首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion.Downregulation of microRNA(miR)-455-5p after ischemic stroke has been considered a potential biomarker and therapeutic target for neuronal injury after ischemia.However,the role of miR-455-5p in the post-ischemia/reperfusion inflammatory response and the underlying mechanism have not been evaluated.In this study,mouse models of cerebral ischemia/reperfusion injury were established by transient occlusion of the middle cerebral artery for 1 hour followed by reperfusion.Agomir-455-5p,antagomir-455-5p,and their negative controls were injected intracerebroventricularly 2 hours before or 0 and 1 hour after middle cerebral artery occlusion(MCAO).The results showed that cerebral ischemia/reperfusion decreased miR-455-5p expression in the brain tissue and the peripheral blood.Agomir-455-5p pretreatment increased miR-455-5p expression in the brain tissue,reduced the cerebral infarct volume,and improved neurological function.Furthermore,primary cultured microglia were exposed to oxygen-glucose deprivation for 3 hours followed by 21 hours of reoxygenation to mimic cerebral ischemia/reperfusion.miR-455-5p reduced C-C chemokine receptor type 5 mRNA and protein levels,inhibited microglia activation,and reduced the production of the inflammatory factors tumor necrosis factor-αand interleukin-1β.These results suggest that miR-455-5p is a potential biomarker and therapeutic target for the treatment of cerebral ischemia/reperfusion injury and that it alleviates cerebral ischemia/reperfusion injury by inhibiting C-C chemokine receptor type 5 expression and reducing the neuroinflammatory response.  相似文献   

3.
Previous studies have indicated that electrical stimulation of the cerebellar fastigial nucleus in rats may reduce brain infarct size, increase the expression of Ku70 in cerebral ischemia/ reperfusion area, and decrease the number of apoptotic neurons. However, the anti-apoptotic mechanism of Ku70 remains unclear. In this study, fastigial nucleus stimulation was given to rats 24, 48, and 72 hours before cerebral ischemia/reperfusion injury. Results from the electrical stim- ulation group revealed that rats exhibited a reduction in brain infarct size, a significant increase in the expression of KuT0 in cerebral ischemia/reperfusion regions, and a decreased number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Double immunofluorescence staining revealed no co-localization of Ku70 with TUNEL-positive cells. However, Ku70 partly co-localized with Bax protein in the cytoplasm of rats with cerebral ischemia/reperfusion injury. These findings suggest an involvement of Ku70 with Bax in the cy- toplasm of rats exposed to electrical stimulation of the cerebellar fastigial nucleus, and may thus provide an understanding into the anti-apoptotic activity of KuT0 in cerebral ischemia/reperfu- sion injury.  相似文献   

4.
Objective: To investigate the changes in serum miR-124 levels in patients with acute cerebral infarction (ACI) and elucidate the underlying mechanism by a dynamic monitor.

Methods: Fifty-four patients with ACI and 51 healthy controls were included in our study. Baseline characteristics and blood samples were collected for further analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the serum miR-124 levels. The dual-luciferase reporter assay was used to evaluate the effect of miR-124 on iASPP, a protein that inhibits apoptosis stimulating proteins in the p53 family.

Results: Compared with normal controls, the miR-124 levels in the ACI group rapidly decreased at phase 1 (within 24?h after ischemia) (p?<?0.001) and then gradually increased at phase 2 (48?~?72?h after ischemia) (p?<?0.001) and phase 3 (the 7th day after ischemia) (p?<?0.001). The dual-luciferase reporter assay showed that miR-124 down-regulates iASPP expression in 293T cells.

Conclusion: The miR-124 levels are down-regulated in ACI patients. The dynamic changes of miR-124 might provide a possible method for the detection of ischemic stroke.

  • Highlights
  • The difference in miR-124 expression levels between ACI patients and normal controls.

  • Dynamic changes of miR-124 expression levels in ACI patients.

  • The down-regulation of miR-124 upon iASPP expression.

