首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The effects of fenoverine, an antispasmodic drug, have been studied on the Ca2+ channel currents of isolated cells from rat portal vein and pregnant myometrium by the patch-clamp technique (whole-cell configuration). 2. Fenoverine inhibited both fast and slow Ca2+ channel currents in a concentration-dependent manner. Half-inhibition of fast Ca2+ channel current (holding potential of -70 mV) and slow Ca2+ channel current (holding potential of -40 mV) in portal vein smooth muscle were obtained at concentrations of 7.5 and 1.9 microM, respectively. In myometrium, the fenoverine concentration which blocked 50% of the slow Ca2+ channel current (holding potential of -70 mV) was 2.3 microM. 3. Administration of fenoverine at rest reduced both Ca2+ channel currents. Currents activated repetitively, at a rate between 0.05 and 0.1 Hz, were inhibited equally which indicates an absence of use-dependent inhibition. 4. When cells held at depolarized membrane potentials at which fast or slow Ca2+ channel currents were strongly inactivated, the inhibitory effects of fenoverine were enhanced on both Ca2+ channel currents which indicates that the fenoverine-induced inhibition was voltage-dependent. The fenoverine concentrations which blocked the inactivated Ca2+ channels were 5-7 times lower than those which blocked the resting Ca2+ channels. 5. Our results show that fenoverine depresses inward currents through fast and slow Ca2+ channels. This effect may be explained by the preferential binding of fenoverine to resting Ca2+ channels. In addition, fenoverine has a higher affinity for inactivated Ca2+ channels than for resting channels.  相似文献   

2.
1. The effects of tetraethylammonium (TEA) and 4-aminopyridine (4-AP) on membrane currents and on single channel K currents in smooth muscle cells isolated from canine trachea were examined by use of tight seal whole cell- and patch-clamp techniques. 2. Depolarizing current applied through a recording pipette did not elicit an action potential under current clamp. A strong outward rectification was observed. 3. In most cells under voltage-clamp, only an outward current was observed upon depolarization from -60 mV when a pipette solution contained mainly KCl. The outward current consisted of three components; a large initial transient, a following sustained component and an additional component of irregular small transients on the sustained one. The two transient components were almost abolished when extracellular and pipette solutions contained 2.2 mM Cd2+ (0 mM Ca2+) and 10 mM EGTA, respectively. The sustained component was well maintained under these conditions. 4. TEA at low concentrations (less than 1 mM) effectively decreased the transient components and made the outward current smooth; it also suppressed the sustained component at higher concentrations. In outside-out patches, external 1 mM TEA reduced the single channel conductance of Ca-activated K channels by about 87% whereas 3 mM 4-AP did not. 4-AP at low concentrations (less than 3 mM) selectively reduced the sustained component of the outward current. 5. A Ca current recorded after the suppression of outward current by internal Cs+ had a peak of approximately 200 pA at +10 mV (holding potential: -60 mV). The half inactivation voltage in the steady-state was approximately -30 mV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
PURPOSE: Pilsicainide, classified as a relatively pure Na+ channel blocker, occasionally causes QT prolongation, suggesting inhibitory actions on K+ currents. We studied effects of pilsicainide on the K+ channel current of the human ether-a-go-go-related gene (HERG) in heterologous expression system. METHODS: The Patch-clamp technique in whole-cell configuration was used to record the channel current of HERG stably expressed in HEK293 cells. RESULTS: Pilsicainide suppressed peak currents of HERG channel during depolarizing pulses and tail currents upon repolarization. Pilsicainide blocked HERG current with IC50 = 20.4 microM and Hill coefficient = 0.98. Voltage-dependent activation was shifted in a negative direction by approximately 10 mV by 10 to 20 microM pilsicainide. Block increased with depolarization to voltages between -20 and 0 mV and reached the maximum level at positive voltages to 0 mV without further increase. Following drug equilibration for 10 minutes (holding potential at -100 mV), the peak outward current upon the first depolarization showed time-dependent block; tail current block was maximal. Frequency-dependent block evaluated from tail current was absent with pulse frequencies of 1.33, 0.5, and 0.2 Hz. After a steady state block was achieved, time course of current activation and deactivation was slowed by pilsicainide, and steady-state inactivation and time course of fast inactivation were mildly affected. CONCLUSIONS: Pilsicainide blocks HERG current with a preferential affinity, at least, to the open state of the channels with a fast access to binding sites.  相似文献   

