首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease primarily affecting the central nervous system. Of the many candidate polymorphic major histocompatibility complex (MHC) and non-MHC genes contributing to disease susceptibility, including those encoding effector (cytokines and chemokines) or receptor molecules within the immune system (MHC, TCR, Ig or FcR), human leukocyte antigen (HLA) class II genes have the most significant influence. In this article we put forward the hypothesis that the influence of HLA genes on the risk to develop MS is actually the sum of multiple antigen presenting cell (APC) and T-cell interactions involving HLA class I and class II molecules. This article will also discuss that, because of the genetic and immunologic similarity to humans, autoimmune models of MS in non-human primates are the experimental models “par excellence” to test this hypothesis.  相似文献   

2.
The last decade has revealed that the lifespan of an organism can be modulated by the signaling pathway that acts downstream of the insulin/insulin-like growth factor 1 receptors (IR/IGF1-R), indicating that there is a “program” that drives the process of aging. New results have now linked the same pathway to the neurogenic capacities of the aging brain, to neurotrophin signaling, and to the molecular pathogenesis of Alzheimer's disease. Therefore, a common signaling cascade now seems to link aging to age-associated pathologies of the brain, suggesting that pharmacologic approaches aimed at the modulation of this pathway can serve to delay the onset of age-associated disorders and improve the quality of life. Work from a wide range of fields performed with different approaches has already identified some of the signaling molecules that act downstream of IGF1-R, and has revealed that a delicate checkpoint exists to balance excessive growth/“immortality” and reduced growth/“senescence” of a cell. Future research will determine how far the connection goes and how much of it we can influence.  相似文献   

3.
Numerous investigations have recently demonstrated the important roles of the endocannabinoid system in the gastrointestinal (GI) tract under physiological and pathophysiological conditions. In the GI tract, cannabinoid type 1 (CB1) receptors are present in neurons of the enteric nervous system and in sensory terminals of vagal and spinal neurons, while cannabinoid type 2 receptors are located in immune cells. Activation of CB1 receptors was shown to modulate several functions in the GI tract, including gastric secretion, gastric emptying and intestinal motility. Under pathophysiological conditions induced experimentally in rodents, the endocannabinoid system conveys protection to the GI tract (e.g. from inflammation and abnormally high gastric and enteric secretions). Such protective activities are largely in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa extracts by subjects suffering from various GI disorders. Thus, the endocannabinoid system may serve as a potentially promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (e.g. Crohns disease), functional bowel diseases (e.g. irritable bowel syndrome) and secretion- and motility-related disorders. As stimulation of this modulatory system by CB1 receptor agonists can lead to unwanted psychotropic side effects, an alternative and promising avenue for therapeutic applications resides in the treatment with CB1 receptor agonists that are unable to cross the blood–brain barrier, or with compounds that inhibit the degradation of endogenous ligands (endocannabinoids) of CB1 receptors, hence prolonging the activity of the endocannabinoid system.  相似文献   

4.
Muscle abnormalities involved in chronic obstructive pulmonary disease (COPD) or the changes leading to muscle wasting and cachexia in neoplastic patients have a remarkable clinical impact, but their study is complex and findings are sometimes paradoxical. In this review, the main factors influencing muscle wasting and muscle abnormalities found in chronic diseases such as COPD are regarded in the light of a comprehensive approach. All this changes work in a complex, multifactorial manner, and experimental or observational approaches must take this fact into consideration. Two concepts that may be helpful in this regard are the “muscle compartment theory,” by which different muscle groups, individual muscles, or muscle areas may react differently to a variety of stimuli and pathogenic factors, and the “oil well analogy,” which reflects the complexity and variability of the energy resource depletion mechanisms in cells and tissues, leading to structural remodeling and functional adaptation or impairment.  相似文献   

