首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution and chemical coding of neurons supplying urinary bladder in the male pig were studied in the sympathetic chain ganglia, inferior mesenteric ganglia and anterior pelvic ganglia. The combined retrograde tracing and immunohistochemistry for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP), substance P (SP), choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) were applied in the experiment. Bladder-projecting neurons were found in all the ganglia studied. The majority of sympathetic ganglia neurons (inferior mesenteric ganglia and sympathetic chain ganglia) expressed immunoreactivity (IR) to DBH. In sympathetic chain ganglia these neurons simultaneously expressed NPY, GAL or VAChT, while in inferior mesenteric ganglia they contained NPY, SOM and/or GAL. A small number of these bladder-projecting neurons was VAChT-IR and some contained NPY. In the pelvic ganglia bladder-projecting neurons formed two populations: DBH- and VAChT-IR. Some of DBH-IR neurons contained IR to NPY, SOM or GAL, while VAChT-IR neurons were NPY-, SOM- or NOS-IR. The results indicate that sympathetic ganglia contain mainly adrenergic neurons, while pelvic ganglia contain both adrenergic and cholinergic neurons. All these neurons contain typical combinations of neuropeptides.  相似文献   

2.
3.
目的研究与慢性痛相关基因的特异表达,比较大鼠背根神经节损伤神经元与正常神经元之间基因表达的差异,以寻找构成神经病性疼痛的内在因素。方法应用mRNA差异显示方法从损伤背根神经节中寻找特异表达的基因。结果损伤侧背根节中cDNA条带(25.75±4.7)明显多于对照侧(18.0±5.0)。反向杂交后进行亚克隆得到10个含插入片段的阳性质粒,并对其中4个进行测序。结论神经轴突损伤可导致胞体基因表达改变,其中某些可能与痛觉异常有关,也可能与细胞结构恢复及免疫功能改变有关。  相似文献   

4.
5.
A combination of microspectrofluorimetry and single cell voltage-clamp was used to examine the response to ATP of cultured neurons from rat dorsal root ganglia. ATP activated an inward current and a rise in internal calcium concentration that was dependent on the external calcium concentration and on the magnitude of the ATP-induced current response. The response was not affected by prerelease of internal calcium stores with caffeine. The rise in internal calcium was increased at hyperpolarized membrane potentials as the calcium driving force was increased. These results demonstrate that the ATP-gated channels in these cells can admit a significant amount of calcium in a physiological calcium gradient. This alternative calcium entry pathway could provide an internal calcium signal that is spatially distinct to that generated by voltage-gated calcium entry.  相似文献   

6.
Both resiniferatoxin (RTX) and tetrodotoxin (TTX) have been reported to be effective in several urinary bladder dysfunction clinical trials. The aim of this study was to establish the effect of intravesical administration of RTX and TTX on neuropeptides Y (NPY) and tyrosine hydroxylase (TH) relationship in the paracervical ganglion (PCG) neurons supplying the urinary bladder in the pig. TH is an enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to dihydroxyphenylalanine (DOPA) and is used as a marker of catecholaminergic neurons. NPY augments the vasoconstrictor effects of noradrenergic neurons, and is involved in pathophysiological processes as a neuromodulator. To identify the PCG neurons supplying urinary bladder Fast Blue (FB) was injected into the bladder wall prior to intravesical RTX or TTX administration. Consequent application of immunocytochemical methods revealed that in control group 64.08 % of FB-positive PCG neurons contain NPY and 4.25 % TH. Intravesical infusion of RTX resulted upregulation of the NPY-IR neurons to 82.97 % and TH-IR to 43.78 %. Also administration of TTX induced further increase number of TH-IR neurons to 77.49 % but induced decrease number of NPY-IR neurons to 57.45 %. Both neurotoxins affect chemical coding of the PCG neural somata supplying urinary bladder, but the effects of their action are different. This results shed light on possible involvement of RTX and TTX on curing tissue, and potentially could help us to broaden our neurourological armamentarium.  相似文献   