4.
We investigated effects of a novel cardioprotective drug, JTV-519 (4-[3-(4-benzylpiperidin-1-yl)propionyl]-7-methoxy-2,3,4,5-tetrahy dro-1,4-benzothiazepine monohydrochloride) on membrane currents of guinea pig ventricular myocytes by whole-cell voltage and current clamp methods. The fast Na+ current (iNa) was activated by ramp pulses from various holding potentials of -90, -80 or -60 mV to 10 mV with various intervals. At 0.2 Hz, JTV-519 inhibited iNa in a concentration-dependent manner with an IC50 of approximately 1.2 and 2 microM at the holding potential of -60 and -90 mM, respectively, implicating a voltage-dependent block. Increasing the pulse frequency from 1 to 2 or 3.3 Hz in the presence of 1 microM JTV-519 shortened the time-course and increased the level of iNa block, indicating a frequency-dependent block. The time-course of iNa blocking by JTV-519 was slower than that of lidocaine and similar to that of quinidine. Ca2+ current (iCa) and the inwardly rectifying K+ current (iK1) were also inhibited by JTV-519. JTV-519 decreased the duration and the height of the plateau of the action potential. We conclude that JTV-519 has frequency- and voltage-dependent blocking effects on iNa as well as inhibition of iCa and iK1.  相似文献   

5.
1. Using the whole-cell patch-clamp technique, the effects of several K+ channel blocking drugs on K+ current recorded from rabbit isolated aortic smooth muscle cells were investigated. 2. Upon depolarization from -80 mV, outward K+ current composed of several distinct components were observed: a transient, 4-aminopyridine (4-AP)-sensitive component (I1) and a sustained component (Isus), comprising a 4-AP-sensitive delayed rectifier current (IK(V)), and a noisy current which was sensitive to tetraethylammonium (TEA), and probably due to Ca(2+)-activated K+ current (IK(Ca)). 3. Several drugs in clinical or experimental use have as part of their action an inhibitory effect on specific K+ channels. Because of their differential K+ channel blocking effects, these drugs were used in an attempt to characterize further the K+ channels in rabbit aortic smooth muscle cells. Imipramine, phencyclidine, sotalol and amitriptyline failed to block selectively any of the components of K+ current, and were thus of little value in isolating individual channel contributions. Clofilium showed selective block of IK(V) in the presence of TEA, but only at low stimulation frequencies (0.07 Hz). At higher frequencies (1 Hz) of depolarization, both I1 and IK(V) were suppressed to a similar extent. Thus, the blocking action of clofilium was use-dependent. 4. The voltage-dependent inactivation of I1 and the delayed rectifier were very similar although a brief (100 ms) pre-pulse to -30 mV could preferentially inactivate I1. Together with the non-selective blocking effects of the K+ channel blockers, similarities in the activation and inactivation of these two components suggest that they may not exist as separate ionic channels, but as distinct kinetic states within the same K+ channel population. 5. The effects of all of these drugs on tension were examined in strips of rabbit aorta. The non-specific K+ channel blockers caused only minor increases in basal tension. TEA and 4-AP by themselves caused significant increases in tension and were even more effective when applied together. There appeared to be no correlation between the effects of the drugs tested on tension and their actions on currents recorded from isolated myocytes. Thus tension studies are an inappropriate means of investigating the mechanism of action of these drugs, and studies on ionic currents in isolated myocytes cannot easily predict drug actions on intact tissues.  相似文献   

6.
Electrophysiological and pharmacological properties of the pinacidil-induced K+ currents in isolated cells from pig urethra were investigated using patch-clamp techniques. Pinacidil (100 microM) induced an outward current at -50 mV which gradually decreased. Under current-clamp conditions, 100 microM pinacidil induced a hyperpolarization that was sustained. This suggests that activation of only a few channels can hyperpolarize the membrane. At a holding potential of -50 mV, glibenclamide inhibited the pinacidil-induced current with a single exponential time course. Unitary current recordings in symmetrical 140 mM K+ conditions demonstrated that pinacidil activates a 43-pS, glibenclamide-sensitive K+ channel (i.e. K(ATP) channel). Analysis of the basal noise of the pinacidil-induced macroscopic currents from -90 mV to -30 mV yielded estimates of channel conductance (6 pS) which were much smaller, and probably an underestimate. These results indicate that pinacidil induces a glibenclamide-sensitive K+ current through only one type of K+ channel (K(ATP) channel) in pig urethra.  相似文献   