5.
Huntington's disease (HD) is an inherited neurodegenerative disease characterised by cell dysfunction and death in the basal ganglia and cortex. Currently there are no effective pharmacological treatments available. Loss of cannabinoid CB1 receptor ligand binding in key brain regions is detected early in HD in human postmortem tissue [Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience 97:505–519]. In HD transgenic mice environmental enrichment upregulates the CB1 receptors and slows disease progression [Glass M, van Dellen A, Blakemore C, Hannan AJ, Faull RL (2004) Delayed onset of Huntington's disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience 123:207–212]. These findings, combined with data from lesion studies have led to the suggestion that activation of cannabinoid receptors may be protective. However, studies suggest that CB1 mRNA may be decreased early in the disease progression in HD mice, making this a poor drug target. We have therefore performed a detailed analysis of CB1 receptor ligand binding, protein, gene expression and levels of endocannabinoids just prior to motor symptom onset (12 weeks of age) in R6/1 transgenic mice. We demonstrate that R6/1 mice exhibit a 27% decrease in CB1 mRNA in the striatum compared to wild type (WT). Total protein levels, determined by immunohistochemistry, are not significantly different to WT in the striatum or globus pallidus, but are significantly decreased by 19% in the substantia nigra. CB1 receptor ligand binding demonstrates significant but small decreases (<20%) in all basal ganglia regions evaluated. The levels of the endocannabinoid 2-arachidonoyl glycerol are significantly increased in the cortex (147%) while anandamide is significantly decreased in the hippocampus to 67% of WT. Decreases are also apparent in the ligand binding of neuronal D1 and D2 dopamine receptors co-located with CB1, while there is no change in GABAA receptor ligand binding. These results suggest that in this R6/1 mouse colony at 12 weeks there are only very small changes in CB1 protein and receptors and thus this would be an appropriate time point to evaluate therapeutic interventions.  相似文献   

6.
Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders.  相似文献   

7.
Endogenous signaling lipids ("endocannabinoids") functionally related to Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with endocannabinoid biosynthetic and inactivating enzymes, transporters, and at least two membrane-bound, G-protein coupled receptors, comprise collectively the mammalian endocannabinoid signaling system. The ubiquitous and diverse regulatory actions of the endocannabinoid system in health and disease have supported the regulatory approval of natural products and synthetic agents as drugs that alter endocannabinoid-system activity. More recent data support the concept that the endocananbinoid system may be modulated for therapeutic gain at discrete pharmacological targets with safety and efficacy. Potential medications based on the endocannabinoid system have thus become a central focus of contemporary translational research for varied indications with important unmet medical needs. One such indication, obesity, is a global pandemic whose etiology has a pathogenic component of endocannabinoid-system hyperactivity and for which current pharmacological treatment is severely limited. Application of high-affinity, selective CB1 cannabinoid receptor ligands to attenuate endocannabinoid signaling represents a state-of-the-art approach for improving obesity pharmacotherapy. To this intent, several selective CB1 receptor antagonists with varied chemical structures are currently in advanced preclinical or clinical trials, and one (rimonabant) has been approved as a weight-management drug in some markets. Emerging preclinical data suggest that CB1 receptor neutral antagonists may represent breakthrough medications superior to antagonists/inverse agonists such as rimonabant for therapeutic attenuation of CB1 receptor transmission. Since obesity is a predisposing condition for the cluster of cardiovascular and metabolic derangements collectively known as the metabolic syndrome, effective endocannabinoid-modulatory anti-obesity therapeutics would also help redress other major health problems including type-2 diabetes, atherothrombosis, inflammation, and immune disorders. Pressing worldwide healthcare needs and increasing appreciation of endocannabinoid biology make the rational design and refinement of targeted CB1 receptor modulators a promising route to future medications with significant therapeutic impact against overweight, obesity, obesity-related cardiometabolic dysregulation, and, more generally, maladies having a reward-supported appetitive component.  相似文献   

8.
Studies of the endocannabinoid system in the CNS have been mostly focused on endocannabinoid receptors and inactivating mechanisms. Until recently, very little was known about the role of biosynthetic enzymes in endocannabinoid signaling. New data from the recent development of pharmacological and genetic tools for the study of these enzymes point to their fundamental role in determining where and when endocannabinoids function, and raise the possibility of new intriguing and previously unsuspected concepts in the general strategy of endocannabinoid signaling. However, even with these new tools, the cross-talk between anandamide and 2-arachidonoylglycerol biosynthesis makes it difficult to dissect one from the other, and data will need to be interpreted with this in mind.  相似文献   

