首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Antiandrogens are a novel class of anticancer agents that inhibit cancer cell proliferation and induce apoptosis in various cell lines. To find the lead compound from the oxobenzimidazole derivatives, receptor-ligand docking studies were initially performed using Schrödinger software. The best fit molecules were synthesized and characterized through IR, 1H-NMR, 13C-NMR and HRMS analyses. The structure of compound (9b) was further confirmed by single-crystal XRD analysis. The cell viability of the compounds was determined by MTT assay to find IC50 values against prostate cancer and breast cancer cell lines (PC-3, LNCaP, MCF-7 and MDA-MB-231). The ADME/T property studies were performed to rationalize the inhibitory properties of these compounds. It can be concluded from the study that 9b is the most active compound from the series against PC-3 and LNCaP cell lines.  相似文献   

2.

Background and the purpose of the study

There has been increscent interest in the field of cancer chemotherapy by discovery and development of novel agents with high efficacy, low toxicity, and minimum side effects. In order to find new anticancer agents, we replaced the pyrazolone part of well-known cytotoxic agent SJ-172550 with 7-methoxychroman-4-one. Thus, a novel series of 3-benzylidene-4-chromanones were synthesized and tested in vitro against human cancer cell lines.

Methods

The title compounds were prepared by condensation of 7-methoxychroman-4-one with suitable aldehydes in appropriate alcohol in the presence of gaseous HCl. The antiproliferative activity of target compounds were evaluated against MDA-MB-231 (breast cancer), KB (nasopharyngeal epidermoid carcinoma) and SK-N-MC (human neuroblastoma) cell lines using MTT assay.

Results

Although the direct analog of SJ-172550 (compound 5d) did not show any cytotoxic activity against tested cell lines, but 2-(2-chloro-6-methoxyphenoxy)acetic acid methyl ester analog 5c showed some activity against MDA-MB-231 and SK-N-MC cells. Further modification of compound 5c resulted in the 3-chloro-4,5-dimethoxybenzylidene derivative 5b which demonstrated better cytotoxic profile against all tested cell lines (IC50 values = 7.56–25.04 μg/ml).

Conclusion

The results demonstrated that the cytotoxic activity of compound 5b against MDA-MB-231 and SK-N-MC cells is more than etoposide. Therefore, compound 5b prototype could be considered as novel cytotoxic agent for further developing new anticancer chemotherapeutics.  相似文献   

3.
In the present study, we screened newly synthesized antiviral aminopyrazoloquinoline derivatives for their cytotoxic and genotoxic potential in human normal and breast cancer cell lines using apoptosis and DNA adducts biomarkers. The compounds, along with the well-known antiviral drug acyclovir, were incubated with the normal (MCF-10A, MCF-12A) and cancer (MCF-7, MDA-MB-231) cell lines at 10, 50, and 100 μM for 72 h at 37°C. The most potent antiviral methoxy derivative (compound 3) was found to be more cytotoxic in the normal breast epithelial cell lines (MCF-10A and MCF-12A) and MDA-MB-231 cell lines at 50 μM. MCF-7 cells were found to be almost completely resistant to all these compounds while MDA-MB-231 cell lines were significantly killed by apoptosis. Acyclovir was ineffective in all these cell lines. We further tested these compounds using modulation of benzo[a]pyrene (BP)-DNA adduct formation in these cell lines. An inverse correlation was found between the degree of apoptosis and BP-DNA adduct levels for most of these compounds, although this seems to be the case only with the cancer cell lines. Our results suggest that the newly synthesized antiviral compounds have an associated risk of cytotoxicity and/or genotoxicity compared to acyclovir.  相似文献   