7.
Prominent Expression of bFGF in Dorsal Root Ganglia after Axotomy   总被引:2,自引:0,他引:2  
Using quantitative in situ hybridization and immunohistochemistry the expression of acidic and basic fibroblast growth factors (aFGF, bFGF) in dorsal root ganglia (DRGs) was examined. Around 5% of the small neurons expressed bFGF mRNA in normal DRGs. Nerve injury induced a very dramatic and rapid up-regulation in bFGF mRNA levels, and around 80% of all DRG neurons expressed bFGF mRNA 3 days after axotomy. A distinct increase in bFGF-like immunoreactivity (LI) was also detected as early as 15 h after axotomy. The elevation of bFGF mRNA and protein levels declined after 1 week. bFGF mRNA was also up-regulated in non-neuronal cells following axotomy. Normally bFGF-LI was mainly localized in the nuclei of DRG neurons and in some non-neuronal cells. After nerve section, bFGF-LI was in addition found in the cytoplasm, and many more bFGF-positive non-neuronal cells were observed. By means of confocal microscopy analysis of axotomized DRGs, some bFGF-LI could be detected in vesicle-like structures in the cytoplasm as well as in the nucleoli, in addition to the nuclear location. Application of leukaemia inhibitory factor to the transected sciatic nerve significantly increased the number of bFGF-positive neurons, whereas the bFGF-LI in non-neuronal cells was strongly suppressed. About 70% of the normal DRG neurons expressed aFGF mRNA and aFGF-LI. Axotomy produced a moderate increase in aFGF mRNA levels, but no detectable effect on protein levels. Taken together, the results show that bFGF may be involved in the neuronal response to injury and suggest a role in neuronal survival and regeneration in axotomized DRG neurons.  相似文献   

8.
脊神经节感觉神经元特异蛋白的研究   总被引:7,自引:0,他引:7  
本研究从免神经组织中分离、纯化了脊神经节感觉神经元特异蛋白(SNSP),采用HPLC二级分离法分离、制备了SNSP,电泳结果显示该蛋白的分子量为29000,pI=7.8。将其作为抗原以杂交瘤技术制备了抗SNSP的单克隆抗体。免疫细胞化学研究结果显示,SNSP仅出现在脊髓灰质Ⅰ~Ⅱ板层背根脊神经节的中与小细胞以及周围神经的皮支中。氨基酸N端序列分析以及免疫组化的结果表明,29000蛋白是脊神经节感觉神经元特异蛋白,分布在浅感觉传入径路中。  相似文献   

9.
The expression of growth-associated protein GAP-43 mRNA in spinal cord and dorsal root ganglion (DRG) neurons has been studied using an enzyme linked in situ hybridization technique in neonatal and adult rats. High levels of GAP-43 mRNA are present at birth in the majority of spinal cord neurons and in all dorsal root ganglion cells. This persists until postnatal day 7 and then declines progressively to near adult levels (with low levels of mRNA in spinal cord motor neurons and 2000–3000 DRG cells expressing high levels) at postnatal day 21. A re-expression of GAP-43 mRNA in adult rats is apparent, both in sciatic motor neurons and the majority of L4 and L5 dorsal root ganglion cells, 1 day after sciatic nerve section. High levels of the GAP-43 mRNA in the axotomized spinal motor neurons persist for at least 2 weeks but decline 5 weeks after sciatic nerve section, with the mRNA virtually undetectable after 10 weeks. The initial changes after sciatic nerve crush are similar, but by 5 weeks GAP-43 mRNA in the sciatic motor neurons has declined to control levels. In DRG cells, after both sciatic nerve section or crush, GAP-43 mRNA re-expression persists much longer than in motor neurons. There was no re-expression of GAP-43 mRNA in the dorsal horn of the spinal cord after peripheral nerve lesions. Our study demonstrates a similar developmental regulation in spinal cord and DRG neurons of GAP-43 mRNA. We show moreover that failure of re-innervation does not result in a maintenance of GAP-43 mRNA in axotomized motor neurons.  相似文献   

10.
Using autoradiographic techniques carried out under precise conditions we previously demonstrated that both sensory neurons and peripheral glial cells in dorsal root ganglia (DRG) or sciatic nerve, possess specific []> 125I]-labeled T3 binding sites. Thyroid hormone receptors (TR) include several isoforms (TRα1, TRα2, TRβ1, TRβ2...) The present study demonstrates that while sensory neurons and peripheral glial cells both possess functional TR, they express a differential expression of TR isoforms.  相似文献   