9.
Chronic inflammation and neurodegeneration are the main pathological traits of multiple sclerosis that coexist in all stages of the disease course, with complex and still nonclarified relationships. Currently licensed medications have efficacy to control aspects related to inflammation, but have been unable to modify pure progression. Experimental work has provided robust evidence of the immunomodulatory and neuroprotective properties that cannabinoids exert in animal models of multiple sclerosis. Through activation of the CB2 receptor, cannabinoids modulate peripheral blood lymphocytes, interfere with migration across the blood-brain barrier and control microglial/macrophage activation. CB1 receptors present in neural cells have a fundamental role in direct neuroprotection against several insults, mainly excitotoxicity. In multiple sclerosis, several reports have documented the disturbance of the endocannabinoid system. Considering the actions demonstrated experimentally, cannabinoids might be promising agents to target the main aspects of the human disease.  相似文献   

10.
Chimpanzees and macaques were compared in their growth of head, face and body, based on a largescale somatometrical database. Their growth stages, i to v, were determined by inflection points in velocity curves. Sex differences in their growth are shown both by elongated stages in juvenile and adolescent and by the greater velocity in males in the stages. Chimpanzees need longer to get their full growth, especially in the later infantile and juvenile stages. The growth patterns are classified into three types of “sigmoid”, “parabolic”, and “fast & slow” in distance curves, and in velocity curves, they correspond to “convex”, acceleration in mid-growth stage; “linear”, linear deceleration with age; and “concave”, rapid deceleration in earlier stages and slow velocity in later stages. Great differences between chimpanzees and macaques were found in their growth patterns of upper facial height and facial height, which are “linear” or intermediate of “linear” and “concave” in macaques and “concave” in chimpanzees. These differences in their growth patterns explain the characteristic development of craniofacial proportions.  相似文献   

11.
Background and aim: Multiple sclerosis (MS) is a chronic inflammatory disease that involves central nervous system, and is generally associated with demyelination and axonal lesion. The effective factors for initiation of the inflammatory responses have not been known precisely so far. Leukotrienes (LTs) are inflammatory mediators with increased levels in the cerebrospinal fluid of MS patients and in experimental models of multiple sclerosis. Inhibition of LT receptors with specific antagonists can decrease inflammatory responses. In this review article we try to clarify the role of LT receptor antagonists and also inhibitors of enzymes which are involved in LTs generating pathway for treating multiple sclerosis as new targets for MS therapy. Moreover, we suggest that blockage of LT receptors by potent specific antagonists and/or agonists can be as a novel useful method in treatment of MS.  相似文献   

12.
It is now known that there are at least two types of cannabinoid receptors. These are CB1 receptors, present mainly on central and peripheral neurones, and CB2 receptors, present mainly on immune cells. Endogenous cannabinoid receptor agonists ('endocannabinoids') have also been identified. The discovery of this 'endogenous cannabinoid system' has led to the development of selective CB1 and CB2 receptor ligands and fueled renewed interest in the clinical potential of cannabinoids. Two cannabinoid CB1 receptor agonists are already used clinically, as antiemetics or as appetite stimulants. These are D 9 - tetrahydrocannabinol (THC) and nabilone. Other possible uses for CB1 receptor agonists include the suppression of muscle spasm/spasticity associated with multiple sclerosis or spinal cord injury, the relief of chronic pain and the management of glaucoma and bronchial asthma. CB1 receptor antagonists may also have clinical applications, e. g. as appetite suppressants and in the management of schizophrenia or disorders of cognition and memory. So too may CB2 receptor ligands and drugs that activate cannabinoid receptors indirectly by augmenting endocannabinoid levels at cannabinoid receptors. When taken orally, THC seems to undergo variable absorption and to have a narrow 'therapeutic window' (dose range in which it is effective without producing significant unwanted effects). This makes it difficult to predict an oral dose that will be both effective and tolerable to a patient and indicates a need for better cannabinoid formulations and modes of administration. For the therapeutic potential of cannabis or CB1 receptor agonists to be fully exploited, it will be important to establish objectively and conclusively (a) whether these agents have efficacy against selected symptoms that is of clinical significance and, if so, whether the benefits outweigh the risks, (b) whether cannabis has therapeutic advantages over individual cannabinoids, (c) whether there is a need for additional drug treatments to manage any of the disorders against which cannabinoids are effective, and (d) whether it will be possible to develop drugs that have reduced psychotropic activity and yet retain the ability to act through CB1 receptors to produce their sought-after effects.  相似文献   