4.
Some novel chemically modified frameworks of ursolic acid have been designed and synthesized. The key step was the cycloaddition of azidopropyl-3β-hydroxy-urs-12-en-28-oate with the appropriate C28 propargyl esters of ursolic, corosolic, asiatic, oleanolic, and betulinic acid under Click reaction conditions, and the products were obtained in 74–84% yields. In view of their intriguing structural diversity, they have been subjected to detailed 1D and 2D NMR studies and their structures are thoroughly assigned. The synthesized compounds were screened for their anticancer potential against two human breast cancer cell lines (MCF-7 & MDA-MB-231) using sulforhodamine B cell proliferation assay. The GI50 data revealed that the synthesized compounds exhibit highly potent activities against the two tested cell lines. Interestingly, the synthesized compounds showed selectivity and higher activity against MDA-MB-231 cell line than MCF-7. Among the tested compounds, compound 17 is the most potent one with GI50 value of 1.4 ± 0.1 μM and showed 2.9 times more activity than the standard doxorubicin against MDA-MB-231. In addition, 17 arrests cells in mitotic phase of cell cycle, resulting in a change in cell phenotype. In view of the selective and highly promising activity against breast cancer cell lines, these compounds can serve as promising leads for further development.  相似文献   

5.
Novel 4, 6-disubstituted pyrimidine derivatives (5–16) were synthesized in four steps starting from 2,4-dichloropyrimidine and screened for their cytotoxicity using brine shrimp (Artemia Salina) lethality bioassay. The compounds such as 6, 11, 14 and 15 were found to be more toxic. The compounds were also studied for in vitro anticancer properties using six different cancer cell lines viz SIHA, PANC-1, MDA-MB-231, IMR-32, DU145 and A549. The compound 14 was effective inhibitor of SIHA and DU145, whereas compound 16 in Panc 1 and A549, compound 7 in MDA-MB-231 and compound 6 in IMR 32 respectively. Molecular docking studies were carried out using an X-ray crystallographic structure of epidermal growth factor receptor tyrosine kinase to explore the possible mode of action of compounds as epidermal growth factor receptor tyrosine kinase inhibitors.  相似文献   

6.

Background

Breast cancer is the most common type of female cancer. One class of hormonal therapy for breast cancer drugs -non steroidal aromatase inhibitors- are triazole analogues. In this work, some derivatives of these drugs was designed and synthesized. All synthesized compounds were evaluated for their cytotoxic activities on breast cancer cell lines (MDA-MB-231, T47D and MCF-7).

Methods

Our synthetic route for designed compounds started from 4-bromotolunitrile which was reacted with 1H-1,2,4-triazole to afford 4-(4-cyanobenzyl)-1,2,4-triazole. The reaction of later compound with aromatic aldehydes led to formation of the designed compounds. Eleven novel derivatives 1a-k were tested for their cytotoxic activities on three human breast cancer cell lines.

Results

Among the synthesized compound, 4-[2-(3-chlorophenyl)-1-(1H-1,2,4-triazol-1-yl)ethenyl]benzonitrile (1c) showed the highest activity against MCF-7 and MDA-MB-231 cell lines and 4-[2-(4-methoxyphenyl)-1-(1H-1,2,4-triazol-1-yl)ethenyl]benzonitrile (1 h) exhibited highest activity against T47D cell line. According to cytotoxic activities results, compound 4-[2-(4-dimethylamino)-1-(1H-1,2,4-triazol-1-yl)ethenyl]benzonitrile (1 k) showed comparative activity against T47D and MDA-MB-231 cell lines with compound (1 h) and our reference drug Etoposide.

Conclusion

In the process of anti-cancer drug discovery, to find new potential anti-breast cancer agents, we designed and synthesized a novel series of letrozole analogs. Cytotoxicity evaluation revealed that compounds (1c) and (1 k) were the most potent compounds with comparative activity with Etoposide. The results revealed that π-π interactions are responsible for the enzyme inhibitions of compounds (1 c) and (1 k).Keyword: Breast cancer, Non-steroidal aromatase inhibitor, Cytotoxic activity  相似文献   