7.
The effects of imipramine on A-type delayed rectifier K+ currents and ATP-sensitive K+ (KATP) currents were studied in isolated murine proximal colonic myocytes using the whole-cell patch-clamp technique. Depolarizing test pulses between -80 mV and +30 mV with 10 mV increments from the holding potential of -80 mV activated voltage-dependent outward K+ currents that peaked within 50 ms followed by slow decreasing sustained currents. Early peak currents were inhibited by the application of 4-aminopyridine, whereas sustained currents were inhibited by the application of TEA. The peak amplitude of A-type delayed rectifier K+ currents was reduced by external application of imipramine. The half-inactivation potential and the half-recovery time of A-type delayed rectifier K+ currents were not changed by imipramine. With 0.1 mM ATP and 140 mM K+ in the pipette and 90 mM K+ in the bath solution and a holding potential of -80 mV, pinacidil activated inward currents; this effect was blocked by glibenclamide. Imipramine also inhibited KATP currents. The inhibitory effects of imipramine in A-type delayed rectifier K+ currents and KATP currents were not changed by guanosine 5-O-(2-thiodiphosphate) (GDPbetaS) and chelerythrine, a protein kinase C inhibitor. These results suggest that imipramine inhibits A-type delayed rectifier K+ currents and KATP currents in a manner independent of G-protein and protein kinase C.  相似文献   

8.
1. The actions of the neuroprotective agent, lifarizine (RS-87476-190), on voltage-dependent Na+ currents have been examined in the neuroblastoma cell line, N1E-115, using the whole-cell variant of the patch clamp technique. 2. At a holding potential of -80 mV, lifarizine reduced the peak Na+ current evoked by a 10 ms depolarizing step with an IC50 of 1.3 microM. At holding potentials of -100 and -60 mV the IC50 concentrations of lifarizine were 7.3 microM and 0.3 microM, respectively. 3. At a holding potential of -100 mV, most channels were in the resting state and the IC50 value for inhibition of Na+ current should correspond to the dissociation constant of lifarizine for resting channels (KR). KR was therefore estimated to be 7.3 microM. 4. In the absence of lifarizine, recovery from inactivation following a 20 s depolarization from -100 mV to 0 mV was complete within 2 s. However, in the presence of 3 microM lifarizine recovery took place in a biexponential fashion with time constants of 7 s and 79 s. 5. Lifarizine (1 microM) had no effect on steady-state inactivation curves when conditioning pre-pulses of 1 s duration were used. However, when pre-pulse durations of 1 min were used the curves were shifted to the left by lifarizine by about 10 mV. Analysis of the shifts induced by a range of lifarizine concentrations revealed that the apparent affinity of lifarizine for the inactivated state of the channel (K1) was 0.19 microM. 6. Lifarizine (1 microM) had no effect on chloramine-T-modified Na+ currents, suggesting no significant open channel interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of arachidonic acid (AA) and the mechanism through which it modulates ATP-sensitive K+ (K(ATP)) currents were examined in single smooth muscle cells of murine proximal colon. In the current-clamping mode, AA and glibenclamide induced depolarization of membrane potential. Using 0.1 mM ATP and 140 mM K+ solution in the pipette and 90 mM K+ in the bath solution at a -80 mV of holding potential, pinacidil activated the glibenclamide-sensitive inward current. The potential of these currents was reversed to near the equilibrium potential of K+ by 60 mM K+ in the bath solution. AA inhibited K(ATP) currents in a dose-dependent manner. This inhibition was not changed when 1 mM GDPbetaS was present in the pipette. Chelerythrine, protein kinase C inhibitor, did not block the AA effects. Superoxide dismutase and metabolic inhibitors (indomethacin and nordihydroguaiacretic acid) of AA did not affect the AA-induced inhibition. Eicosatetraynoic acid, a nonmetabolizable analogue of AA, inhibited the K(ATP) currents. These results suggest that AA-induced inhibition of K(ATP) currents is not mediated by G-protein or protein kinase C activation. The inhibitory action is likely to be a possible mechanism of AA-induced membrane depolarization.  相似文献   