  相似文献   

5.
The mechanism of early blood–brain barrier (BBB) disruption after stroke has been intensively studied but still not fully understood. Here, we report that microRNA-30a (miR-30a) could mediate BBB damage using both cellular and animal models of ischemic stroke. In the experiments in vitro, inhibition of miR-30a decreased BBB permeability, prevented the degradation of tight junction proteins, and reduced intracellular free zinc in endothelial cells. We found that the zinc transporter ZnT4 was a direct target of negative regulation by miR-30a, and ZnT4/zinc signaling pathway contributed significantly to miR-30a-mediated BBB damage. Consistent with these in vitro findings, treatment with miR-30a inhibitor reduced zinc accumulation, increased the expression of ZnT4, and prevented the loss of tight junction proteins in microvessels of ischemic animals. Furthermore, inhibition of miR-30a, even at 90 min post onset of middle cerebral artery occlusion, prevented BBB damage, reduced infarct volume, and ameliorated neurological deficits. Together, our findings provide novel insights into the mechanisms of cerebral ischemia-induced BBB disruption and indicate miR-30a as a regulator of BBB function that can be an effective therapeutic target for ischemic stroke.  相似文献   

6.
Objective: Ischaemic stroke has a high death rate and frequently results in long-term and severe brain damage in survivors. miRNA-124-3p (miR-124-3p) treatment has been suggested to reduce ischaemia and play a vital function in avoiding neuron death. An investigation of the role of miR-124-3p, in the ischaemia damage repair or protection in the middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation/reperfusion (OGD/R) model, was the purpose of this research. Methods: The expression of miRNA and mRNA in the MCAO model was predicted using bioinformatics analysis. The OGD/R neuronal model was developed. We examined the influence of a number of compounds on the OGD/R model in vitro using gain- and loss-of-function approaches. Results: For starters, miR-124-3p and Nrep level in the MCAO model were found to be lower in the model predicted by bioinformatics than in the sham-operated group. And then in the OGD/R model, miR-124-3p treatment reduced OGD/R neuronal damage, increased neuronal survival, and reduced apoptosis in cell lines. Moreover, we further looked at the impact of miR-124-3p on downstream Rnf38 and Nrep using the OGD/R model. Western blot analysis and dual-luciferase reporter assays indicated that miR-124-3p binds and inhibits Rnf38. Finally, although Nrep expression was reduced in the OGD/R model neuronal model, it was shown that miR-124-3p administration reduced apoptosis and increased neuronal activity, particularly with regard to axon regeneration-related proteins. Conclusion: Our studies have shown that miR-124-3p may reduce neuronal injury by preventing Rnf38-mediated effects on the Nrep axis.  相似文献   

7.
目的观察脑缺血后室管膜下区(SEZ区)miR-124及Sox9mRNA的表达变化,探讨miR-124对脑缺血后神经干细胞增殖分化的影响。方法12只雄性SD大鼠随机分为实验组9只和对照组3只。实验组制作大脑中动脉缺血再灌注模型.分别于造模后第1、3、7天处死3只大鼠,取SEZ区用于实验;对照组仅暴露动脉。采用免疫荧光细胞染色法检测Nestin的表达,实时PCR检测miR-124及Sox9mRNA的表达水平。结果实验组SEZ区Nestin阳性细胞数较对照组明显增加.且在造模后l、3、7d呈递增趋势(P〈0.05);实验组miR-124表达显著上调,造模后l、3、7d分别为对照组的(1.63±0.13)、(3.67±0.28)、(2.08±0.11)倍(P〈O.05);实验组Sox9mRNA表达显著下调,造模后1、3、7d分别为对照组的O.85±0.90、0.29±0.34、0.49±O.36(P〈0.05)。结论脑缺血可促进SEZ区神经干细胞增殖,在神经细胞新生过程中miR一124表达上调.同时其靶基因Sox9mRNA表达下调。  相似文献   

8.
Matrix metallinoprotease-9 (MMP9) plays a key role in the pathogenesis of post-ischemic blood brain barrier (BBB) disruption and the formation of lesions after cerebral ischemia. In this study we investigate the effect of brain-specific miRNAs on MMP-9 protein level in the rat hippocampus following cerebral ischemia and its underlying mechanism. Cerebral ischemia significantly upregulated miR-21 and -224 in the hippocampus; however, expression of miR-122 and -338-3p was not significantly affected by ischemia. Silencing of miR-21, but not -224, reduced MMP9 protein level after cerebral ischemia. Downregulation of extracellular signal-regulated kinase (ERK) signaling using the ERK inhibitor U0126 and the calcium-channel blocker ketamine inhibited the upregulation of miR-21 expression and MMP9 protein level after cerebral ischemia. The study suggests that cerebral ischemia up-regulates expression level of miR-21, which is involved in ERK-stimulated upregulation of MMP9 following cerebral ischemia via a calcium-dependent mechanism.  相似文献   