7.
In this study we have performed the in vitro anticancer activity of spiro oxindole derivatives against MCF-7 (human Adreno carcinoma) and MDA-MB-231 (triple negative breast cancer) cell lines to propose a possible role of these derivatives in the treatment of cancer. Compound 6, which has an N-benzyl substitution with a chloro group on the indolin-2-one scaffold, had the most potent activity against MCF-7 (3.55 ± 0.49 μM) and MDA-MB-231 (4.40 ± 0.468 μM) of all the synthesized molecules. A normal mouse embryonic fibroblast (NIH/3 T3) cell line was used to test the cellular toxicity of these derivatives. The results showed that none of the compounds were cytotoxic to normal cells. In addition, pharmacokinetic (ADME) and toxicity study profiles were predicted in silico. All the synthesized derivatives (1 to 7) demonstrated the necessary physicochemical properties for bioavailability. Finally, in vitro results of promising compound 6 were validated using molecular docking and dynamic simulation studies, which revealed their binding affinities and conformational stability in the binding cavity. Thus, these derivatives may serve as lead structures for a new generation of anticancer agents.  相似文献   

8.
In continuance of our search for new anticancer agents, we report herein the design, synthesis, and anticancer evaluation of oxadiazole analogues. Two series (4a-h and 4i-q) of new oxadiazole analogues were designed based on heterocyclic (1,3,4-oxadiazole)-linked aryl core of IMC-038525 (tubulin polymerization inhibitor), NSC 776715, and NSC 776715 and synthesized. All the compounds were fully characterized by infrared, nuclear magnetic resonance spectroscopy, and mass spectral data and the purity of compounds was checked by elemental analysis (C, H, and N analysis). Further seven compounds were evaluated for anticancer activity on nine different panels of 60 cell lines (60 NCI cancer cell lines) according to the National Cancer Institute screening protocol and percent growth and percent growth inhibition was calculated at 10?µM drug concentration. Ten compounds were evaluated for anticancer activity on two cancer cell lines (HeLa and MDA-MB-435) as per the standard protocol reported at four different drug concentrations (10?7, 10?6, 10?5, and 10?4?µM) and GI50, LC50, and TGI dose-related parameters were calculated. The compound 4j showed maximum anticancer activity at 10?µM, and was found to have higher sensitivity against MOLT-4, IGROV1, HCT-116, and K-562 with percent growth inhibitions of 50.38, 48.45, 46.26, and 46.26 respectively. The compound 4j showed superior anticancer activity than imatinib on 41 human cancer cell lines. The compound 4p showed anticancer activity with GI50 of 36.7 and 46.5?µM against HeLa and MDA-MB-435 cell lines, respectively.  相似文献   

9.
Cancer is a leading cause of death worldwide. In our continuing search for new anticancer agents, four Malaysian Calophyllum species, namely C. castaneum, C. teysmannii, C. canum, and C. sclerophyllum, had been phytochemically studied to give compounds 112. All the isolated compounds were evaluated for their antiproliferative activity against nasopharyngeal (SUNE1, TW01, CNE1, HK1) and breast (HCC38, MDA-MB-231, MDA-MB-468, SKBR3) cancer cell lines via methyl thiazolyl tetrazolium cell viability assay. Among the tested compounds, isodispar B (1) showed a promising dose-dependent and a broad spectrum of cytotoxic effects on all the tested cancer cell lines; in particular, potent inhibitory activities were observed on nasopharyngeal cancer cell lines (SUNE1, TW01, CNE1, HK1), with IC50 values ranging from 3.8 to 11.5 µM. In comparison with 5-fluorouracil as positive control, compound 1 was found to exhibit at least sixfold much higher activity than the standard drug used against the nasopharyngeal cell lines. Compound 1 was later found to induce apoptotic cell death in nasopharyngeal cancer cells, as evidenced by ‘Cell Death Detection’ ELISAPLUS kit, and exhibited good cancer-specific cytotoxicity when tested with noncancerous NP460 cells. Meanwhile, compounds 212 displayed moderate to weak activities against the tested cancer cell lines. The findings have highlighted the therapeutic potential of compound 1 against nasopharyngeal cancer.  相似文献   