11.
12.
13.
It was previously shown that the immediate early gene, c-jun , was highly expressed over long periods, in both peripheral sensory and motor neurons following axon damage or block of axoplasmic transport. Here we have examined the question of whether the expression of c-Jun protein is related to axon injury per se or to the process of axon growth. We have examined dorsal root ganglion (DRG) cells subjected to different manipulations which are associated with varying degrees of regrowth, as follows: (i) after peripheral nerve section, where it appears that all damaged neurons make some regenerative effort. 1 – 24 days after sciatic nerve section and ligation most cells in L4/L5 DRG were c-Jun-positive; (ii) after section of the central processes of the DRG cells, which then showed a slow and limited regrowth of their axons towards, but not into, the spinal cord. This resulted in a variable, but significant, expression of c-Jun in a small number of DRG cells; (iii) in intact sensory neurons that were offered the opportunity to sprout into adjacent denervated peripheral tissue. The sciatic nerve was ligated and the response of cells in the L3 ganglia (many of which project to the saphenous nerve) was measured. A small but significant number of cells were c-Jun-positive; (iv) in intact sensory neurons that were offered the opportunity to sprout centrally into partialy denervated neuropil of the spinal cord. We examined neurons in the L3 DRG after rhizotomy of the adjacent L4/L5 dorsal roots. Previous work suggests that sensory neurons show at best a very limited growth under these conditions. No significant increase was seen in c-Jun expression in these cases. These results suggest that c-Jun expression is closely correlated with growth and regeneration, and not simply a consequence of neuronal injury.  相似文献   

14.
15.
16.
《Neuromodulation》2021,24(4):672-684
Background/Objectives: The physiological mechanisms underlying the pain-modulatory effects of clinical neurostimulation therapies, such as spinal cord stimulation (SCS) and dorsal root ganglion stimulation (DRGS), are only partially understood. In this pilot prospective study, we used patient-reported outcomes (PROs) and quantitative sensory testing (QST) to investigate the physiological effects and possible mechanisms of action of SCS and DRGS therapies.Materials and Methods: We tested 16 chronic pain patients selected for SCS and DRGS therapy, before and after treatment. PROs included pain intensity, pain-related symptoms (e.g., pain interference, pain coping, sleep interference) and disability, and general health status. QST included assessments of vibration detection theshold (VDT), pressure pain threshold (PPT) and tolerance (PPToL), temporal summation (TS), and conditioned pain modulation (CPM), at the most painful site.Results: Following treatment, all participants reported significant improvements in PROs (e.g., reduced pain intensity [p < 0.001], pain-related functional impairment [or pain interference] and disability [p = 0.001 for both]; better pain coping [p = 0.03], sleep [p = 0.002]), and overall health [p = 0.005]). QST showed a significant treatment-induced increase in PPT (p = 0.002) and PPToL (p = 0.011), and a significant reduction in TS (p = 0.033) at the most painful site, but showed no effects on VDT and CPM. We detected possible associations between a few QST measures and a few PROs. Notably, higher TS was associated with increased pain interference scores at pre-treatment (r = 0.772, p = 0.009), and a reduction in TS was associated with the reduction in pain interference (r = 0.669, p = 0.034) and pain disability (r = 0.690, p = 0.027) scores with treatment.Conclusions: Our preliminary findings suggest significant clinical and therapeutic benefits associated with SCS and DRGS therapies, and the possible ability of these therapies to modulate pain processing within the central nervous system. Replication of our pilot findings in future, larger studies is necessary to characterize the physiological mechanisms of SCS and DRGS therapies.  相似文献   

17.
The present study examines the response of colon-projecting neurons localized in the inferior mesenteric ganglia (IMG) to axotomy in the pig animal model. In all animals (n?=?8), a median laparotomy was performed under anesthesia and the retrograde tracer Fast Blue was injected into the descending colon wall. In experimental animals (n?=?4), the descending colon was exposed and the bilateral caudal colonic nerves were identified and severed. All animals were euthanized and the inferior mesenteric ganglia were harvested and processed for double-labeling immunofluorescence for calbindin-D28k (CB) in combination with either tyrosine hydroxylase (TH), neuropeptide Y (NPY), somatostatin (SOM), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), Leu-enkephalin (LENK), substance P, vesicular acetylcholine transporter, or galanin. Immunohistochemistry revealed significant changes in the chemical coding pattern of injured inferior mesenteric ganglion neurons. In control animals, Fast Blue-positive neurons were immunoreactive to TH, NPY, SOM, VIP, NOS, LENK, and CB. In the experimental group, the numbers of TH-, NPY-, and SOM-expressing neurons were reduced, whereas the number of neurons immunoreactive to LENK was increased. Our data indicate that the colon-projecting neurons of the porcine IMG react to the axotomy in a similar, but not an identical manner in a comparison to other species, especially rodents. Further studies are needed to elucidate the detailed factors/mechanisms involved in the response to nerve injury.  相似文献   

