pathogenesis of Cornelia de Lange syndrome and Roberts syndromes.  相似文献   

18.
19.
Epigenetic mechanisms play a key role in regulating gene expression. One hallmark of these modifications is DNA methylation at cytosine residues of CpG dinucleotides in gene promoters, transposons and imprinting control regions. Genomic imprinting refers to an epigenetic marking of genes that results in monoallelic expression depending on their parental origin. There are two critical time periods in epigenetic reprogramming: gametogenesis and early preimplantation development. Major reprogramming takes place in primordial germ cells in which parental imprints are erased and totipotency is restored [1]. Imprint marks are then and re-established during spermatogenesis or oogenesis, depending on sex [1], [2] and [3]. Upon fertilization, genome-wide demethylation occurs followed by a wave of de novo methylation, both of which are resisted by imprinted loci [4]. Epigenetic patterns are usually faithfully maintained during development. However, this maintenance sometimes fails, resulting in the disturbance of epigenetic patterns and human disorders. For example, two fetal growth disorders, the Beckwith-Wiedemann (BWS) and the Silver-Russell (SRS) syndromes with opposite phenotypes, are caused by abnormal DNA methylation at the 11p15 imprinted locus [5], [6] and [7]: respectively loss of methylation at the Imprinting Region Center (ICR2) or gain of methylation at ICR1 in BWS and loss of methylation at ICR1 in SRS. Early embryogenesis is a critical time for epigenetic regulation, and this process is sensitive to environmental factors. The use of assisted reproductive technology (ART) has been shown to induce epigenetic alterations and to affect fetal growth and development [8], [9], [10] and [11]. In humans, several imprinting disorders, including BWS, occur at significantly higher frequencies in children conceived with the use of ART than in children conceived spontaneously [12] and [13]. The cause of these epigenetic imprinting disorders (following ART, unfertility causes, hormonal hyperstimulation, in vitro fertilization-IVF, Intracytoplasmic sperm injection-ICSI, micro-manipulation of gametes, exposure to culture medium, in vitro ovocyte maturation, time of transfer) remains unclear. However, recent data have shown that in patients with BWS or SRS, including those born following the use of ART, the DNA methylation defect involves imprinted loci other than 11p15 [14] and [15] (11p15 region: CTCF binding sites at ICR1, H19 and IGF2 DMRs, KCNQ1OT1 [ICR2], SNRPN [chromosome 15 q11-13], PEG/MEST1 [chromosome 7q31], IGF type2 receptor and ZAC1 [chromosome 6q26 et 6q24 respectively], DLK1/GTL2-IG-DMR [chromosome 14q32] and GNAS locus [chromosome 20q13.3]). This suggests that unfaithful maintenance of DNA methylation marks following fertilization involves the dysregulation of a trans-acting regulatory factor that could be altered by ART.  相似文献   

20.
We hypothesize that loss of imprinting (LOI) of the insulin-like growth factor II (IGF2) gene is associated with a predisposition to sporadic colorectal cancer. We confirmed a previously known strong correlation between LOI and microsatellite instability and showed that LOI was not a consequence of microsatellite instability or mismatch repair deficiency. LOI of IGF2 correlated strongly with biallelic hypermethylation of a core of five CpG sites in the insulator region of IGF2/H19, which is a known CTCF-binding element. As this methylation-dependent LOI was present in both tumors and normal colonic mucosa, it is possible that hypermethylation creates a field defect predisposing to cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号