10.
A series of scopoletin derivatives were designed and synthesized by introducing α‐aminoacetamide, acrylamide and β‐aminopropamide, respectively, to 3‐position of scopoletin, and their chemical structures were confirmed by ESI‐MS, IR, 1H NMR, and 13C NMR spectra. All target compounds were evaluated in vitro against four human cancer cell lines (MDA‐MB‐231, MCF‐7, HepG2, and A549) by MTT method. Cytotoxic assay showed that compounds 7a , 7b , 7e , 7f , 8a , and 8e exhibited more potent cytotoxicities compared to scopoletin. Besides, we have further evaluated the growth inhibitory activities of these selected compounds against normal tissue cell lines HFL‐1. Although compound 8a showed the strongest antiproliferative activity in vitro, it exhibited strong cytotoxicity on normal cells HFL‐1, which limited its further study. Compound 7a and 7b exhibited higher antiproliferative activity against MDA‐MB‐231 and HepG2 cells and weak cytotoxicity on HFL‐1, which suggested that 7a and 7b might be ideal anticancer candidates. The SARs showed that the introduction of the acrylamide and its analogues β‐aminopropamide could significantly improve activity, while the α‐aminoacetamide failed to enhance potency obviously. Therefore, the mechanism of compound 7a and 7b is worthy of further research and the structure of compound 8a should be further optimized.  相似文献   

11.

Aim:

To investigate the anticancer mechanisms of triptolide, a diterpenoid isolated from the plant Tripterygium wilfordii Hook F, against human breast cancer cells and the involvement of the estrogen receptor-α (ERα)-mediated signaling pathway in particular.

Methods:

Human breast cancer ERα-positive MCF-7 cells and ERα-negative MDA-MB-231 cells were tested. PrestoBlue assay was used to evaluate the cell viability. The levels of ERα mRNA and protein were detected with real-time PCR and immunoblotting, respectively. Mouse models of MCF-7 or MDA-MB-231 xenograft tumors were treated with triptolide (0.4 mg·kg−1·d−1, po) or a selective estrogen receptor modulator tamoxifen (mg·kg−1·d−1, po) for 3 weeks, and the tumor weight and volume were measured.

Results:

Triptolide (5–200 nmol/L) dose-dependently inhibited the viability of both MCF-7 and MDA-MB-231 cells, with a more potent inhibition on MCF-7 cells. Knockdown of ERα in MCF-7 cells by siRNA significantly attenuated the cytotoxicity of triptolide, whereas overexpression of ERα in MDA-MB-231 cells markedly enhanced the cytotoxicity. Triptolide dose-dependently decreased the expression of ERα in MCF-7 cells and MCF-7 xenograft tumors. Furthermore, treatment of MCF-7 cells with triptolide inhibited the phosphorylation of ERK1/2 in dose- and time-dependent manners. In the mice xenografted with MCF-7 cells, treatment with triptolide or tamoxifen resulted in significant reduction in the tumor weight and volume. Similar effects were not obtained in the mice xenografted with MDA-MB-231 cells.

Conclusion:

The anticancer activity of triptolide against ERα-positive human breast cancer is partially mediated by downregulation of the ERα-mediated signaling pathway.  相似文献   

12.
Inhibition of histone deacetylase (HDAC) results in growth arrest, differentiation, and apoptosis in nearly all tumor cell lines, promoting HDACs as promising targets for antitumor therapy. In our previous study we developed a novel series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as HDAC inhibitors (HDACi), among which compound 7d exhibited promising HDAC8 inhibitory and antiproliferative activities. Herein, we report the design and development of a new class of tetrahydroisoquinoline-bearing hydroxamic acid analogues as potential HDACi and anticancer agents. In vitro biological evaluation of these compounds showed improved HDAC8 inhibition (compounds 31a and 31b exhibited mid-nM IC(50) values against HDAC8) and potent growth inhibition in multiple tumor cell lines. Most importantly, compounds 25e, 34a, and 34b exhibited excellent in vivo anticancer activities in a human breast carcinoma (MDA-MB-231) xenograft model compared with suberoylanilide hydroxamic acid (SAHA), an approved HDACi. Collectively, our results indicate that tetrahydroisoquinoline bearing a hydroxamic acid is an excellent template to develop novel HDACi as potential anticancer agents.  相似文献   

13.