9.
MicroRNAs (miRNA) are short (~ 22 nt) single stranded RNAs that downregulate gene expression. Although recent studies indicate extensive miRNA changes in response to ischemic brain injury, there is currently little information on the roles of specific miRNAs in this setting. Heat shock proteins (HSP) of the HSP70 family have been extensively studied for their multiple roles in cellular protection, but there is little information on their regulation by miRNAs. We used bioinformatics to identify miR-181 as a possible regulator of several HSP70 family members. We validated GRP78/BIP as a target by dual luciferase assay. In response to stroke in the mouse we find that miR-181 increases in the core, where cells die, but decreases in the penumbra, where cells survive. Increased levels of miR-181a are associated with decreased GRP78 protein levels, but increased levels of mRNA, implicating translational arrest. We manipulated levels of miR-181a using plasmid overexpression of pri-miR-181ab or mimic to increase, and antagomir or inhibitor to reduce levels. Increased miR-181a exacerbated injury both in vitro and in the mouse stroke model. Conversely, reduced levels were associated with reduced injury and increased GRP78 protein levels. Studies in C6 cells show that if GRP78 levels are maintained miR-181a no longer exerts a toxic effect. These data demonstrate that miR-181 levels change in response to stroke and inversely correlate with levels of GRP78. Importantly, reducing or blocking miR-181a protects the brain from stroke.  相似文献   

10.
11.
目的 探讨RNA-18a在脑梗死中的作用。方法 在糖氧剥夺后通过qRT-PCR方法分析miR-18a的表达水平,通过Western blot 和 qRT-PCR方法检测ATXN1表达水平。MiR-18a mimics转移到PC12内上调miR-18a的表达; miR-18a的目标是预测生物学信息并用萤光素酶报告基因分析证实; 大脑中动脉闭塞1 h后把Agomir-18a注射入脑室内; 大脑中动脉闭塞24 h后评估脑梗死体积、神经功能缺损评分和LDH水平。结果 与常氧组比较,缺氧组PC12细胞内miR-18a的表达水平明显下调,ATXN1 mRNA和蛋白的表达水平明显升高。萤光素酶报告基因分析提示miR-18a 直接作用ATXN1,而且当PC12转染miR-18a mimics 时ATXN1表达水平明显增高。此外,注入miR-18a激动剂24 h后脑梗死体积显著减小,同样的改变表现在神经功能缺损评分和LDH水平。结论 miR-18a可以缓解大脑中动脉永久性闭塞和ATXN1所致的脑损伤,miR-18a激动剂或许可以作为一种有效的治疗脑梗死的方法。  相似文献   

12.
Stroke, an age-related disorder involving degeneration of neurons resulting from cerebral ischemia, is a major cause of disability and mortality. Although dietary restriction (DR) extends lifespan and reduces levels of cellular oxidative stress in several different organ systems including the brain, the impact of DR on ischemic brain injury is unknown. We report that maintenance of adult rats on a DR regimen resulted in reduced brain damage and improved behavioral outcome in a middle cerebral artery occlusion-reperfusion (MCAO-R) stroke model. Administration of 2-deoxyglucose (2-DG), a nonmetabolizable analogue of glucose, to rats fed ad libitum resulted in reduced ischemic brain damage and improved behavioral outcome following MCAO-R. 2-DG protected cultured hippocampal neurons against chemical hypoxia, demonstrating a direct protective action on neurons. DR and 2-DG administration resulted in an increase in the level of the stress protein heat-shock protein 70 (HSP-70) in striatal cells in vivo, and 2-DG treatment induced HSP-70 in cultured neurons suggesting involvement of a preconditioning stress response in the neuroprotective actions of DR and 2-DG. The neuroprotective effect of DR and 2-DG in this focal cerebral ischemia model suggests that outcome following stroke may be improved in individuals who follow a regimen of reduced food intake.  相似文献   

13.

Aims

Chemokine receptor 7 (CXCR7) exerts protective effects on the brain. MicroRNAs (miRNAs) are involved in cerebral ischemia/reperfusion (I/R) injury, but their involvement in CXCR7-mediated brain protection is unknown. In this study, we investigated the role of miRNAs in CXCR7-mediated brain protection.