10.
Yang A  Wang XQ  Sun CS  Wei L  Yu SP 《Pharmacology》2005,73(3):162-168
The class III antiarrhythmic agent 4-chloro-N,N-diethyl-N-heptyl-benzene butanaminium (clofilium) is known as a K+ channel open-channel blocker and has either anti- or proapoptotic property due to undefined mechanisms. Based on the evidence that neuronal viability is largely, sometimes critically, affected by voltage- and ligand-gated Ca2+ channels and the Na+, K+-ATPase, we tested the hypothesis that clofilium might additionally act on Ca2+ permeable ion channels and the Na+, K+-ATPase. Membrane currents associated with activities of voltage-gated Ca2+ channels, N-methyl-D-aspartate (NMDA) receptor channels and Na+, K+-ATPase were recorded using whole-cell recordings in cultured murine cortical neurons. Clofilium (0.1-100 micromol/l) inhibited high voltage-activated Ca2+ currents in concentration- and use-dependent manners. Clofilium acted as a potent antagonist of NMDA receptor channels, preferably blocked the NMDA steady-state current at a low concentration (0.1 micromol/l). At concentrations of >100 micromol/l, clofilium blocked both peak and steady-state NMDA currents in a voltage-independent manner. Clofilium also inhibited the Na+, K+-ATPase current with an IC50 of 7.5 micromol/l. Our data suggest that the pharmacological action of clofilium is far more complex than recognized before; the multiple actions of clofilium on membrane conductance may explain its diverse effects on cellular events and cell viability.  相似文献   

11.
1 The possibility that the class III antiarrhythmic drugs clofilium and d-sotalol might affect delayed rectifier potassium channels at the level of their gating currents was assessed with the whole-cell patch-clamp technique in guinea-pig isolated ventricular heart cells. 2 Clofilium (up to 20 microM) and d-sotalol (1 microM) did not decrease the Na current, the L-type Ca current or the background K current iKl, but significantly depressed the time-dependent delayed outward K current iK. 3 Clofilium partially decreased in a dose-dependent manner (1-20 microM) QON of intramembrane charge movements (ICM) elicited by a depolarizing pulse applied from a holding potential of -110 mV or following a 100 ms inactivating prepulse to -50 mV. D-sotalol (1 microM) also decreased QON. Channel density estimated from the clofilium-sensitive ICM closely matched that of the delayed rectifier channels. 4 Clofilium and d-sotalol decreased QOFF seen on repolarization in a dose- and voltage-dependent manner. The kinetics of the decay of the OFF gating currents were not affected, and only the fast phase was depressed. 5 In control conditions, QON availability with voltage was most of the time well described by two inactivating components. In the presence of clofilium and d-sotalol, a complex behaviour of QON availability was observed, unmasking additional components. The reactivation kinetics of QON after a 500 ms inactivating pulse to 0 mV was not affected. 6 We conclude that delayed rectifier K channels significantly contribute to QON and QOFF of ICM in guinea-pig ventricular heart cells, besides Na and Ca channels, and that clofilium and d-sotalol directly interact with these K channels proteins by affecting their gating properties.  相似文献   

12.
Mounting electrophysiological evidence indicates that certain general anesthetics, volatile anesthetics in particular, depress excitatory synaptic transmission by presynaptic mechanisms. We studied the effects of representative general anesthetics on voltage-gated Na+ currents (INa) in nerve terminals isolated from rat neurohypophysis using patch-clamp electrophysiological analysis. Both isoflurane and propofol inhibited INa in a dose-dependent and reversible manner. At holding potentials of -70 or -90 mV, isoflurane inhibited peak INa with IC50 values of 0.45 and 0.56 mM, and propofol inhibited peak INa with IC50 values of 4.1 and 6.0 microM, respectively. Isoflurane (0.8 mM) did not significantly alter the V1/2 of activation; propofol caused a small positive shift. Isoflurane (0.8 mM) or propofol (5 microM) produced a negative shift in the voltage dependence of inactivation. Recovery of INa from inactivation was slower from a holding potential of -70 mV than from -90 mV; isoflurane and propofol further delayed recovery from inactivation. In conclusion, the volatile anesthetic isoflurane and the intravenous anesthetic propofol inhibit voltage-gated Na+ currents in isolated neurohypophysial nerve terminals in a concentration- and voltage-dependent manner. Marked effects on the voltage dependence and kinetics of inactivation and minimal effects on activation support preferential anesthetic interactions with the fast inactivated state of the Na+ channel. These results are consistent with direct inhibition of oxytocin and vasopressin release from the neurohypophysis by isoflurane and propofol. Inhibition of voltage-gated Na+ channels may contribute to the presynaptic effects of general anesthetics on nerve terminal excitability and neurotransmitter release.  相似文献   