Background

Homoisoflavonoids are naturally occurring compounds belong to flavonoid classes possessing various biological properties such as cytotoxicity. In this work, an efficient strategy for the synthesis of novel homoisoflavonoids, [1,3]dioxolo[4,5-g]chromen-8-ones, was developed and all compounds were evaluated for their cytotoxic activities on three breast cancer cell lines.

Methods

Our synthetic route started from benzo[d][1,3]dioxol-5-ol which was reacted with 3-bromopropanoic acid followed by the reaction of oxalyl chloride to afford 6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one. The aldol condensation of the later compound with aromatic aldehydes led to the formation of the title compounds. Five novel derivatives 4a-e were tested for their cytotoxic activity against three human breast cancer cell lines including MCF-7, T47D, and MDA-MB-231 using the MTT assay.

Results

Among the synthesized compounds, 7-benzylidene-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4a) exhibited the highest activity against three cell lines. Also the analysis of acridine orange/ethidium bromide staining results revealed that 7-benzylidene-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4a) and 7-(2-methoxybenzylidene)-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4b) induced apoptosis in T47D cell line.

Conclusion

Finally, the effect of methoxy group on the cytotoxicity of compounds 4b-4d was investigated in and it was revealed that it did not improve the activity of [1,3]dioxolo[4,5-g]chromen-8-ones against MCF-7, T47D, and MDA-MB-231.  相似文献   

14.
ContextLinum is the largest genus of the Linaceae family; the species of this genus are known to have anticancer activity.ObjectiveIn this study, ethyl acetate extracts of L. numidicum Murb. (EAELN) and L. trigynum L. (EAELT) were examined, for the first time, for their anticancer capacity. The secondary metabolites compositions were analysed by LC-HRMS/MS.Materials and methodsThe antiproliferative effect of EAELN and EAELT (0–10.000 μg/mL) against PC3 and MDA-MB-231 cell lines were  evaluated by the MTT assay after 72 h of treatment. Flow cytometer analysis of apoptosis (Annexin V-FITC/PI) and cell cycle (PI/RNase) was also performed after treatment with EAELN and EAELT at 250, 500, and 1000 μg/mL, for 24 h.ResultsEAELN had the highest antiproliferative activity against PC3 (IC50 133.2 ± 5.73 μg/mL) and MDA-MB-231 (IC50 156.9 ± 2.83 μg/mL) lines, EAELN had also shown better apoptotic activity with 19 ± 2.47% (250 μg/mL), 87.5 ± 0.21% (500 μg/mL), and 92 ± 0.07% (1000 μg/mL), respectively, causing cell cycle arrest of PC3 cells in G2/M phase, whereas arrest in G0/G1 and G2/M phases was observed after treatment with EAELT. LC-HRMS/MS profiling of the extracts revealed the presence of known compounds that might be responsible for the observed anticancer activity such as chicoric acid, vicenin-2, vitexin and podophyllotoxin-β-d-glucoside.Discussion and conclusionsWe have shown, for the first time, that EAELN and EAELT exert anticancer activity through cell cycle arrest and induction of apoptosis. EAELN can be considered as a source to treat cancer. Further studies will be required to evaluate the effect of the active compounds, once identified, on other cancer cell lines.  相似文献   