Methods

CXCR7 levels in peripheral blood samples from patients with acute ischemic stroke (AIS) and ischemic penumbra area brain tissues from middle cerebral artery occlusion (MCAO) rats after recanalization were measured. An miRNA microarray analysis was performed to examine the expression of miRNAs caused by CXCR7 knockdown in ischemic penumbra area brain tissue in middle cerebral artery occlusion–reperfusion rats and to predict corresponding downstream target genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed the most enriched pathways. A dual-luciferase reporter assay confirmed the direct regulation of miR-182 on the target gene TCF7L2. The correlation between TCF7L2 and CXCR7/miR-182 was verified using rescue assays.

Results

CXCR7 expression was upregulated in MCAO rats and mechanical thrombectomy patients with AIS compared to that in controls. The motor and sensory functions of MCAO rats with CXCR7 knockdown further decreased, and the infarct volume and cerebral edema increased. miRNA microarray data showed that seven miRNAs were differentially expressed after shRNA-CXCR7 treatment. The dual-luciferase reporter assay confirmed that miR-182 directly targeted the TCF7L2 gene. Rescue assays confirmed that TCF7L2 is downstream of CXCR7/miR-182. KEGG pathway analysis showed that the Hippo pathway may be a key pathway in CXCR7 upregulation and plays a role in protecting the brain after interventional surgery. Animal experiments have shown that CXCR7-mediated cerebral I/R injury promotes the phosphorylation of key molecules YAP and TAZ in the Hippo pathway.

Conclusion

CXCR7 protects against cerebral I/R injury, possibly via the miR-182/TCF7L2/Hippo pathway. These results indicate that CXCR7 affects cerebral ischemia–reperfusion injury through miRNA regulation and downstream pathways.  相似文献   

14.
AimsBone morphogenetic proteins (BMPs) are a group of proteins related to bone morphogenesis. BMP‐binding endothelial regulator (BMPER), a secreted protein that interacts with BMPs, is known to be involved in ischemic injuries. Here, we explored the effects of BMPER on cerebral ischemia and its mechanism of action.MethodsA mouse model of brain ischemia was induced by middle cerebral artery occlusion (MCAO). An in vitro ischemic model was established by subjecting primary cultured neurons to oxygen‐glucose deprivation/reperfusion (OGD/R). Serum levels of BMPs/BMPER were measured in MCAO mice and in patients with acute ischemic stroke (AIS). Brain damages were compared between BMPER‐ and vehicle‐treated mice. Quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence staining were performed to examine neuroinflammation and cell death. BMPER‐related pathways were assessed by Western blotting.ResultsBMPER level was elevated in MCAO mice and AIS patients. BMPER administration reduced mortality, infarct size, brain edema, and neurological deficit after MCAO. Neuroinflammation and cell death after ischemia were alleviated by BMPER both in vivo and in vitro. BMPER activated the Smad3/Akt/Nrf2 pathway in OGD/R‐challenged neurons.ConclusionBMPER is a neuroprotective hormone that alleviates ischemic brain injury via activating the Smad3/Akt/Nrf2 pathway. These findings may provide potential therapeutic strategies for stroke.  相似文献   

15.
Recent studies on cerebral ischemic stroke have demonstrated the importance of the inflammatory response. Ongoing inflammatory insults have been implicated as a secondary mechanism underlying neuronal injury induced by ischemia, and anti-inflammatory strategies have gained considerable interest. Selenoprotein S (SelS), which is an endoplasmic reticulum resident protein, is known to promote cell survival by regulating inflammation. Moreover, SelS has been shown to be responsive to ischemia in cultured astrocytes. A Finnish report revealed that a variation in the SelS gene locus is associated with a higher predisposition to ischemic stroke in humans, suggesting a crucial role for SelS in protection against brain ischemia. However, the time-course of SelS expression following cerebral ischemia in vivo remains unknown. In the present study, we show, for the first time, differential SelS expression from 3 h to 7 days after reperfusion in rats with transient focal cerebral ischemia induced by a 1-h middle cerebral artery occlusion. We found that the SelS protein level decreased in the ischemic core 3–7 days after reperfusion. Furthermore, SelS expression was upregulated in the ischemic penumbra adjacent to the ischemic core 3–7 days after reperfusion and is matched by reactive astrogliosis. Thus, we propose that the upregulation of Sels represents a reaction of astrocytes against inflammatory stimuli, and the findings of this study open a new chapter in the research of the interrelationships between SelS and cerebral ischemic stroke.  相似文献   