18.
Using in situ hybridization, the expression of the mRNA for a neuropeptide Y (NPY) receptor, was studied in lumbar (L) 4 and 5 dorsal root ganglia (DRGs) of normal rats and at various intervals after unilateral sciatic nerve transection. Twenty percent of all normal DRG neurons were NPY receptor mRNA-positive, and the majority of these neurons were of the small type, with only a few labelled medium-sized and large neurons. In L5 normal ganglia NPY receptor mRNA colocalized with substance P, calcitonin gene-related peptide and galanin mRNAs in small neurons, but not in medium-sized or large neurons containing these peptides. NPY receptor mRNA was not observed in somatostatin or nitric oxide synthase mRNA-positive neurons. Sciatic nerve transection induced a marked decrease in NPY receptor mRNA levels. However, in parallel there was a transient increase in the number of NPY receptor mRNA-positive small neuron profiles, but the intensity of labelling was mostly very low, although a few strongly labelled, small neuron profiles were also encountered. In addition, axotomy caused a marked increase in the number of NPY receptor mRNA-positive large neuron profiles in the ipsilateral DRGs, and they constituted 15–20% of counted DRG neuron profiles and 45–65% of counted large neuron profiles, 7–28 days after axotomy. In L5 DRGs, ipsilateral to the axotomy, NPY receptor mRNA colocalized with NPY mRNA in many large and some medium-sized neuron profiles, with galanin mRNA in some small, medium-sized and large neuron profiles and with vasoactive intestinal polypeptide mRNA in some small and medium-sized neuron profiles and a few large profiles. Occasionally, NPY receptor mRNA was observed in nitric oxide synthase mRNA-positive small neurons. In the dorsal horn, NPY receptor mRNA-positive small neurons were concentrated in lamina II at L4 and L5 levels, and were scattered in deeper laminae. No marked changes were observed ipsilateral to the axotomy. No NPY receptor mRNA-positive cells were found in the normal rat gracile nucleus, or in this nucleus after axotomy. These results show that a NPY receptor may be a prejunctional receptor in primary afferent neurons and play a role in the modulation of somatosensatory information, both in normal and lesioned primary afferent DRG cells. However, axotomy induced a distinct shift in NPY receptor mRNA expression from small to large neurons, indicating that sensitivity to NPY is switched from one modality to another. Thus, not only several sensory neuropeptides, as shown in previous studies, but at least also one of the peptide receptors change their expression dramatically in response to axotomy, suggesting complex adaptive responses.  相似文献   

19.
Heparin-binding growth-associated molecule (HB-GAM) is a highly conserved cell surface- and extracellular matrix-associated protein that enhances neurite outgrowth in brain neurons in vitro. To study the possible response of peripheral neurons, we cultured chicken dorsal root ganglion neurons from different developmental stages from embryonic day 4.5 (E4.5; St 25) to E9 (St 35) on recombinant HB-GAM. We discovered that the neurite outgrowth response to HB-GAM is maximal at E5.5-6.5 (St 28-30). In order to correlate this in vitro phenomenon with in vivo phenomena, immunohistochemical staining and in situ hybridization were performed on cryosections. The protein expression of HB-GAM peaked at E6 (St 29) and was most extensive on the dorsal spinal cord and dorsal roots. Using Dil labelling, we confirmed that at the time when sensory afferents travel longitudinally in the bundle of His of the spinal cord, HB-GAM protein expression there is at its peak. Though HB-GAM is a secreted protein, at the RNA level the timing of HB-GAM appearance and existence in the spinal cord and sensory ganglia is in accordance with its protein expression. Our results demonstrate that peripheral neurons are responsive to substrate-bound HB-GAM in a developmentally regulated manner, and that the expression of both HB-GAM mRNA and protein in vivo is spatially and temporally matched to this in vitro phenomenon. HB-GAM is therefore a putative cue for the growth of sensory afferents to and within the dorsal spinal cord.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号