13.
14.
Remote neuronal degeneration and death/injury, which often occur in regions remote but functionally connected to the primary lesion site, may play a pivotal role in extending neuronal damage/dysfunction following traumatic brain injury, stroke, or peripheral nerve injury, as well as in chronic neurodegenerative diseases such as multiple sclerosis and amyotrophic lateral sclerosis. Even though the precise mechanisms of remote neuronal injury are poorly understood and no efficacious treatment options are available, it involves glial activation, inflammation, oxidative/nitrative stress, and apoptotic cell death. The newly discovered endocannabinoid signaling system consisting of endocannabinoids (endogenous bioactive lipid mediators), their synthetic and metabolizing enzymes, and their primary G protein-coupled cannabinoid 1 and 2 (CB1 and CB2) receptors has been implicated in the regulation of numerous physiological and pathological processes/functions, including those associated with neurodegeneration. Using a well-characterized rodent model of remote neuronal degeneration, Oddi et al. (J Mol Med 2012, in press, DOI ) have demonstrated that targeting CB2 cannabinoid receptors may represent a promising novel approach to attenuate this pathological process. This editorial discusses the clinical significance of these interesting observations and the mechanisms of the possible interplay of CB2 receptors with nitric oxide synthases, oxidative and nitrative stress, and cell death during remote neurodegeneration.  相似文献   

15.
《Seminars in immunology》2014,26(5):369-379
It has been well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system.  相似文献   

16.
Activation of cannabinoid receptors (CBs) by endocannabinoids impacts on a number of gastrointestinal functions. Recent data indicate that CB1 agonists improve 2,4-dinitrobenzene sulfonic acid-induced colitis in mice, thus suggesting a role for the endocannabinoid agonist anandamide (AEA) in protecting the gut against inflammation. We here examined the gut endocannabinoid system in inflammatory bowel disease (IBD) patients, and investigated the ex vivo and in vitro effects of the non-hydrolysable AEA analog methanandamide (MAEA) on the mucosal proinflammatory response. The content of AEA, but not of 2-arachidonoyl-glycerol and N-palmitoylethanolamine, was significantly lower in inflamed than uninflamed IBD mucosa, and this was paralleled by lower activity of the AEA-synthesizing enzyme N-acyl-phosphatidylethanolamine-specific phospholipase D and higher activity of the AEA-degrading enzyme fatty acid amide hydrolase. MAEA significantly downregulated interferon-γ and tumor necrosis factor-α secretion by both organ culture biopsies and lamina propria mononuclear cells. Although these results are promising, further studies are needed to determine the role of cannabinoid pathways in gut inflammation.  相似文献   