13.
本文用单细胞钳法研究了氟卡尼(flecainide,F1e)对豚鼠心房单细胞膜电流的影响,发现Fle频率依鞍性延长动作电位时程,并且浓度和频率依赖性减低迟发性外向钾电流和尾电流,Fle对保持电流作用不显著,Fle抗房性心律失常机制是电压依赖性抑制外向钾电流,Fle显著影响复极过程,故不符合I_c类抗心律失常药物。  相似文献   

14.
1. The effects of nicergoline on the T- and L-type Ca2+ currents in pyramidal cells freshly isolated from rat hippocampal CA1 region were investigated by use of a 'concentration-clamp' technique. The technique combines a suction-pipette technique, which allows intracellular perfusion under a single-electrode voltage-clamp, and rapid exchange of extracellular solution within 2 ms. 2. T-type Ca2+ currents were evoked by step depolarizations from a holding potential of -100 mV to potentials more positive than -70 to -60 mV, and reached a peak at about -30 mV in the current-voltage relationship. Activation and inactivation of T-type Ca2+ currents were highly potential-dependent. 3. Nicergoline and other Ca2+ antagonists dose-dependently blocked the T-type Ca2+ channel with an order of potency nicardipine greater than nicergoline greater than diltiazem. 4. The L-type Ca2+ channel was also blocked in the order nicardipine greater than nicergoline greater than diltiazem, although the T-type Ca2+ channel was more sensitive to nicergoline. 5. The inhibitory effects of nicergoline and nicardipine on the T-type Ca2+ current were voltage-, time-, and use-dependent, and the inhibition increased with a decrease in the external Ca2+ concentration. Diltiazem showed only a use-dependent block.  相似文献   

15.
In the present study, we analyzed the effects of two angiotensin II type 1 receptor antagonists, candesartan (0.1 microM) and eprosartan (1 microM), on hKv1.5, HERG, KvLQT1+minK, and Kv4.3 channels expressed on Ltk(-) or Chinese hamster ovary cells using the patch-clamp technique. Candesartan and eprosartan produced a voltage-dependent block of hKv1.5 channels decreasing the current at +60 mV by 20.9 +/- 2.3% and 14.3 +/- 1.5%, respectively. The blockade was frequency-dependent, suggesting an open-channel interaction. Eprosartan inhibited the tail amplitude of HERG currents elicited on repolarization after pulses to +60 mV from 239 +/- 78 to 179 +/- 72 pA. Candesartan shifted the activation curve of HERG channels in the hyperpolarizing direction, thus increasing the current amplitude elicited by depolarizations to potentials between -50 and 0 mV. Candesartan reduced the KvLQT1+minK currents elicited by 2-s pulses to +60 mV (38.7 +/- 6.3%). In contrast, eprosartan transiently increased (8.8 +/- 2.7%) and thereafter reduced the KvLQT1+minK current amplitude by 17.7 +/- 3.0%. Eprosartan, but not candesartan, blocked Kv4.3 channels in a voltage-dependent manner (22.2 +/- 3.5% at +50 mV) without modifying the voltage-dependence of Kv4.3 channel inactivation. Candesartan slightly prolonged the action potential duration recorded in guinea pig papillary muscles at all driving rates. Eprosartan prolonged the action potential duration in muscles driven at 0.1 to 1 Hz, but it shortened this parameter at faster rates (2--3 Hz). All these results demonstrated that candesartan and eprosartan exert direct effects on Kv1.5, HERG, KvLQT1+minK, and Kv4.3 currents involved in human cardiac repolarization.  相似文献   