16.
MicroRNAs(miRNAs) regulate protein expression by antagonizing the translation of mRNAs and are effective regulators of normal nervous system development, function, and disease. Micro RNA-29 b(mi R-29 b) plays a broad and critical role in brain homeostasis. In this study, we tested the function of mi R-29 b in animal and cell models by inhibiting mi R-29 b expression. Mouse models of middle cerebral artery occlusion were established using the modified Zea-Longa suture method. Prior to modeling, 50 nmol/kg mi R-29 b antagomir was injected via the tail vein. Mi R-29 b expression was found to be abnormally increased in ischemic brain tissue. The inhibition of mi R-29 b expression decreased the neurological function score and reduced the cerebral infarction volume and cell apoptosis. In addition, the inhibition of mi R-29 b significantly decreased the malondialdehyde level, increased superoxide dismutase activity, and Bcl-2 expression, and inhibited Bax and Caspase3 expression. PC12 cells were treated with glutamate for 12 hours to establish in vitro cell models of ischemic stroke and then treated with the mi R-29 antagomir for 48 hours. The results revealed that mi R-29 b inhibition in PC12 cells increased Bcl-2 expression and inhibited cell apoptosis and oxidative damage. These findings suggest that the inhibition of mi R-29 b inhibits oxidative stress and cell apoptosis in ischemic stroke, producing therapeutic effects in ischemic stroke. This study was approved by the Laboratory Animal Care and Use Committee of the First Affiliated Hospital of Zhengzhou University(approval No. 201709276 S) on September 27, 2017.  相似文献   

17.
MicroRNA (miRNA), miR-181a, is enriched in the brain, and inhibition of miR-181a reduced astrocyte death in vitro and infarct volume after stroke in vivo. This study investigated the role of miR-181a in neuronal injury in vitro and hippocampal neuronal loss in vivo after forebrain ischemia. miR-181a levels were altered by transfection with mimic or antagomir. N2a cells subjected to serum deprivation and oxidative stress showed less cell death when miR-181a was reduced and increased death when miR-181a increased; protection was associated with increased Bcl-2 protein. In contrast, transfected primary neurons did not show altered levels of cell death when miR-181a levels changed. Naive male rats and rats stereotactically infused with miR-181a antagomir or control were subjected to forebrain ischemia and cornus ammonis (CA)1 neuronal survival and protein levels were assessed. Forebrain ischemia increased miR-181a expression and decreased Bcl-2 protein in the hippocampal CA1 region. miR-181a antagomir reduced miR-181a levels, reduced CA1 neuronal loss, increased Bcl-2 protein, and significantly prevented the decrease of glutamate transporter 1. Thus, miR-181a antagomir reduced evidence of astrocyte dysfunction and increased CA1 neuronal survival. miR-181a inhibition is thus a potential target in the setting of forebrain or global cerebral ischemia as well as focal ischemia.  相似文献   

18.
19.
20.
Increased expression of heat shock protein 70 (HSP70) in the brain has been extensively documented in association with a variety of insults, including ischemia, and is suggested to play a role in cell survival and recovery after ischemic injury. To more directly assess the protective role of HSP70 during ischemic brain damage, we used transgenic mice overexpressing the rat HSP70 (HSP70tg mice). In contrast to wild-type (wt) littermates, high levels of HSP70 messenger RNA and protein were detected in brains of HSP70tg mice under normal conditions, and immunohistochemical analysis revealed primarily neuronal expression of HSP70. Heterozygous HSP70tg mice and their wt littermates were subjected to permanent focal cerebral ischemia by intraluminal blockade of the middle cerebral artery. Cerebral infarction after 6 hours of ischemia, as evaluated by Nissl staining, was significantly less in HSP70tg mice compared with wt mice. This reduction in infarction volume in HSP70tg mice was not attributable to an altered cardiovascular anatomy or to initial differences in body temperature or hemodynamic parameters. The HSP70tg mice were still protected against cerebral infarction 24 hours after permanent focal ischemia. The data suggest that HSP70 can markedly protect the brain against ischemic damage and that approaches aimed at inducing HSP70 may lead to new therapeutic interventions in cerebrovascular injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号