15.
BackgroundThe leaves of Zizyphus spina-christi (L.) Willd contain several compounds exhibiting different pharmacologic activities. However, studies on the cytotoxic activity of these compounds are limited.ObjectivesWe aimed to investigate and isolate cytotoxic compounds with selective antitumor effects from the leaves of Z. spina-christi using bioassay-guided fractionation of methanol extract.MethodsPowdered, dried leaves were subjected to methanol extraction and fractionated using n-hexane, chloroform, ethyl acetate, and n-butanol. Fractions with positive cytotoxicity against HeLa and THP-1 cell lines were further fractionated and eluted using various concentrations of organic solvents. Active compounds were isolated using different chromatographic methods and their chemical structures were determined using extensive spectroscopic methods, such as 1D NMR (1H NMR, 13C NMR, and DEPT), 2D NMR (COSY, HMBC, and HMQC), HRFAB-MS, and IR. Furthermore, the cytotoxic effects of the isolated compounds were evaluated against 62 tumor cell lines (including HeLa and THP-1) in addition to normal bone marrow cells.ResultsThe chloroform and aqueous methanol fractions of the leaves showed cytotoxic activity. Two compounds were successfully isolated and named “sidrin” (13-β-hydroxy-lup-20(30)-ene-2,3-β-epoxy-28-carboxylate) and “sidroside” (3-O-β-D-glucopyranosyl-(1–3)-α-L-arabinopyranosyl-jujubogenin-20-O-α-L-rhamnopyranoside). Sidrin exhibited cytotoxic activity against the human leukemia (Hl-60, RPMI-8226), lung cancer (A549, EKVX), breast cancer (BT-549, MDA-MB-231/ATCC), colon cancer (KM12), melanoma (M14, SK-MEL-5), and central nervous system (CNS) cancer (SF-295) cell lines, and selectivity was observed against the Hl-60, EKVX, BT-549, KM12, and SF-295 cell lines. In addition, sidrin was more active than sidroside and doxorubicin against the Hl-60 and EKVX cell lines. In contrast, sidrin had a similar effect to doxorubicin against the BT-549 and renal cancer (UO-31) cell lines. Sidroside was more selective against the leukemia (CCRF-CEM, MOLT-4), lung cancer (HOP-92, NCI-H322M), breast cancer (MDA-MB-468), melanoma (LOX IMVI), CNS cancer (SNB-19), ovarian cancer (OVCAR-8), renal cancer (UO-31, RXF 393), and prostate cancer (PC-3) cell lines. Both compounds exhibited similar activity against the breast cancer (MDA-MB-231, T-47D), colon cancer (HCC-2998, HCT-116), ovarian cancer (OVCAR-3), renal cancer (UO-31, 786–0, and SN 12C) cell lines. Normal bone marrow cells were unaffected at the same concentrations of sidrin and sidroside applied to tumor cells.ConclusionsThese results suggest tumor-selective cytotoxicity of sidrin and sidroside.  相似文献   

16.
In this study we examined the suitability of the 3H-imidazo[4,5-b]pyridine ring system in developing novel anticancer and anti-inflammatory agents incorporating a diaryl pharmacophore. Eight 2,3-diaryl-3H-imidazo[4,5-b]pyridine derivatives retrieved from our in-house database were evaluated for their cytotoxic activity against nine cancer cell lines. The results indicated that the compounds showed moderate cytotoxic activity against MCF-7, MDA-MB-468, K562 and SaOS2 cells, with K562 being the most sensitive among the four cancer cell lines. The eight 2,3-diaryl-3H-imidazo[4,5-b]pyridine derivatives were also evaluated for their COX-1 and COX-2 inhibitory activity in vitro. The results showed that compound 3f exhibited 2-fold selectivity with IC50 values of 9.2 and 21.8 µmol/L against COX-2 and COX-1, respectively. Molecular docking studies on the most active compound 3f revealed a binding mode similar to that of celecoxib in the active site of the COX-2 enzyme.  相似文献   