17.
Neural plasticity of modality-nonspecific and modality-specific memory and learning abilities pertains to fluid intelligence and crystallized intelligence, respectively. The limbic system with the novelty neurons of the hippocampus interacts with the prefrontal cortex optimization of the orienting reflex and voluntary attention. Brain-derived neurotrophic factor produced by novelty neurons of the hippocampus contributes to long-term memory formation and improves learning abilities in a wide range of disciplines. Synergistic combination of stimulation with “analytical-specific visual perceptual patterns” and “optimally high” physiological activation of the bilateral electrodermal system optimizes the limbic system and prefrontal cortex activity as demonstrated by enhanced prefrontal N450 ERPs to a memory workload paradigm. This is accompanied by improvements in auditory retention tasks, word memorization, higher school achievement and marks, and an amelioration of “analytical-specific perceptual skills” as measured by the Mangina-Test. Intracerebral ERPs to a memory workload paradigm contributed to the elucidation of limbic structures and neocortical sites involved in memory workload processes. The progressive degeneration of these same structures causes the gradual decline of memory functions observed in early Alzheimer's disease. Research findings indicate that ERPs elicited by a memory workload paradigm are sensitive markers for diagnosis, treatment and clinical follow-up of early Alzheimer's patients. In addition, ERPs provide objective measurement of cholinergic medication effects on cerebral functions involved in memory processes through neuropsychophysiological parameters.  相似文献   

18.
A certain HLA-DQA2 locus TaqI fragment, DX“U”, has been reported to be associated with insulin-dependent diabetes mellitus (IDDM). Reports of various studies in this vein have ranged from stating that the association of DQA2“U” with IDDM exists even among subjects positive for HLA-DR3 and -DR4 to stating that the association of DQA2“U” with diabetes can be attributed to linkage disequilibrium between with DQA2“U” and some component(s) on the affected haplotypes. Using a synthetic 97-base probe corresponding to a portion of an intron of DQA2, in a Southern blot analysis of IDDM and control subjects from Wisconsin, we were able to confirm the association of DQA2“U” with diabetes. However, among DR3 subjects there was no significant association between DQA2“U” and diabetes (p = 0.26). Although there was a (nonsignificant) association of IDDM with DQA2“U” among DR4-positive subjects (p = 0.14), this can be completely attributed to linkage disequilibrium between DQA2“U” DQw8. We also sequenced most of the second exon (corresponding to the 1 domain of the DQA2 glycoprotein) from five individuals that were homozygous for either DQA2“U” or DQA2“L.” The only polymorphisms observed were a “silent” mutation at position 36 and one example of a difference that would result in a change of amino acid at position 41.  相似文献   

19.
The spectrum of inflammatory diseases is nowadays considered to include diverse diseases of the central nervous system (CNS). Current evidence suggests that syndromes such as Alzheimer’s disease (AD) have important inflammatory and immune components and may be amenable to treatment by anti-inflammatory and immunotherapeutic approaches. Compelling evidence has been reported that complement activation occurs in the brain with Alzheimer’s disease, and that this contributes to the development of a local inflammatory state that is correlated with cognitive dysfunction. The complement system is a critical element of the innate immune system recognizing and killing, or targeting for destruction, otherwise pathogenic organisms. In addition to triggering the generation of a membranolytic complex, complement proteins interact with cell surface receptors to promote a local inflammatory response that contributes to the protection and healing of the host. Complement activation causes inflammation and cell damage, yet it is an essential component in trying to eliminate cell debris and potentially toxic protein aggregates. It is the balance of these seemingly competing events—the “Yin” and the “Yang”—that influences the ultimate state of neuronal function. Knowledge of the unique molecular interactions that occur in the development of Alzheimer’s disease, the functional consequences of those interactions, and the proportional contribution of each element to this disorder, should facilitate the design of effective therapeutic strategies for this disease.  相似文献   

20.
Because of a defective gene in the human gene pool and the poor and inadequate correction of the resulting potentially-fatal birth defect, Hypoascorbemia, all multiple sclerosis (MS) patients, as well as victims of other ailments, are a scorbutic population suffering from two diseases, the second disease being chronic subclinical scurvy (the CSS Syndrome). Recent work has added support to the hypothesis that MS is a viral infection of the central nervous system (CNS). It is known that the elimination of the chronic subclinical scurvy in patients afflicted with a wide spectrum of serious viral infections, using daily megadoses of ascorbate in the range of about 100 to 300 grams, provides rapid relief of the viral disease. It is proposed that double-blind clinical studies be conducted on a non-scorbutic population of MS victims, using a protocol which eliminates their chronic subclinical scurvy with the proper daily “mega” intakes of ascorbate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号