16.
李世英  欧阳守 《药学学报》2005,40(9):801-809
目的研究大黄素对大鼠近端结肠电压依赖性钾离子通道的影响,以探讨其增强结肠运动的机制。方法 采用全细胞膜片钳技术测定电压依赖性钾离子通道快速激活型钾电流及延迟整流型钾电流。结果大黄素(1~30 μmol·L-1)浓度依赖性地阻断延迟整流性钾通道,加快电流失活,其阻断作用不需要钾通道的开放。30 μmol·L-1大黄素可抑制快速激活型钾电流。5 μmol·L-1大黄素对钾通道的激活动力学及失活动力学没有影响,但30 μmol·L-1大黄素使其激活动力学曲线明显右移,斜率常数由(13.0±0.6)上升至(19.6±2.5) mV,同时也使失活动力学曲线明显右移。结论大黄素可阻断延迟整流型钾通道及快速激活型钾通道,其阻断作用不是开放阻断。  相似文献   

17.
1. The whole-cell patch-clamp technique was used to examine the effects of the class III antidysrhythmic agent, clofilium, on voltage-activated delayed rectifier K+ currents (IKv) in undifferentiated mouse neuroblastoma x rat glioma hybrid (NG 108-15) cells. Ca(2+)-activated K+ currents also seen in these cells were abolished by bath application of 4 mM Co2+. 2. Bath application of clofilium (0.3 to 70 microM) caused dose-dependent, irreversible inhibition of IKv in these cells. Under control conditions, activated currents were sustained during 200 ms depolarizing steps, but in the presence of clofilium, or after its wash-out, currents were reduced in amplitude and showed a time-dependent decay. 3. Clofilium blockade of IKv was voltage-dependent; the degree of current inhibition increased with increasing depolarizations. The transient nature of IKv seen in the presence of clofilium was also more apparent at higher test potentials. 4. The effects of clofilium were use-dependent: when cells were left unstimulated during drug application, and then depolarizations were resumed, several pulses were required for clofilium blockade to reach a steady level. Similar results were obtained post-clofilium, when cells were unstimulated during application and then removal of clofilium, suggesting that although the blocking action of the drug was use-dependent, it bound to the closed, delayed rectifier K+ channel. 5. High concentrations (100 or 300 microM) of sotalol, another class III antidysrhythmic agent, were without discernible effects on IKv in NG 108-15 cells. 6. The effects of clofilium on a neuronal IKv described here, and its possible mechanism of action, are compared with previously reported effects of clofilium on the cardiac IKv.  相似文献   

18.
Effects of KRN2391 on ionic currents in rabbit femoral arterial myocytes   总被引:2,自引:0,他引:2  
The effects of KRN2391, an ATP-sensitive K+ channel opener (KCO) which also acts as a nitrate, on ionic membrane currents in rabbit femoral arterial myocytes were examined. Under whole-cell clamp conditions where cells were superfused with physiological salts solution containing 5.9 mM K+, KRN2391 elicited an outward current at a holding potential of -30 mV. KRN2391-induced current had a reversal potential of -78 mV and was abolished by glibenclamide (glib). KRN2391 was approximately 25 times more potent than nicorandil to activate an ATP-sensitive K+ current (I:(KATP)). On the other hand, 10 microM KRN2391 did not affect either voltage-dependent Ca(2+) or delayed rectifier K+ channel currents. In the inside-out patch configuration, KRN2391 activated 47 pS K+ channels in the presence of nucleotide diphosphates (NDPs) under the symmetrical 140 mM K+ conditions. Glib and intracellular ATP reversibly inhibited the activity of the 47 pS K+ channels. The 47 pS K+ channels activated by KRN2391 are similar in their conductance and other properties to NDP-sensitive K+ channels (K(NDP) channels) described in other smooth muscles and the cloned channels. KRN2391 is a potent activator of the 47 pS K+ channels and the activation can contribute to the KRN2391-induced vasodilation in arterial muscles.  相似文献   