17.
18.
Acridine derivatives represent a well-known class of anticancer agents that generally interfere with DNA synthesis and inhibit topoisomerase II. A series of eight new 3-acridin-9-ylmethyl-thiazolidine-2,4-dione and 3-acridin-9-ylmethyl-5-arylidene-thiazolidine-2,4-dione derivatives were synthesized. All the compounds were evaluated for their cell antiproliferation activity with the 3-(4,5-dimethyl-2-thiozolyl)-2,5-diphenyl-2H-tetrazolium bromide, MTT assay. The antiproliferative effects of the synthesized compounds were tested against several tumoral cell lines, namely SF-295 (central nervous system), HCT-8 (colon carcinoma), and MDA-MB-435 (melanoma) cells using doxorubicin as a positive control. Among the synthesized compounds, 3-acridin-9-ylmethyl-5-acridin-9-ylmethylene-thiazolidine-2,4-dione, 3-acridin-9-ylmethyl-5-(4-methoxy-benzylidene)-thiazolidine-2,4-dione, and 3-acridin-9-ylmethyl-5-(4-bromo-benzylidene)-thiazolidine-2,4-dione exhibited the most potent anticancer activity against the HCT-8 and MDA-MB-435 cell lines. After a detailed analysis of the structure of the thiazacridine molecules, we revealed the main possible interactions using the compound 3-acridin-9-ylmethyl-5-acridin-9-ylmethylene-thiazolidine-2,4-dione as an example. The benefits of these compounds, regardless of the pharmacological target are the presence of two aromatic rings (pi systems), significant planarity (intercalating ability) and the presence of three hydrogen-bond acceptors, two of which are stronger (oxygen atoms) than the other (sulfur atom).  相似文献   

19.
Hypoxia plays a vital role in tumor microenvironment by allowing development and maintenance of cancer cells thereby led to major hindrance for effective anticancer therapy and main reason for failure of most anticancer drugs. We herein investigated the therapeutic efficacy and molecular mechanism of action of aqua-(2-formylbenzoato) triphenyltin (IV) compound (OTC) in MDA-MB-231 cell line. Cobalt chloride induced hypoxic MDA-MB-231 cells treated with OTC were used to access cytotoxicity, ROS, cellular apoptosis, and cell cycle progression. Further, expression of HIF-1α and VEGF, as well as apoptotic proteins like p53, Bax, Bcl-2 and caspase 3 were assessed. The findings indicated that OTC is more effective towards CoCl2 induced hypoxic cells when compared to normoxic cells and the results are far superior to doxorubicin. Additionally, our study revealed that OTC facilitates more ROS production induced cell cycle arrest and promote apoptosis. Furthermore, OTC significantly down regulates the expression of Hif-1α, VEGF and Bcl-2 in hypoxic condition and elevates the level of p53, Bax, cytochrome-C and Caspase 3. Our in vitro studies demonstrated that OTC showed better efficacy than doxorubicin, corroborating that OTC could be a promising compound for hypoxic cancer that also display multi drug resistant.  相似文献   

20.
A new series of 2-[N-(R-phenylureido)]-1,3,2-diazaphosphore-2-oxide derivatives (R = CH3, F, NO2, CN) were synthesized and characterized by 31P, 1H, 13C NMR and FT-IR spectral techniques. All the compounds were evaluated for their antibacterial activity against some Gram-positive, Gram-negative strains of bacteria, as well as for their cytotoxic effects on MCF-7, MDA-MB-231, PC-3, HeLa, and K562 human cell lines. In vitro activity results exhibited an important role for six-membered diaza ring in both assays as well as high effect of meta-methyl and ortho-fluoro substitutes on the aromatic ring against the studied human cell lines and B. subtilis bacteria, respectively. To understand the correlation between the anticancer activity and physicochemical properties of the synthesized compounds, the QSAR studies were carried out. Further, the crystal structure of compound 15 was investigated and revealed that the title derivative is composed of two symmetrically independent molecules in the solid state with anti configuration the C=O versus P=O. NBO and AIM analyses were performed to investigate electronic aspects of hydrogen bonding of the crystal cluster, which play an extremely important role in biochemical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号