19.
1. Inhibition by haloperidol and chlorpromazine of a voltage-activated K+ current was characterized in rat phaeochromocytoma PC12 cells by use of whole-cell voltage-clamp techniques. 2. Haloperidol or chlorpromazine (1 and 10 microM) inhibited a K+ current activated by a test potential of +20 mV applied from a holding potential of -60 mV. The K+ current inhibition did not exhibit voltage-dependence when test potentials were changed between -10 and +40 mV or when holding potentials were changed between -120 and -60 mV. 3. Effects of compounds that are related to haloperidol and chlorpromazine in their pharmacological actions were examined. Fluspirilene (1 and 10 microM), an antipsychotic drug, inhibited the K+ current, but pimozide (1 and 10 microM), another antipsychotic drug did not significantly inhibit the K+ current. Sulpiride (1 or 10 microM), an antagonist of dopamine D2 receptors, did not affect the K+ current whereas (+)-SCH-23390 (10 microM), an antagonist of dopamine D1 receptors, reduced the K+ current. As for calmodulin antagonists, W-7 (100 microM), but not calmidazolium (1 microM), reduced the K+ current. 4. The inhibition by haloperidol or chlorpromazine of the K+ current was abolished when GTP in intracellular solution was replaced with GDP beta S. Similarly, the inhibition by pimozide, fluspirilene, (+)-SCH-23390 or W-7 was abolished or attenuated in the presence of intracellular GDP beta S. The inhibition by haloperidol or chlorpromazine was not prevented when cells were pretreated with pertussis toxin or when K-252a, an inhibitor of a variety of protein kinases, was included in the intracellular solution. 5. Haloperidol and chlorpromazine reduced a Ba2+ current permeating through Ca2+ channels. Inhibition by haloperidol or chlorpromazine of the Ba2+ current was not affected by GDP beta S included in the intracellular solution. 6. It is concluded that haloperidol and chlorpromazine inhibit voltage-gated K+ channels in PC12 cells by a mechanism involving GTP-binding proteins. The inhibition may not be related to their activity as antagonists of dopamine D2 receptors or calmodulin antagonists.  相似文献   

20.
The effects of fluoxetine and its major metabolite, norfluoxetine, were studied using the patch-clamp technique on the cloned neuronal rat K(+) channel Kv3.1, expressed in Chinese hamster ovary cells. In whole-cell recordings, fluoxetine and norfluoxetine inhibited Kv3.1 currents in a reversible concentration-dependent manner, with an IC(50) value and a Hill coefficient of 13.11+/-0.91 microM and 1.33+/-0.08 for fluoxetine and 0.80+/-0.06 microM and 1.65+/-0.08 for norfluoxetine at +40 mV, respectively. In inside-out patches, norfluoxetine applied to the cytoplasmic surface inhibited Kv3.1 with an IC(50) value of 0.19+/-0.01 microM. The inhibition of Kv3.1 currents by both drugs was characterized by an acceleration in the apparent rate of current decay, without modification of the activation time course and with relatively fewer effects on peak amplitude. The degree of inhibition of Kv3.1 by norfluoxetine was voltage-dependent. The inhibition increased steeply between 0 and +30 mV, which corresponded with the voltage range for channel opening. In the voltage range positive to +30 mV, inhibition displayed a weak voltage dependence, consistent with an electrical distance delta of 0.31+/-0.05. The association (k(+1)) and dissociation (k(-1)) rate constants for norfluoxetine-induced inhibition of Kv3.1 were 21.70+/-3.39 microM(-1) s(-1) and 14.68+/-3.94 s(-1), respectively. The theoretical K(D) value derived by k(-1)/k(+1) yielded 0.68 microM. Norfluoxetine did not affect the ion selectivity of Kv3.1. The reversal potential under control conditions was about -85 mV and was not affected by norfluoxetine. Norfluoxetine slowed the deactivation time course, resulting in a tail crossover phenomenon when the tail currents, recorded in the presence and absence of norfluoxetine, were superimposed. The voltage dependence of steady-state inactivation was not changed by the drug. Norfluoxetine produced use-dependent inhibition of Kv3.1 at a frequency of 1 Hz and slowed the recovery from inactivation. It is concluded that at clinically relevant concentrations, both fluoxetine and its major metabolite norfluoxetine inhibit Kv3.1, and that norfluoxetine directly inhibits Kv3.1 as an open channel blocker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号